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Abstract

Human-Object Interaction (HOI) recognition in videos is a fundamental task in computer
vision with wide-ranging applications, including robotics, surveillance, and autonomous
systems. Accurately modeling the complex interactions between multiple humans and
objects in dynamic environments is crucial for developing intelligent systems that can
understand and recognize human behavior.

HOI recognition in multi-person scenarios presents unique challenges that surpass
traditional action recognition and single-person HOI tasks. With multiple individuals inter-
acting simultaneously with various objects, complexities such as occlusions and overlapping
interactions become prevalent. Video-based analysis is crucial, as static images fail to
capture the temporal dynamics necessary for understanding these interactions. To tackle
these challenges, integrating geometric cues like human poses and object keypoints with
visual features such as appearance and motion is essential. Geometric understanding is
inherently more robust to occlusions and can provide additional spatial information that
visual features alone may miss. The primary aim of this research is to develop a robust
and accurate multi-person HOI recognition framework that effectively fuses geometric
and visual features, addressing these complexities through three objectives: (1) designing
advanced multimodal feature fusion methods, (2) collecting comprehensive multi-person
HOI datasets, and (3) creating a generalizable framework suited for diverse scenarios.

The motivation behind this research direction stems from the limitations of current
visual-based approaches, which often fail to generalize in complex real-world scenarios.
Extracting geometric is inspired by skeleton-based action recognition, as they are less
affected by challenges like partial occlusions. Effective fusion of geometric and visual features
is critical for creating a holistic representation that enhances the model’s understanding
of interactions. Additionally, the success of this framework hinges on the availability of
high-quality datasets that reflect the diversity of real-world MPHOI situations. Therefore,
we also collect multi-person HOI datasets that not only aid in training and validating the
proposed model but also contribute to the broader research community. This comprehensive
approach ensures that our framework is well-equipped to handle the intricate nature of
MPHOI recognition in dynamic video environments.

This research introduces a series of novel frameworks designed to enhance the robustness
and accuracy of multi-person HOI recognition in videos. We start with the Two-level
Geometric feature-informed Graph Convolutional Network (2G-GCN), the first attempt to
complement visual features with geometric features learned from geometric understanding
via graph-based deep learning methods. We also introduce MPHOI-72, a novel two-
person HOI dataset specifically designed to evaluate the effectiveness of 2G-GCN in
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multi-person HOI scenarios, thereby advancing the field from single-person to multi-person
HOI recognition.

Building on the insight from 2G-GCN that the geometric cues offer extensive comple-
mentary information, the need for a more effective fusion of geometric and visual features
is identified. We propose the CATS framework to advance HOI recognition from category-
level to scenery-level understanding. This framework fuses geometric and visual features
for each human and object category, and subsequently constructs a scenery interactive
graph to learn the relationships among these categories, providing a more structured and
comprehensive understanding of the interactions within a scene.

Recognizing the need for further improvements in multimodal feature fusion and
dynamic interaction modeling, we propose the Geometric Visual Fusion Graph Neural
Networks (GeoVis-GNN). It further refines the fusion of geometric and visual features
at the entity level via a dual-attention mechanism and enhances HOI modeling by an
interdependent entity graph. To better represent realistic multi-person HOI scenarios, we
introduce MPHOI-120, a challenging dataset collecting three-person HOI activities with
frequent occlusions and exponentially increasing interaction complexity.

We validate the effectiveness of our methods through extensive experiments and quali-
tative analysis, demonstrating that our approaches outperform state-of-the-art techniques
in HOI recognition across both multi-person and single-person scenarios in videos.
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CHAPTER 1

Introduction

Human-Object Interaction (HOI) recognition in videos is a crucial area of research

in computer vision, where multi-person scenarios introduce unique challenges that

go beyond the complexities of traditional action recognition and single-person HOI

tasks. In multi-person environments, multiple individuals often interact with various

objects simultaneously, leading to overlapping and intertwined actions that are

difficult to disentangle. This creates ambiguity in associating actions with entities and

interpreting interactions. Furthermore, frequent occlusions complicate the accurate

tracking and recognition of interactions, challenges that traditional action recognition

models, designed for single individuals or isolated actions, are not equipped to handle.

While image-based HOI detection provides a snapshot of interactions, it lacks the

temporal context needed to understand the dynamics and evolution of interactions

over time. Video-based HOI recognition captures the continuity and sequence of

human actions, allowing for a more comprehensive understanding of human behavior.

This temporal dimension is essential for accurately predicting and interpreting

complex interactions in real-world scenarios, such as surveillance [1, 2] and human-

computer interaction [3, 4].

Real-world HOIs frequently involve multiple interacting individuals and objects,
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which introduce occlusions and dynamic complexities. In these situations, methods

with visual cues alone [5–9] may be insufficient, as they can struggle to accurately

represent interactions when parts of the scene are obscured. Geometric understanding,

such as human poses, tends to be more robust to partial occlusions [10–13]. This

research explores the application of graph neural networks to effectively incorporate

such geometric cues and fuse them with visual data, enabling a more comprehensive

understanding of interactions and improving the accuracy of HOI recognition in

complex, multi-person scenarios.

1.1 Motivations

Despite significant advancements in HOI recognition, most existing approaches [6,13–

18] have primarily focused on recognizing interactions in static images. While these

methods have laid the groundwork for understanding human-object dynamics, they

inherently lack the temporal context that video-based analysis provides. Recognizing

interactions in videos introduces a temporal dimension that captures the progression

and evolution of actions over time, offering a more comprehensive understanding of

human behavior. However, this temporal aspect also brings about new challenges,

particularly when dealing with real-world HOIs that involve multiple interacting

humans and objects. Such scenarios often lead to occlusions and dynamic interaction

changes that are difficult to model using traditional visual features alone.

One of the primary motivations for this research is the realization that visual cues,

while powerful in providing detailed appearance information (e.g ., color, texture,

and shape) [5, 8, 9, 19–21], have limitations in handling the complexity of real-world

HOIs, especially in crowded or cluttered environments. Visual features can struggle

to accurately capture interactions when objects or body parts are partially obscured,

leading to potential misinterpretations of the scene. This is particularly problematic

in scenarios where multiple individuals are interacting with various objects, as the

occlusions and overlaps can cause significant challenges for traditional visual-based

recognition methods.

Geometric features, such as human poses and object keypoints, offer a promising

2



solution to these limitations. Unlike visual features, geometric data is inherently more

robust to partial occlusions and can provide a consistent representation of the spatial

relationships between humans and objects [10,11,13,22,23]. Accurately modeling

the spatial and functional relationships between humans and objects, such as how a

person is positioned relative to a cup they are holding, is crucial for understanding

the broader context of the interaction. For example, recognizing that a person is

reaching for a cup suggests they are likely about to lift it to drink. This understanding

is essential for predicting subsequent actions. This research is motivated by the

potential to enhance HOI recognition by integrating geometric features to complement

visual data, thereby leveraging the strengths of both modalities.

Graph neural networks have demonstrated significant potential in modeling

complex patterns and relationships within data [6–9,24–28]. However, the integration

of geometric and visual features in the context of HOI recognition remains relatively

unexplored. This research aims to bridge this gap by proposing a novel framework

that fuses these multimodal features, enabling a more comprehensive representation

of HOIs. Our approach is designed to enhance the accuracy and robustness of HOI

recognition, particularly in challenging scenarios with multiple interacting individuals

and objects.

1.2 Research Aims

The primary aim of this research is to advance the field of multi-person HOI recogni-

tion in videos by developing a novel framework that effectively integrates geometric

and visual features. Recognizing that traditional visual-based approaches often

struggle with challenges such as occlusion and dynamic complexities, particularly in

scenarios involving multiple interacting individuals and objects, this research seeks

to create a more robust and accurate model for HOI recognition. To achieve this,

our research focuses on the following objectives:

1. Integration of Geometric and Visual Features: This research aims

to develop advanced methodologies for fusing geometric features, such as

human poses and object keypoints, with visual features like appearance and
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motion. By complementing visual data with geometric data, which is inherently

more resilient to occlusions, this multimodal approach is designed to improve

robustness in occluded and dynamic scenarios.

2. Collection of Multi-Person Datasets: Another critical aim of this research

is to collect multi-person HOI datasets to enhance the study and understanding

of complex interactions involving multiple humans and objects. These datasets

will be essential for training and evaluating the proposed framework, and they

are expected to contribute significantly to the broader research community by

providing a rich resource for future HOI recognition studies.

3. Development of a Comprehensive HOI Recognition Framework: The

final aim is to create a framework that not only integrates these multimodal

features but also ensures that the model can generalize effectively across

different scenarios. This involves testing and validating the model on diverse

datasets to ensure its applicability to various real-world contexts.

These research objectives are crucial for advancing HOI recognition in videos by

addressing limitations of traditional visual-based methods. Integrating geometric

and visual features enhances robustness against occlusions and dynamic complexities,

while the collection of multi-person datasets supports comprehensive model training

and evaluation, contributing valuable resources to the field. Developing a generalizable

framework ensures applicability across diverse scenarios, making the model suitable

for practical applications such as robotics and surveillance technologies. These

aims collectively provide more efficient and reliable solutions for understanding and

recognizing HOIs in videos.

1.3 Contributions

This research presents a progressive journey through the challenges and advancements

in multi-person HOI recognition, systematically building upon each contribution to

address increasingly complex scenarios.
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Our journey begins with developing the Two-level Geometric feature-informed

Graph Convolutional Network (2G-GCN), as presented in Chapter 3. Recognizing

that traditional visual-based methods often struggle with occlusions and dynamic

complexities in multi-person HOIs, our initial contribution focuses on improving HOI

recognition by learning geometric features from graph-based methods and fusing

geometric and visual data in a feature-level graph. To support this research, we

introduce the MPHOI-72 dataset, a novel two-person HOI dataset designed to address

the challenges of multi-person HOIs and to validate the effectiveness of the 2G-GCN

framework in more complex scenarios.

Building on the observations from 2G-GCN, where the integration of geometric

features shows promise but also reveals the need for a more meaningful manner to

fuse geometric and visual features. In Chapter 4, we propose an end-to-end category

to scenery framework, CATS, starting by generating geometric features for various

categories through graphs respectively, then fusing them with corresponding visual

features. Subsequently, we construct a scenery interactive graph with these enhanced

geometric-visual features as nodes to learn the relationships among human and

object categories. This methodological advance facilitates a deeper, more structured

comprehension of interactions, bridging category-specific insights with broad scenery

dynamics.

Finally, recognizing that even with the advancements made in CATS, there

remains a challenge in more effectively fusing multimodal features and accurately

capturing the intricate dynamics of multi-person interactions in complex environments.

We then propose a Geometric Visual Fusion Graph Neural Network (GeoVis-GNN)

in Chapter 5. GeoVis-GNN further refines the fusion of geometric and visual features

in the entity level via an attention mechanism and enhances HOI modeling by an

interdependent entity graph. This work not only improves the accuracy of HOI

recognition in challenging scenarios but also introduces the MPHOI-120 dataset,

which showcases three-person HOI activities in daily life to evaluate the ability of

GeoVis-GNN to handle frequent occlusions and multiple interacting entities.

Together, these contributions form a cohesive narrative of incremental advance-

ments in HOI recognition, each building upon the insights gained from the previous
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work, ultimately leading to a more robust, accurate, and context-aware understanding

of HOIs in videos. The main contributions of this thesis are summarized as follows:

• A novel Two-level Geometric feature-informed Graph Convolutional Network

(2G-GCN) consists of a two-level graph structure that models geometric features

between humans and objects, together with the corresponding visual features.

Additionally, a novel two-person HOI dataset (MPHOI-72) is proposed to

advance the area from single-person HOI to multi-person HOI (Chapter 3).

• A novel end-to-end framework, CATS, ranging from category-level feature

fusion to scenery-level graph. It integrates multi-category, multi-modality

fusion of visual and graph-based geometric features with an attention-based

scenery interactive graph to recognize multi-person HOIs in videos (Chapter 4).

• A novel bottom-up framework, GeoVis-GNN, fuses geometric and visual features

at the feature level while learning entity interactions at the entity level. The

framework includes a dual-attention feature fusion module to optimize entity-

specific representation and an interdependent entity graph to model both

explicit and implicit interactions among entities. Additionally, a new challenging

dataset (MPHOI-120) collects HOI activities of three humans interacting with

multiple objects in daily life with frequent occlusions (Chapter 5).

1.4 Publications

The research conducted for this thesis has resulted in publications or is currently

undergoing peer review as outlined below:

• Qiao, T., Men, Q., Li, F. W., Kubotani, Y., Morishima, S., & Shum, H.

P., “Geometric Features Informed Multi-person Human-object Interaction

Recognition in Videos.” In European Conference on Computer Vision (ECCV).

Springer, 2022. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Chapter 3)

• Qiao, T., Li, R., Li, F. W., & Shum, H. P., “From Category to Scenery: An

End-to-End Framework for Multi-Person Human-Object Interaction Recogni-
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tion in Videos.” In International Conference on Pattern Recognition (ICPR),

2024. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Chapter 4)

• Qiao, T., Li, R., Li, F. W., Kubotani, Y., Morishima, S., & Shum, H. P.,

“GeoVis-GNN: Geometric Visual Fusion Graph Neural Networks for Multi-

Person Human-Object Interaction Recognition in Videos.” 2024. (Under

Review at Expert Systems with Applications) . . . . . . . . . . . . . . . . . . . (Chapter 5)

1.5 Thesis Structure

This thesis is structured to systematically explore the advancements in Multi-Person

Human-Object Interaction (MPHOI) recognition using a combination of geometric

and visual features. The chapters are organized to guide the reader through the

motivations, existing literature, methodologies and findings of this research in a

coherent manner.

In Chapter 1, the introduction lays the foundation by discussing the importance

of HOI recognition in videos, particularly highlighting the challenges posed by multi-

person HOI activities and occlusions. It also outlines the research aims and key

contributions of the thesis.

Chapter 2 delves into the foundational research in HOI recognition, covering

topics such as the development of HOI datasets as well as methodologies, and the

challenges posed by geometry-informed HOI analysis. This chapter also discusses the

role of multimodal feature fusion in human activity recognition, and the relevance of

these aspects to the contributions of this thesis.

In Chapter 3, the focus shifts to the development of a novel Two-level Geometric

feature-informed Graph Convolutional Network (2G-GCN) for multi-person HOI

recognition. This chapter introduces the MPHOI-72 dataset, detailing its design and

the challenges it addresses. It also presents the experimental setup and results that

demonstrate the effectiveness of the proposed model.

Chapter 4 introduces the CATS framework, which extends the scope from category-

level feature fusion to scenery-level graph modeling for multi-person HOI recognition.

The chapter provides an in-depth explanation of the methodology, including the
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multi-category, multi-modality fusion module and the scenery interactive graph,

along with a thorough evaluation of the framework.

Chapter 5 presents a Geometric Visual Fusion Graph Neural Network (GeoVis-

GNN), which integrates geometric and visual features at the feature level while

learning entity interactions at the entity level. This chapter also introduces the

MPHOI-120 dataset, which features three humans interacting with multiple objects,

and discusses the performance of GeoVis-GNN in various challenging scenarios.

Finally, Chapter 6 summarizes the key contributions of the thesis, reflects on the

advancements made in HOI recognition, and outlines potential directions for future

research, emphasizing areas where further innovation is required.
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CHAPTER 2

Literature Review

HOI recognition in videos encompasses human action analysis [29–31] and skeleton-

based activity recognition [32–34] by integrating the detection of human movements

and postures with the contextual understanding of interactions between humans and

objects, thereby offering a more holistic approach to activity recognition in complex

environments.

In this section, we provide a comprehensive review of key areas in HOI research.

It begins with HOI datasets (Section 2.1), distinguishing between image-based and

video-based datasets to outline the data foundations supporting HOI studies. Next,

the HOI recognition task is examined (Section 2.2), covering HOI detection methods

in images, and then extending to HOI recognition in videos, where temporal dynamics

are central. Section 2.3 explores the utilization of visual and geometric information

in human activity tasks, especially HOI and action recognition, emphasizing the

use of human skeleton data, and further discusses challenges specific to geometry-

informed HOI recognition. Section 2.4 then investigates methods of fusing multimodal

features, highlighting the importance of fusing diverse data types for improved HOI

understanding. Finally, Section 2.5 illustrates the metrics and evaluation techniques

essential for assessing model performance, ensuring robust and reliable outputs in
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practical applications. Our contributions are deeply informed by and build upon

the discussed literature, underscoring their relevance and impact in the field of HOI

recognition.

2.1 HOI Datasets

Object detection, HOI detection, and HOI recognition represent a progressive rela-

tionship in understanding visual scenes. Object detection focuses on identifying and

localizing individual objects in an image, classifying them into categories like “person”

or “bicycle.” HOI detection extends this by identifying interactions between humans

and objects within a static image, adding relational complexity by recognizing actions

such as “holding a cup” or “sitting on a chair,” but is limited to spatial cues available

in a single frame. HOI recognition in videos further advances this by incorporating

temporal information, capturing interactions that evolve over time, such as “picking

up a cup” or “putting down a bag,” allowing for a more dynamic understanding of

human-object interactions.

To explore the current landscape of HOI datasets, we structure it into two

main sections. Section 2.1.1 covers image-based HOI datasets, which focus on static

relational understanding within single images. Section 2.1.2 then explores video-based

HOI datasets, emphasizing temporal dynamics and the ability to capture evolving

HOIs across frames. Together, these sections provide a comprehensive overview of

resources supporting both spatial and spatio-temporal HOI understanding.

2.1.1 Image-Based HOI Datasets

Datasets have been crucial in driving advancements in computer vision research by

providing data for training and evaluation, and inspiring new research directions.

ImageNet [35], a large-scale dataset with millions of images, enabled significant

progress in the object detection task using deep learning techniques. Other important

datasets include PASCAL VOC [36], which focuses on object detection, and SUN [37],

which emphasizes scene understanding. MS COCO [38] is designed for object

detection and segmentation in natural contexts and provides annotations for objects,
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instances, and captions. Visual Genome [39], with its extensive annotations, including

objects, attributes, and relationships, enables the study of more complex visual

relationships.

HOI detection has gained significant attention as an extension of object detection.

Early work focuses on smaller datasets with limited HOI categories, such as PASCAL

VOC [36] and Stanford 40 Actions [40]. The HICO [41] dataset, featuring a broad

set of 600 HOI categories, addresses this limitation and provides a benchmark for

image-level HOI classification. This task focuses on determining whether a particular

HOI is present in an image by answering a simple yes/no question for each predefined

HOI category. Building on HICO, the HICO-DET [42] dataset introduces instance

annotations, making it suitable for the more detailed task of HOI detection. Unlike

classification, HOI detection requires localizing interactions by predicting bounding

boxes for both the human and the object involved and assigning an interaction

label. HICO-DET [42] thus serves as a benchmark for HOI detection, providing over

150,000 annotated instances of human-object pairs across the 600 HOI categories,

with an average of 250 instances per category.

The V-COCO [43] dataset also focuses on HOI detection, providing similar

annotations but with fewer action categories. It includes a total of 10,346 images

containing 16,199 people instances, with each annotated person having binary labels

for 26 different actions. The HCVRD [44] dataset, built on Visual Genome [39],

offers a large-scale dataset for human-centric visual relationship detection. It features

fine-grained labels for human sub-categories, a wider range of predicates compared

to previous datasets like HICO [41], and includes zero-shot relationships.

Recent research has increasingly focused on 3D HOI, aiming to identify interac-

tions by reasoning about which body parts are in contact with objects, assessing their

proximity to these objects, and considering the context of the surrounding scene [45].

This approach goes beyond traditional 2D analysis by introducing a spatial depth

that allows models to better understand the geometry and relative positioning of

HOIs [45, 46]. However, contact annotation presents significant challenges, as the

areas of contact are occluded in images, requiring reasoning about body parts and

scene elements.
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The HOT [47] dataset uses 2D contact area heatmaps and associated body-

part labels to address full-body human-object contact detection in images. The

DAMON [45] dataset provides a large-scale set of paired images and accurate vertex-

level 3D contact annotations directly on the 3D SMPL [48] mesh, facilitating research

into dense 3D contact estimation in the wild. The 3DIR [46] dataset contains natural

HOI images, including object point clouds and dense 3D human contact annotations

on the SMPL-H [49] mesh. 3DIR also includes annotations for object affordance and

human-object spatial relations. DAMON and 3DIR represent a shift from 2D contact

annotations to dense 3D annotations that can support a wider range of applications

such as human activity understanding [50, 51], affordance detection [52, 53] and

augmented or virtual reality [54,55].

2.1.2 Video-Based HOI Datasets

Early efforts in video-based action recognition often focus on simple actions performed

against uncluttered backgrounds, as exemplified by the KTH [56] action dataset.

Datasets like Hollywood2Tubes [57] introduce the challenge of localizing actions

within untrimmed videos, utilizing movie clips, but with a limited action vocabulary.

The UCF Sports [58] dataset is composed of website videos, further illustrating the

early focus on easily accessible online footage, especially of sporting events.

A notable development is the MPII Cooking [59] dataset, specifically designed

to investigate fine-grained activities in a controlled kitchen setting. Alongside the

Breakfast [60] dataset, it facilitates the analysis of intricate hand-object interactions,

including aspects of bimanual manipulation. The 50 Salads [61] dataset also focuses

on food preparation, providing annotated video and accelerometer data of individuals

preparing salads in the kitchen. It is designed to investigate a range of recognition

problems, including cross-subject and intra-subject generalization. Multi-modal

recordings of bimanual tasks carried out in a kitchen or workshop environment are

included in the KIT Bimanual Actions [62] and Bimanual Manipulation [63] datasets.

They helps create algorithms that can comprehend and mimic intricate bimanual

manipulations.

The CAD-120 [19] and AVA [64,65] datasets represent significant advancements in
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video-based HOI recognition. CAD-120 [19] introduces complex, multi-step activities

involving object interactions in a controlled environment. This allows researchers to

investigate high-level activities broken down into human sub-activities and object

affordance to examine HOI patterns. The AVA [64,65] dataset, on the other hand,

moves towards densely annotating atomic actions in diverse movie clips. This focus

on atomic actions, the fundamental building blocks of human behavior, contrasted

with earlier datasets’ focus on composite actions. Notably, AVA also includes labels

for interactions with objects and other individuals, broadening the scope of HOI

recognition research.

The Something-Something [66] dataset takes a unique approach by utilizing

crowd-sourced videos, enabling large-scale data collection focused on fundamental

physical interactions rather than high-level activities. While not explicitly designed

for HOI, it provides valuable insights into human interactions with everyday objects.

This dataset is designed to encourage models to develop a deeper understanding

of physical concepts and actions rather than relying on superficial cues like object

appearance. Importantly, the effectiveness of models trained on this dataset should

be assessed based on their ability to generalize to Something-Else [67], meaning

objects they have not previously encountered.

Egocentric datasets further broaden the study of HOI. Early egocentric datasets

such as BEOID [68], GTEA Gaze+ [69] and ADL [70], capture human natural

behavior in daily activities and encompass a broader spectrum of interactions. The

EPIC-KITCHENS [71] dataset comprises unscripted cooking activities recorded from

a first-person perspective, offering a wealth of data for understanding natural human

behavior. Charades-ego [72] features paired third-person and first-person videos,

further enhancing the investigation of egocentric HOI. EPIC-KITCHENS-100 [73], an

extension of EPIC-KITCHENS [71], contains even denser annotations and introduces

a novel focus on unsupervised domain adaptation for HOI recognition in egocentric

environments.

The recent Ego-Exo4D [74] dataset is a large-scale, multimodal, multiview video

dataset focusing on skilled human activities captured from both egocentric (first-

person) and exocentric (third-person) perspectives. The dataset features over 800
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participants performing activities like sports, music, dance, and bike repair in diverse

real-world settings. It uniquely includes synchronized egocentric and exocentric videos,

multichannel audio, eye gaze, 3D point clouds, and multiple language descriptions,

including expert commentary. Notably, Ego-Exo4D [74] aims to advance research

in understanding and modeling skilled actions, pushing beyond the limitations of

existing egocentric datasets focused on daily-life or procedural activities.

HOI4D [75] is also an egocentric HOI dataset but focuses on capturing category-

level interactions with a broader range of objects across various indoor environments.

It is designed to encourage models to recognize interactions with objects unseen during

training, promoting generalization beyond instance-level understanding. HOI4D

provides detailed 4D annotations, including panoptic and motion segmentation,

3D hand poses, object poses, and reconstructed meshes, aiming to enable a more

comprehensive understanding of the spatial and temporal dynamics of interactions.

BEHAVE [76] also strives to capture 3D instance-level interactions in more realistic

settings. It provides 3D human and object meshes and explicitly annotates surface

contacts between humans and objects, facilitating research on fine-grained interaction

modeling, which is not commonly addressed in earlier datasets.

Human activities in real-world settings often involve interactions among multiple

people and objects. In this research, we focus on multi-person HOI recognition in

videos, specifically aiming to capture the progression and evolution of human sub-

activities over time. As the number of entities in a scene increases, the interactions

expand exponentially, leading to heavy occlusion and complex dynamic relationships.

To effectively understand these interactions, geometric information such as human

poses and object bounding boxes are essential to complement visual cues for a more

comprehensive interpretation of HOIs.

However, most existing HOI datasets for sub-activity recognition, such as CAD-

120 [19] and Bimanual Actions [62], are limited to single-person scenarios. To address

this gap, we introduce two novel multi-person HOI datasets (in Chapter 3 and

Chapter 5), respectively collecting activities in which two and three people interact

with multiple objects in daily life to better reflect real-world HOIs. Both datasets

provide framewise annotations of geometric representations and sub-activity labels,
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supporting detailed, multi-person HOI analysis.

2.2 HOI Recognition Task

This section provides an overview of key advancements in HOI recognition, divided

into two primary areas: HOI Detection in Images (Section 2.2.1) and HOI Recognition

in Videos (Section 2.2.2). HOI detection in images focuses on identifying interac-

tions within a single static picture, combining object localization with interaction

classification to provide a spatially grounded understanding of HOIs. In contrast,

HOI recognition in videos introduces a temporal dimension, capturing interactions as

they evolve over time, thus requiring models to handle dynamic, sequential data for

improved interaction context. Together, these sections highlight the progression from

static image-based detection to temporally-aware recognition in videos, reflecting

the expanding scope and depth of research in HOI recognition.

2.2.1 HOI Detection in Images

The HOI detection task in images aims to identify sets of triplets ⟨human, verb, object⟩,

effectively localizing and classifying the interactions between humans and objects

within a given image [17, 77, 78]. This involves not only detecting the presence of

humans and objects but also understanding the specific action or verb that connects

them, providing a richer understanding of the scene’s semantics. Based on network

architecture design, existing solutions for HOI detection can be broadly divided into

two categories: two-stage and one-stage approaches.

Two-Stage HOI Detection

Two-stage methods [42,43,79–82] typically use a pre-trained object detector such

as Faster R-CNN [83] and Mask R-CNN [84] to first detect humans and objects in

an image. Then in the second stage, a separate network classifies the interaction

between each possible human-object pair. Most work [42, 80–82] focuses on the

improvement of the second stage, employing a multi-stream architecture with parallel
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streams for human, object and pairwise features, which are fused to produce final

interaction predictions for each human-object pair.

The human and object streams typically encode visual features from human and

object bounding boxes, respectively [80]. In FCMNet [85], object visual features are

replaced with word embeddings, as the detailed visual appearance of the object is

often less crucial to determining the interaction category. Besides visual features,

Bansal et al. [86] introduce word embeddings to the human stream for feature

augmentation. PDNet [87] incorporates word embeddings across all streams to

provide language-guided channel attention and enhanced feature representation.

Extensive research has also focused on the pairwise stream, which encodes the

relationship between humans and objects. iCAN [80] proposes a two-channel binary

image representation to capture spatial relations, while FCMNet [85] presents a

fine-grained version based on human parsing to highlight critical cues.

In addition to spatial relationships, Graph Neural Networks (GNNs) [88], par-

ticularly Graph Convolutional Networks (GCNs) [24] and Graph Attention Net-

works (GATs) [89], have been developed to assimilate valuable expressions of graph-

structured data. While GCNs assign equal weights to all neighbors of a given node,

GATs can assign different weights to nodes within the same neighborhood. DRG [90]

models the interaction between humans and objects as edges in a graph, using GCNs

to refine the features of these edges and predict interaction classes. RPNN [91]

utilizes a relation parsing neural network based on GCNs to model the structured

relationships between human and object pairs, enabling it to learn complex interac-

tion patterns. CHG [27] constructs a heterogeneous graph with human and object

nodes, employing GATs to learn attention weights for each node and its neighbors,

effectively capturing the contextual relationships between entities in the scene.

Auxiliary models, such as human pose features, body-part cues [92], language

models [93], and graph models [26], can be easily incorporated into the two-stage

pipeline to improve HOI. Notably, Bansal et al. [86] and Hou et al. [94] introduce

feature-level augmentation, which has proven effective for HOI. However, these

methods face high complexity and low efficiency due to the sequential, separate

nature of the two-stage architecture.
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One-Stage HOI Detection

One-stage methods [77,78, 95–101], on the other hand, usually perform object detec-

tion and interaction prediction in parallel. In the absence of explicit object locations,

these methods rely on predefined interaction areas for interaction prediction, which

can achieve faster inference times but may require heuristic-based post-processing

steps to associate interactions with object pairs. Depending on the definition of

interaction area employed, existing approaches can be classified into (i) point-based

methods and (ii) union region-based methods.

Point-based methods such as PPDM [77] and IPNet [98] treat HOI as a point

detection task, using a one-stage method to directly detect interactions through a

new definition of interaction points. Moreover, PPDM predicts object detection and

HOI detection in a unified CenterNet-based framework [96]. GGNet [78] infers a set

of action-aware points via glance and gaze steps to address the semantic ambiguity

problem of predefined interaction areas.

Union region-based methods such as UnionDet [97] introduces a novel union-level

detector to directly detect the interaction region, enabling real-time performance by

eliminating the need for post-processing grouping steps common in other one-stage

methods. DIRV [99] focuses on densely sampled interaction regions to directly predict

interactions and their corresponding human-object pairs, and uses a voting strategy

to achieve accurate and efficient HOI detection. However, point-based and union

region-based methods struggle in scenarios where the interacting human and object

are distant or when multiple, overlapping interactions occur within the same scene,

such as in crowded environments [102,103].

Recently, a new trend of one-stage approaches utilizing Transformer architec-

tures [104–106] has emerged to address these challenges and enhance HOI detection

performance. These Transformer-based models use query-driven mechanisms to focus

on relevant regions and directly predict interaction classes, eliminating hand-crafted

post-processing like non-maximum suppression. This shift is inspired by the success

of DETR [104], a Transformer-based object detection model that demonstrates the

effectiveness of set prediction for object detection tasks.

A notable advantage of Transformers in HOI detection is their ability to model the
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intricate relationships between humans, objects and their interactions through self-

attention mechanisms [103,107]. This capability facilitates a deeper understanding

of the scene and allows for a more holistic prediction of HOI triplets. For instance,

QPIC [103], one of the first Transformer-based HOI detectors, utilizes a query-

based approach to aggregate image-wide contextual information, enhancing the

representation of each HOI instance.

Several subsequent works have expanded on this foundation, exploring different ar-

chitectural designs and incorporating additional information to improve performance.

AS-Net [102] reformulates HOI detection as an adaptive set prediction problem,

employing parallel instance and interaction branches to dynamically focus on relevant

image regions. HOTR [107], on the other hand, concentrates on streamlining the

HOI pipeline by directly predicting a set of HOI triplets using an encoder-decoder

architecture, thereby eliminating the need for post-processing steps.

Despite their success, initial Transformer-based HOI detectors are often restricted

to single-scale feature maps, limiting their ability to capture interactions across

varying object sizes and distances. MSTR [108] addresses this limitation by introduc-

ing multi-scale processing through HOI-aware deformable attentions, which enables

the model to selectively sample features at different resolutions based on each HOI

query. This multi-scale approach allows MSTR to capture finer details and improve

performance.

Furthermore, recent studies have investigated leveraging semantic information to

enhance the representation learning capabilities of Transformer-based HOI detectors.

SSRT [101] incorporates a support feature generator to create object-action prediction

candidates and uses these candidates to generate spatial and semantic features,

refining the model’s understanding of the scene. CATN [18] focuses on enriching

the object query with category-aware semantic information, thereby improving the

initialization of the model and leading to enhanced performance. In addition to

semantic information, GeoHOI [13] exploits fine-grained geometric features, such as

keypoint positions of humans and objects, which can also provide valuable information

for HOI detection, particularly in cases of occlusion.

Another direction of research focuses on disentangling different aspects of HOI
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prediction within the Transformer architecture. This approach aims to improve

the model’s ability to handle complex scenarios and address challenges related to

mis-grouping and the independent nature of decoding sub-tasks. For instance, the

Disentangled Transformer (DisTR) [109] separates the triplet prediction into human-

object pair detection and interaction classification through distinct instance and

interaction streams. This separation allows for specialized processing and enhances

the model’s capacity to capture the compositional nature of HOI.

2.2.2 HOI Recognition in Videos

Recognizing HOI in videos presents unique challenges compared to image-based

detection due to the temporal dimension. The task requires understanding not only

the spatial relationships between humans and objects but also how these interactions

evolve over time.

Initial efforts on video-based HOI understanding focus on activity detection.

Researchers explore probabilistic graphical models like Hidden Markov Models

(HMMs) [110,111], Dynamic Bayesian Networks (DBNs) [112], Conditional Random

Fields (CRFs) [113,114], and semi-CRFs [115] to capture temporal structures, but

these methods are limited in their ability to anticipate future actions or model complex

interactions. Koppula et al. [19] introduce the CAD-120 dataset, a benchmark for

HOI recognition, and propose a Markov Random Fields (MRF) to model entities in

videos with fully connected spatial and temporal edges. It also starts a trend to use

sub-activity segments as temporal time units.

Their work is extended into the Anticipatory Temporal Conditional Random

Field (ATCRF) model [21], which anticipates future human sub-activities or object

affordances and gathers features from frame-level nodes. ATCRF is further advanced

into GP-LCRF [20] to reduce the dimensionality of the frame-level human repre-

sentation. Another extension of ATCRF is the Recursive CRF [116], in which the

CRF is placed under a Bayesian filtering with an efficient belief computation. Based

on the progress of spatio-temporal relation modules, MRF-like models advance into

more efficient implementations with Convolutional Neural Networks (CNNs) [117]

and Recurrent Neural Networks (RNNs) [118]. Nevertheless, these architectures
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capture spatio-temporal context across the entire video scene but lack focus on key

instances and fail to directly model spatio-temporal dependencies between humans

and objects [6].

Graphs, commonly used to represent non-grid structures, naturally suit HOI

recognition based on human and object instances by effectively modeling these

dependencies [6,14,15,88]. Typically, these methods first detect humans and objects,

then recognize HOIs by analyzing the spatio-temporal evolution of graphs, where

nodes represent the detected human and object instances.

Recently, numerous methods have attempted to model video-based HOI scenes

using graph structures. Jain et al. [14] propose a model for integrating the strength of

spatio-temporal graphs with RNNs in sequence learning. The Graph Parsing Neural

Network (GPNN) [15] has been particularly successful in this domain, representing

HOI structures with graphs and automatically parsing the optimal graph structure in

an end-to-end manner. This model has proven effective in both static and dynamic

scenes, demonstrating their ability to handle the complex relationships between

humans and objects, especially in scenarios with an uncertain number of interaction

pairs.

Further advancements focus on exploring more sophisticated graph structures and

temporal modeling techniques. For instance, Wang et al. [6] utilizes spatio-temporal

graphs that directly model the global relationship between the human and the object

to be interacted with, capturing the state change of the interacting objects across

frames. Other methods like LIGHTEN [7] explore the use of graph sequences to

encode videos, capturing spatio-temporal relationship evolutions over the temporal

dimension and spatial graph topologies. Additionally, ASSIGN [5] leverages the close

coupling between the structure and content of events, allowing them to support each

other in a joint discovery framework to achieve optimal solutions. It is a pioneering

approach in learning the autonomous behavior of video entities, including their

dynamic structure and interactions with coexisting neighbors. PGCN [8] investigates

the exploit of temporal pyramid pooling modules to extend the capabilities of GCNs

for action segmentation, particularly in the context of HOI recognition. STIGPN [9]

exploits spatio-temporal graph convolutions to enhance the detection of salient
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human-object interactions and efficiently modeling long-term dynamics.

Multi-person HOI recognition introduces additional challenges due to the heavy

occlusion and complex interactions among multiple humans and objects. Most prior

methods struggle with these scenarios, as they rely solely on visual features while

neglecting the valuable information in geometric features. Our research explores deep

neural networks to integrate geometric information of humans and objects, aiming

to improve HOI recognition performance in multi-person scenes.

2.3 Features for Human Activity

Visual and geometric information are commonly used in human activity recognition

tasks. Section 2.3.1 examines the exploitation of visual and geometric features

for HOI detection, showing how combining appearance-based cues with geometric

information like human pose and object positioning can improve detection perfor-

mance. Section 2.3.2 explores how to use human skeletons in video-based human

action recognition, highlighting their ability to capture motion dynamics and spatial

relationships across frames. Section 2.3.3 discusses the challenges of incorporating ge-

ometric features for HOI recognition in videos, including issues related to ambiguous

interactions and dynamic human-object relationships over time.

2.3.1 Visual and Geometric Features for HOI Detection

Some HOI detection methods relying solely on visual features [42,43,79,80,85,95,

101, 119], such as those based on appearance, often use deep convolutional neural

networks to extract features from detected human and object regions. For instance,

Gkioxari et al. [95] introduce a human-centric branch within the Fast R-CNN [83]

framework to predict HOIs using visual features from human and object regions.

Fang et al. [119] employ a base network incorporating visual features of the whole

person and the scene to capture the global context for HOI detection.

However, visual features alone are often insufficient to handle complex relations,

as many interaction types involve fine-grained actions that are difficult to distinguish

based on similar object-level features [120]. For instance, differentiating between
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actions like “hold” and “catch” in sports scenes requires detailed, localized features

to capture subtle distinctions. Methods relying solely on visual cues may struggle to

capture these nuances, leading to potential misclassification of human-object pair

interactions.

Geometric features, like human pose, object keypoints, and spatial configurations,

provide valuable complementary information for HOI detection [13, 120]. Fang et

al. [119] and Wan et al. [120] investigate semantic cues from human body parts,

employing an attention module to identify the most informative body regions for HOI

recognition. Wu et al. [121] propose extracting cross-person cues from body parts,

providing valuable supplementary information for interactiveness discovery. Park

et al. [122] introduce a graph with a pose-conditioned self-loop structure, enabling

human node embeddings to be updated based on local features of human joints. Zhu

et al. [13] incorporate human pose information into visual feature extraction to guide

the identification of relevant body parts, and further use human and object keypoints

to measure the likelihood of HOIs, enhancing interaction query representation. Such

methods highlight the significance of geometric features in capturing fine-grained

spatial information for HOI detection, improving detection accuracy, particularly in

scenarios with occlusion.

2.3.2 Geometric Features for Human Action Recognition

With the advancement of geometric features in HOI detection, we aim to explore

geometry-informed approaches for HOI recognition. Specifically, we employ human

skeleton data, inspired by its successful application in video-based human action

recognition, as it effectively captures motion dynamics.

Skeleton-based action recognition has attracted considerable interest, largely due

to the ease of obtaining human skeleton data and its robustness to variations in

viewpoint and appearance [123, 124]. The rise of deep learning has led to data-

driven approaches, where RNNs, particularly LSTMs [125], are widely used for their

capacity to model the temporal dynamics of skeleton sequences effectively [126–129].

CNN-based approaches typically transform skeleton sequences into pseudo-images

using predefined transformation rules [130–133].
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Graph Convolutional Networks (GCNs) [24] are designed to process graph-

structured data. The human skeleton naturally lends itself to representation as

a graph, with joints as nodes and bones as edges. This graph structure encodes

important relationships between body parts, reflecting the kinematic constraints of

human movement. GCNs can directly operate on this graph structure, leveraging

the connectivity information to learn meaningful representations [134]. This is in

contrast to methods that treat skeleton data as vector sequences or pseudo-images,

which may not fully exploit the inherent spatial relationships between joints.

Human actions involve coordinated movements of multiple body parts over time.

GCNs can capture these complex spatio-temporal dependencies by propagating

information across the graph through message-passing mechanisms [32, 33]. This

allows the model to learn how the movements of different joints relate to each other,

both within a single frame and across consecutive frames. The hierarchical nature of

GCNs further enables the model to learn increasingly abstract representations of the

skeleton sequence, capturing higher-level motion patterns [32].

Yan et al. [32] propose ST-GCN and pioneer this approach by modelling the

human skeleton as a graph and applying spatio-temporal graph convolutions to extract

features for classification. The STGR network [135] enhances the skeleton graph

by adding edges through frame-wise attention and global self-attention mechanisms.

Similarly, 2s-AGCN [134] introduces adaptive graph structures with self-attention

and a learnable residual mask, employing a two-stream ensemble with skeleton bone

features to improve performance. SGN [124] explicitly encodes joint semantics, such as

joint type and frame index, to strengthen feature representation. EfficientGCN [136]

adopts techniques from CNN architectures, including separable convolutions and

compound scaling, to create lightweight yet effective GCN models. Duan et al. [23]

model human skeletons by sampling short skeleton sequences and using GCNs to

extract spatio-temporal features from each sequence, capturing individual motion

patterns. Li et al. [33] employ a GCN to model the entire two-person skeleton

graph, where joints are nodes connected by edges representing both natural body

connectivity and learned relationships from graph diffusion.

Based on the strengths of GCNs in modeling graph-structured data, we incorporate
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geometric features in HOI videos. We choose human skeletons and object bounding

boxes for humans and objects respectively since they provide essential geometric

cues that are robust to visual variations, such as changes in appearance, lighting, or

viewpoint. Human skeletons effectively capture the pose and motion of individuals,

enabling finer-grained action understanding, while object bounding boxes define

spatial context, essential for modeling interactions. Together, these features can

enhance the model’s ability to represent dynamic relationships in video-based HOI

recognition.

2.3.3 Challenges in Geometry-Informed HOI Recognition

Introducing geometric features such as the keypoints of human pose and objects to

HOI learning in videos is challenging and underexplored for a few reasons. On the

one hand, in a video, interaction definitions might be ambiguous, such as “lift a cup”

vs. “place a cup”, “approaching” vs. “retreating” vs. “reaching”. These actions

might be detected as the same image label due to their visual similarity. Videos

allow the use of temporal visual cues that are not presented in images [5].

On the other hand, the model needs to consider human dynamics throughout the

video, as well as the shifting orientations and spatial arrangements of objects relative

to humans [15]. This makes it difficult to directly extend image-based models to

video that exploit the ROI features of human-object union [16].

Our work first attempts to introduce geometric features to HOI recognition

architecture in Chapter 3 and propose a novel two-level graph to address the challenges.

To resolve ambiguity in fine-grained actions, the first graph captures the spatial

and temporal evolution of human and object keypoints, allowing for nuanced action

differentiation across frames. The second graph bridges these geometric features

with visual representations, enabling the model to capture shifting human dynamics

and object orientations throughout the video. This two-level graph design allows

our model to seamlessly incorporate temporal and spatial cues, overcoming the

limitations of image-based methods in handling complex, dynamic interactions in

videos.
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2.4 Multimodal Fusion for Human Activities

Integrating diverse data modalities provides unique and complementary perspectives,

contributing to a more comprehensive understanding of complex subjects, especially

in tasks related to human activity recognition. Multimodal fusion combines visual,

geometric, linguistic, and other feature types, each adding distinct contextual in-

formation [137–139]. Effective fusion strategies are particularly valuable in HOI

tasks, where capturing the subtle nuances of human behavior requires robust in-

tegration of these varied feature types. Consequently, developing methods to fuse

multimodal features remains a key research area, as it directly impacts the accuracy

and interpretability of human activity recognition models.

In multimodal research of human action recognition, attention has been directed

towards key human body areas, particularly the hands [140–142]. These studies

employ attention-based methods to improve the overall accuracy of models that

integrate skeletal and visual modalities. Building on this, Bruce et al. [143]

expand the focus to include additional body regions such as the head, hands, and

feet, adopting a temporal approach, where a fused representation is derived by

multiplying spatial attention weights with the appearance features. In addition,

Boulahia et al. [137] investigate the integration of various image modalities (RGB,

Depth, Skeleton, and InfraRed) at different stages of the action recognition pipeline,

encompassing early, intermediate, and late fusion techniques, to enhance the

robustness of recognition.

In human interaction analysis, Wan et al. [120] concatenate human skeletal

embeddings with visual embeddings from other branches like human, object and

union to obtain the final holistic feature in the HOI scene. Zhou et al. [109]

combine embedded visual and human pose features through element-wise addition.

Wang et al. [9] directly concatenate multimodalities to obtain visual-spatial and

spatial-semantic feature sequences, which are then input into a two-stream network.

However, these direct operations overlook the fundamental representation and scale

discrepancies between multimodal features, potentially causing misalignment in

entity representation and less effective learning outcomes. Zhang et al. [144] initially

concatenate appearance, spatial, and linguistic features to represent each human-
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object pair and construct an interaction-centric graph for multimodal fusion, followed

by a structure-aware Transformer for image-based HOI predictions. This graph-based

fusion approach is computationally intensive for videos.

For the multi-person HOI recognition task involving multiple entities, effectively

fusing multimodal features at the feature level to enhance the learning of entity-level

HOIs remains a compelling research challenge. Chapter 4 attempts to fuse visual and

geometric features according to different categories (i.e., human and object), then

embedded to a scenery graph to learn HOIs. Chapter 5 introduces another bottom-up

framework that explores a dual-attention feature fusion mechanism, providing greater

insight into the fusion process by highlighting important features in each entity.

These refined features are then processed through an interdependent entity graph to

model HOIs more effectively. This method achieves state-of-the-art performance in

multi-person HOI scenarios.

2.5 Evaluation and Metric

In computer vision, especially in HOI recognition, systematic analysis of evaluation

metrics is essential to improve model performance and applicability. Analyzing

these metrics allows researchers to pinpoint model strengths and weaknesses, en-

abling iterative refinements that ensure robust and dependable outputs in real-world

applications.

The F1 score is a commonly used metric to evaluate the performance of ma-

chine learning models, especially for classification problems. It provides a balanced

assessment of a model’s accuracy, taking into account both precision and recall.

• Precision: This measures how many of the positive predictions made by the

model are actually correct. In other words, it assesses the accuracy of the

positive predictions.

• Recall: This measures how many of the actual positive instances in the dataset

are correctly identified by the model. It focuses on the model’s ability to

capture all positive cases.
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The F1 score is calculated as the harmonic mean of precision and recall, ensuring

that both metrics contribute equally to the final score. This means that to achieve

a high F1 score, a model must perform well in both identifying true positives and

avoiding false positives.

Mathematically, the F1 score can be expressed as:

F1 = 2× Precision× Recall

Precision + Recall
. (2.1)

Precision and Recall Formulae:

• Precision = True Positives / (True Positives + False Positives)

• Recall = True Positives / (True Positives + False Negatives)

Where:

• True Positives (TP): Correctly predicted positive instances.

• False Positives (FP): Incorrectly predicted positive instances.

• False Negatives (FN): Incorrectly predicted negative instances.

Joint segmentation and label recognition is our main task where models need to

segment the timeline for each entity in the video and label those segments. F1@k

metric [145] is designed specifically for this task, which evaluates the correctness

of a predicted segment by comparing its Intersection over Union (IoU) with the

ground-truth segment. A predicted segment is only considered correct if its IoU with

the ground truth reaches a certain threshold, denoted as k, with common values 0.10,

0.25 and 0.50. The F1@k metric is particularly valuable in HOI recognition because

(1) it penalizes over-segmentation errors, (2) it is tolerant to minor temporal shifts

between predictions and ground truth, which may arise from annotator variability,

and (3) it depends on the number of actions rather than the duration of each action

instance.
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CHAPTER 3

Geometric Features Informed Multi-person HOI Recognition

Portions of this chapter have previously been published in the following peer-reviewed

publication [146]:

• Qiao, T., Men, Q., Li, F. W., Kubotani, Y., Morishima, S., & Shum, H.

P., “Geometric Features Informed Multi-person Human-object Interaction

Recognition in Videos.” In European Conference on Computer Vision (ECCV).

Springer, 2022.

Human-Object Interaction (HOI) recognition in videos is important for analyzing

human activity. Most existing approaches that focus on visual features often suffer

from occlusion in real-world scenarios, a problem further complicated when multiple

people and objects are involved in HOIs. Consider that geometric features such

as human pose and object position provide meaningful information to understand

HOIs, we argue to combine the benefits of both visual and geometric features

in HOI recognition, and propose a novel Two-level Geometric feature-informed

Graph Convolutional Network (2G-GCN). The geometric-level graph models the

interdependency between the geometric features of humans and objects, while the
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fusion-level graph further fuses them with the visual features of humans and objects.

To demonstrate the novelty and effectiveness of our method in challenging scenarios,

we propose a new multi-person HOI dataset (MPHOI-72). Extensive experiments

on MPHOI-72 (two-person HOI), CAD-120 (single-human HOI) and Bimanual

Actions (two-hand HOI) datasets demonstrate our superior performance compared

to state-of-the-arts.

3.1 Introduction

The real-world human activities are often closely associated with surrounding objects.

HOI recognition focuses on learning and analyzing the interaction between human

and object entities for activity recognition. HOI recognition involves the segmentation

and recognition of individual human sub-activities/object affordances in videos, such

as drinking and placing, to gain an insight into the overall human activities [5].

Based on this, downstream applications such as security surveillance, healthcare

monitoring and human-robot interactions can be developed.

Earlier work in HOI detection is limited to detecting interactions in one image

[79,80,147]. With HOI video datasets proposed, models have been developed to learn

the action representations over the spatio-temporal domain for HOI recognition [14,15].

Notably, ASSIGN [5] proposes a visual feature attention model to learn asynchronous

and sparse HOI in videos, achieving state-of-the-art results.

A main challenge of video-based HOI recognition is that visual features usually

suffer from occlusion. This is particularly problematic in real-world scenarios when

multiple people and objects are involved. Recent research has shown that extracted

pose features are more robust to partial occlusions than visual features [10, 11].

Bottom-up pose estimators can extract body poses as long as the local image

patches of joints are not occluded [22]. With advanced frameworks such as Graph

Convolutional Networks (GCNs), geometric pipelines generally perform better than

visual ones on datasets with heavy occlusion [12]. Therefore, geometric features

provide complementary information to visual ones [11,148].

In this work, we propose to fuse geometric and visual features for HOI recogni-
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Figure 3.1: Two examples (Cheering and Co-working) of our collected multi-person HOI
dataset. Geometric features such as skeletons and bounding boxes are annotated.

tion in videos. Our research insight is that geometric features enrich fine-grained

human-object interactions, as evidenced by previous research on image-based HOI

detection [149,150]. We present a novel Two-level Geometric feature informed Graph

Convolutional Network (2G-GCN) that extracts geometric features and fuses them

with visual ones for HOI recognition in videos. We implement the network by using

the geometric-level graph to model representative geometric features among humans

and objects, and fusing the visual features through the fusion-level graph.

To showcase the effectiveness of our model, we further propose a Multi-Person

dataset for Human-Object Interaction (MPHOI), which closely ensembles real-world

activities that contain multiple people interacting with multiple objects. Our dataset

includes common multi-person activities and natural occlusions in daily life (Fig. 3.1).

It is annotated with the geometric features of human skeletal poses, human and

object bounding boxes, and ground-truth HOI activity labels, which can be used

as a versatile benchmark for multiple tasks such as visual-based or skeleton-based

human activity analysis or hybrid.

We outperform state-of-the-arts in multiple datasets, including our novel MPHOI-

72 dataset, the single-human HOI CAD-120 [19] dataset, and the two-hand Bimanual

Actions [62] dataset. We also extensively evaluate core components of 2G-GCN in

ablation studies. Our main contributions are as follows:

• We propose a novel geometry-informed 2G-GCN network for HOI recognition

in videos. The network consists of a two-level graph structure that models geo-

metric features between humans and objects, together with the corresponding

visual features.
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• We present the novel problem of MPHOI in videos with a new MPHOI-72

dataset1, showcasing new challenges that cannot be directly resolved by existing

methods.

• We outperform state-of-the-art HOI recognition networks in our MPHOI-72

dataset, the CAD-120 [19] dataset and the Bimanual Actions [62] dataset.

3.2 The Multi-Person HOI Dataset (MPHOI-72)

Figure 3.2: Sample video frames of three different MPHOI activities in MPHOI-72.

We propose an HOI dataset with multi-person activities (MPHOI-72), which is

challenging due to many body occlusions among humans and objects. We have 3

males and 2 females, aged 23-27, who are randomly combined into 8 groups with 2

people per group and perform 3 different HOI activities interacting with 2-4 objects.

We also prepared 6 objects: cup, bottle, scissors, hair dryer, mouse and laptop.

3 activities = {Cheering, Hair cutting, Co-working} and 13 sub-activities = {Sit,

Approach, Retreat, Place, Lift, Pour, Drink, Cheers, Cut, Dry, Work, Ask, Solve} are

1Data collection performed in the UK, under Durham University Ethics Approval Ref:
COMP-2022-06-03T19 29 22-cbmw62. The dataset can be downloaded at https://collections.

durham.ac.uk/collections/r19g54xh706.
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defined. The dataset consists of 72 videos captured from 3 different angles at 30 fps,

with a total of 26,383 frames and an average length of 12 seconds.

Fig. 3.2 shows some sample video frames of the three activities in our MPHOI-72

dataset, and the sub-activity label of each subject is annotated frame-wise. The

top row presents Hair cutting from the front view, where one subject is sitting and

another subject interacts with a pair of scissors and a hair dryer. Most part of the

body of the subject standing at the back is invisible. The second row presents a

popular human activity, Cheering, in which two subjects pour water from their own

bottles, lift cups to cheer, and drink. The high-level occlusion exists between humans,

cups and bottles during the entire activity. The bottom row presents Co-working,

which simulates the situation of two co-workers asking and solving questions. Besides,

we also consider distinct human sizes, skin colors and a balance of gender. These

samples illustrate the diversity of our dataset.

We use Azure Kinect SDK to collect RGB-D videos with 3840× 2160 resolution,

and employ their Body Tracking SDK [151] to capture the full dynamics of two

subject skeletons. Object bounding boxes are manually annotated frame-wise. For

each video, we provide such geometric features: 2D human skeletons and bounding

boxes of the subjects and objects involved in the activity (Fig. 3.1).

3.3 Two-level Geometric Features Informed Graph

Convolutional Network (2G-GCN)

To learn the correlations during human-object interaction, we propose a two-level

graph structure to model the interdependency of the geometric features, known as

2G-GCN. The model consists of two key components: a geometry-level graph for

modeling geometry and object features to facilitate graph convolution learning, and

a fusion-level graph for fusing geometric and visual features (Fig. 3.3).
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Figure 3.3: Our 2G-GCN framework comprises a geometric-level and a fusion-level graph.

3.3.1 Geometric Features

The geometric features of humans can be represented in various ways. Human

skeletons contain an explicit graph structure with joints as nodes and bones as edges.

The joint position and velocity offer fine-grained dynamics in human motion [124],

while the joint angle also provides spatial cues in 3D skeleton data [134]. Alternatively,

body shapes and how they deform during movement can be represented by surface

models [152] or implicit models [153]. We employ human skeletons with joint position

and velocity, because they are essential cues to human motion. Also, unlike body

shapes, they are invariant to human appearance.

We represent human poses in an effective representation to inform HOI recognition.

For human skeleton, we select specific body keypoints and denote them as a set

S = {Mh,k
t }T,H,K

t=1,h=1,k=1, where Mh,k
t denotes the body joint of type k in human h at

time t, T denotes the total number of frames in the video, H and K denote the total

number of humans and keypoints of a human body in a frame, respectively. For a given

human body keypoint Mh,k
t , we define its position as pt,h,k = (xt,h,k, yt,h,k)

T ∈ R2 in

2D, and the velocity as vt,h,k = pt+1,h,k − pt,h,k, which is the forward difference of

neighbor frames. In the channel of each human skeleton keypoint, we concatenate

its position pt,h,k, and velocity vt,h,k in the channel domain, forming the human

geometric context ht,h,k = [pt,h,k,vt,h,k] ∈ R4.

As objects play a crucial role in the HOI videos, we also consider their geometric

features. The two diagonal points of the object bounding box are utilised to represent
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the object position. We define all object keypoints as O = {Bf,u
t }T,F,2t=1,f=1,u=1, where

Bf,u
t denotes the object keypoint of type u in object f at time t. F denotes the

maximum number of objects in a video and u = {1, 2} is the index of the top-left

and the bottom-right points of the object bounding box, respectively. The object

geometric context ot,f,u = [pt,f,u,vt,f,u] ∈ R4 can be obtained by the same process as

the human skeleton.

3.3.2 The Geometric-Level Graph

We design a novel geometric-level graph that involves both human skeleton and

object keypoints to explore their correlations in an activity (Fig. 3.3 left). We

use gt to denote a graph node with geometric features of a keypoint from either a

human ht,h,k or an object ot,f,u at frame t. Therefore, all keypoints of the frame t

are denoted by Gt = (gt,1; · · · ;gt,J), where J = H ×K + F × 2 joints, each with 4

channel dimensions including its 2D position and velocity. This enables us to enhance

the ability of GCN to capture correlations between human and object keypoints in

HOI activities by learning their dynamic spatial cues. We embed gt using two fully

connected (FC) layers following [124] as:

g̃t = σ(W2(σ(W1gt + b1)) + b2) ∈ RC1 , (3.1)

where C1 is the dimension of the joint representation, W1 ∈ RC1×4 and W2 ∈ RC1×C1

are weight matrices, b1 and b2 are the bias vectors, and σ is the ReLU activation

function.

We propose an adaptive adjacency matrix exploiting the similarity of the geometric

features in the GCN. We employ the dot-product similarity in g̃t, as it allows us

to determine if and how strong a connection exists between two keypoints in the

same frame t [124,134,154]. This is a better choice for our problem comparing to

other strategies, e.g. the traditional adjacency matrix only represents the physical

structure of the human body [32] or a fully-learned adjacency matrix without the

supervision of graph representations [134]. We represent the adjacency matrix At
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with j1
th and j2

th keypoints as:

At(j1, j2) = θ(g̃t,j1)
Tϕ(g̃t,j2), (3.2)

where θ, ϕ ∈ RC2 denote two transformation functions, each implemented by a 1× 1

convolutional layer. Then, SoftMax activation is conducted on each row of At to

ensure the integration of all edge weights of a node equal to 1. We subsequently

obtain the output of the geometry-level graph from the GCN as:

Yt = AtG̃tWg, (3.3)

where G̃t = (g̃t,1; · · · ; g̃t,J) ∈ RJ×C1 and Wg ∈ RC1×C2 is the transformation matrix.

The output size is T × J × C2.

3.3.3 The Fusion-Level Graph

We propose a fusion-level graph to connect the geometric features learned from

GCN with visual features. Previous works on CNN-based HOI recognition in

videos overemphasize visual features and neglect geometric features of humans and

objects [155,156]. State-of-the-arts like ASSIGN [5] also exclude geometric features.

In contrast, we first extract visual features for each human or object entity by ROI

pooling, and then introduce the geometric output Yt from the GCN as the auxiliary

feature to complement the visual representation. The feature vectors for all entities

are then embedded by a two-layer MLP with ReLU activation function to the same

hidden size.

A key design of the fusion-level graph is an attention mechanism to estimate

the relevance of the interacted neighboring entity. As illustrated in the fusion-level

graph of Fig. 3.3, each person and object denote an entity through time, while Yt

forms an additional entity joining the graph. All connections between the visual

features of all humans and objects in the video are captured, represented by orange

arrows. The blue arrows denote the connection between geometric and object visual

features. Empirically, connecting the geometry-object pairs consistently performs
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better than applying a fully-connected graph with geometry-human connections. A

possible reason is that humans are generally bigger in size and therefore have a larger

chance of occlusion. Correlating such relatively noisy human visual and geometry

features is a harder problem than the objects’ equivalent. The fusion strategy is

evaluated in the ablation studies.

The attention mechanism employed in the fusion-level graph calculates a weighted

average of the contributions from neighbouring nodes, implemented by a variant of

scaled dot-product attention [157] with identical keys and values:

Att (q, {zi}i=1...n) =
n∑

i=1

softmax

(
qT zi√

d

)
zi, (3.4)

where q is a query vector, {zi} is a set of keys/values vectors of size n, and d is the

feature dimension.

Once the fusion-level graph is constructed, we employ ASSIGN [5] as the backbone

for HOI recognition. ASSIGN is a recurrent graph network that automatically detects

the structure of HOI associated with asynchronous and sparse entities in videos. Our

fusion-level graph is compatible with the HOI graph structure in ASSIGN, allowing

us to employ the network to predict sub-activities for humans and object-affordances

for objects depending on the dataset.

3.4 Experiments

3.4.1 Datasets

We have performed experiments on our MPHOI-72 dataset, the CAD-120 [19] dataset

and the Bimanual Actions [62] dataset, showcasing the superior results of 2G-GCN

on multi-person, single-human and two-hand HOI recognition.

CAD-120 is widely used for HOI recognition. It consists of 120 RGB-D videos of

10 different activities performed individually by 4 participants, with each activity

replicated 3 times. A participant interacts with 1-5 objects in each video. There

are 10 human sub-activities (e.g., eating, drinking), and 12 object affordances (e.g.,

stationary, drinkable) in total, which are annotated per frame.

36



Bimanual Actions is the first HOI activity dataset where subjects use two hands

to interact with objects (e.g., the left hand holding a piece of wood, while the right

hand sawing it). It contains 540 RGB-D videos of 6 subjects performing 9 different

activities, with each repeated 10 times. There are a total of 14 action labels for each

hand, and each entity in the video is annotated frame by frame.

3.4.2 Implementation Details

Network Settings

We implement 2048-dimensional ROI pooling features extracted from the 2D bounding

boxes of humans and objects in the video detected by a Faster R-CNN [83] module,

which is pre-trained [158] on the Visual Genome dataset [39] for entity visual features.

We set the number of neurons to 64 and 128 for both FC layers for the embedding

and the transformation functions of Eq. 3.2 in the geometric-level graph, respectively

(i.e., C1 = 64, C2 = 128).

Experimental Settings

2G-GCN is evaluated on the task of joint segmentation and label recognition. It

requires models to segment the timeline for each entity in a video and assign labels to

each segment. For evaluation, we report the F1@k metric [145] with the commonly

used thresholds k = 10%, 25% and 50%, which is frequently adopted in prior

segmentation researches [5, 145,159].

For the CAD-120 and Bimanual Actions datasets, we use leave-one-subject cross-

validation to evaluate the generalization effort of 2G-GCN in unknown subjects. On

MPHOI-72, we define a cross-validation scheme that chooses two subjects not present

in the training set as the test set.

With four Nvidia Titan RTX GPUs, training MPHOI-72, CAD-120 and Bimanual

Actions takes 2 hours, 8 hours and 5 days, respectively. Testing the whole test set

takes 2 minutes, 3 minutes and 20 minutes, respectively.
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3.4.3 Quantitative Comparison

Multi-person HOIs

In our challenging MPHOI-72 dataset, 2G-GCN beats ASSIGN [5] by a considerable

gap (Table 3.1). 2G-GCN significantly outperforms ASSIGN and has smaller standard

deviation values in every F1 configurations, reaching 68.6% in F1@10 score, which is

approximately 9.5% higher than ASSIGN. The performance of visual-based methods

such as ASSIGN is generally ineffective, since remarkable occlusions in MPHOI

typically invalids visual features to HOI recognition task. The significant gaps

between the results of 2G-GCN and ASSIGN demonstrate that the application of

geometric features and its fusion with visual features can motivate our model to

learn stable and essential features even when significant occlusion appears in HOIs.

Table 3.1: Joined segmentation and label recognition on MPHOI-72.

Model
Sub-activity

F1@10 F1@25 F1@50

ASSIGN [5] 59.1 ± 12.1 51.0 ± 16.7 33.2 ± 14.0

2G-GCN 68.6 ± 10.4 60.8 ± 10.3 45.2 ± 6.5

Table 3.2: Joined segmentation and label recognition on CAD-120.

Model
Sub-activity Object Affordance

F1@10 F1@25 F1@50 F1@10 F1@25 F1@50

rCRF [116] 65.6 ± 3.2 61.5 ± 4.1 47.1 ± 4.3 72.1 ± 2.5 69.1 ± 3.3 57.0 ± 3.5

Independent BiRNN 70.2 ± 5.5 64.1 ± 5.3 48.9 ± 6.8 84.6 ± 2.1 81.5 ± 2.7 71.4 ± 4.9

ATCRF [160] 72.0 ± 2.8 68.9 ± 3.6 53.5 ± 4.3 79.9 ± 3.1 77.0 ± 4.1 63.3 ± 4.9

Relational BiRNN 79.2 ± 2.5 75.2 ± 3.5 62.5 ± 5.5 82.3 ± 2.3 78.5 ± 2.7 68.9 ± 4.9

ASSIGN [5] 88.0 ± 1.8 84.8 ± 3.0 73.8 ± 5.8 92.0 ± 1.1 90.2 ± 1.8 82.4 ± 3.5

2G-GCN 89.5 ± 1.6 87.1 ± 1.8 76.2 ± 2.8 92.4 ± 1.7 90.4 ± 2.3 82.7 ± 2.9

Single-person HOIs

The generic formulation of 2G-GCN results in excellent performance in single-person

HOI recognition. Table 3.2 presents the results of 2G-GCN with state-of-the-arts and
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two BiRNN-based baselines on CAD-120. Bidirectional GRU is used as a baseline

in both cases: The Independent BiRNN models each entity individually (i.e., there

are no spatial messages), but the Relational BiRNN incorporates extensive spatial

relations between entities. Three previous works, ATCRF [160], rCRF [116] and

ASSIGN [5], are fully capable of performing this task, where ASSIGN is relatively

new and can improve the scores to higher levels. For both human sub-activity and

object affordance labelling, 2G-GCN beats ASSIGN in every configuration of the

F1@k metric. Especially for the sub-activity labelling, 2G-GCN improves 1.5% over

ASSIGN in F1@10, and more than 2% in F1@{25, 50} with lower standard deviation

values. These findings demonstrate the benefits of using geometric features from

human skeletons and object bounding boxes, rather than only using visual features

like ASSIGN.

Two-hand HOIs

Table 3.3: Joined segmentation and label recognition on Bimanual Actions.

Model
Sub-activity

F1@10 F1@25 F1@50

Dreher et al. [62] 40.6 ± 7.2 34.8 ± 7.1 22.2 ± 5.7
Independent BiRNN 74.8 ± 7.0 72.0 ± 7.0 61.8 ± 7.3
Relational BiRNN 77.7 ± 3.9 75.0 ± 4.2 64.8 ± 5.3

ASSIGN [5] 84.0 ± 2.0 81.2 ± 2.0 68.5 ± 3.3

2G-GCN 85.0 ± 2.2 82.0 ± 2.6 69.2 ± 3.1

For two-hand HOI recognition on the Bimanual Actions dataset, 2G-GCN out-

performs ASSIGN [5] by about 1%. We compare the performance on the joined

segmentation and labelling task with Dreher et al. [62], ASSIGN [5] and BiRNN

baselines (Table 3.3). Dreher et al. [62] have the worst results due to their fairly basic

graph network, which ignores hand interactions and does not account for long-term

temporal context. By taking into account a larger temporal context, the BiRNN

baselines outperform Dreher et al. [62]. Our 2G-GCN has made a small improvement

over ASSIGN [5]. This is partly because the hand skeletons provided by the Bimanual

Actions dataset are extracted by OpenPose [22], which is relatively weak on hand

pose estimation.
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Figure 3.4: Visualizing the segmentation and labels on MPHOI-72 for Cheering. Red
dashed boxes highlights major segmentation errors.
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Figure 3.5: Visualizing the segmentation and labels on CAD-120 for taking food. Red
dashed boxes highlight over-segmentation. Blue ones highlight chaotic segmentation.

3.4.4 Qualitative Comparison

We compare the visualization of 2G-GCN and relevant methods on our challenging

MPHOI-72 dataset. Fig. 3.4 shows an example of segmentation and labeling results

with 2G-GCN and ASSIGN [5] approaches compared with the ground-truth for a

Cheering activity. We highlight some major segmentation errors with red dashed

boxes. Although both models have some errors, 2G-GCN is generally more robust

to varying segmentation periods and activity progression than ASSIGN. 2G-GCN

is not particularly sensitive to the timeline of place and approach, while ASSIGN

crashes for most sub-activities.

Fig. 3.5 displays an example of a taking food activity on the CAD-120 dataset.

We highlight over-segmentation with the red dashed box and chaotic segmentation

with the blue dashed box. From the figure, our 2G-GCN is able to segment and

recognize both human sub-activities and object affordances more accurately than
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the other two models. ASSIGN [5] and Relational BiRNN fail to predict when the

human opens or closes the microwave (e.g. the open and close sub-activities for the

human, and the openable and closable affordances for the microwave).
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Figure 3.6: Visualizing the segmentation and labels on Bimanual Actions for cooking.
Red dashed boxes highlight extra or missing segmentation. Blue ones highlights chaotic
segmentation.

Fig. 3.6 depicts the qualitative visualization of a cooking activity on the Bimanual

Actions dataset. Here, 2G-GCN performs outstandingly with precise segmentation

and labelling results for the left hand, while ASSIGN [5] and Relational BiRNN have

a chaotic performance when segmenting the long stir action. In contrast, the right

hand has more complex actions, which confuses the models a lot. 2G-GCN generally

performs better than ASSIGN, although both of them have some additional and

missing segmentations. Relational BiRNN has the worst performance with chaotic

segmentation errors in the hold action.

3.4.5 Ablation Studies

The two proposed graphs in our method contain important structural information.

We ablate various essential modules and evaluate them on our MPHOI-72 and CAD-

120 datasets to demonstrate the role of different 2G-GCN components as shown in

Table 3.4 and Table 3.5, where GG and FG denote the geometric-level graph and

fusion-level graph, respectively.
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Table 3.5: Ablation study on CAD-120. GG and FG denote the geometric-level graph
and the fusion-level graph, respectively.

Model
Sub-activity Object Affordance

F1@10 F1@25 F1@10 F1@25

(1) GG (w/o skeletons) & FG 87.7 84.9 91.0 88.3
(2) GG (w/o objects) & FG 88.3 85.6 90.4 88.5
(3) GG (w/o embedding) & FG 89.4 86.4 91.5 90.0
(4) GG (w/o similarity) & FG 88.7 85.0 90.6 89.0

(5) GG & FG (w/o human-object) 73.4 68.8 90.3 88.4
(6) GG & FG (w/o object-object) 88.3 84.5 90.9 88.5
(7) GG & FG (w human-geometry) 89.0 86.6 91.4 89.3

(8) 2G-GCN 89.5 87.1 92.4 90.4

Table 3.4: Ablation study on MPHOI-72. GG and FG denote the geometric-level graph
and the fusion-level graph, respectively.

Model
Sub-activity

F1@10 F1@25

(1) GG (w/o skeletons) & FG 66.8 60.2

(2) GG (w/o objects) & FG 66.7 59.8

(3) GG (w/o embedding) & FG 62.2 56.5

(4) GG (w/o similarity) & FG 66.1 58.9

(5) GG & FG (w/o human-human) 67.2 59.6

(6) GG & FG (w/o human-object) 58.6 51.7

(7) GG & FG (w/o object-object) 65.7 60.2

(8) GG & FG (w human-geometry) 65.6 60.7

(9) 2G-GCN 68.6 60.8

We first investigate the importance of geometric features of the human and objects.

The experiments in row (1) drops the human skeleton features in the geometric-level

graph, while row (2) drops the object keypoint features. Row (3) explores the effect

of the embedding function on geometric features. The last component we ablated is

the similarity matrix used in the GCN, the result comparison between row (4) and

(8) demonstrates its significance in the model.

We further ablate different components in the fusion-level graph as shown in
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Figure 3.7: Ablation study of the fusion-level graph. Human-object, object-object and
geometry-human relations are ablated (rows (5), (6), (7) in Table 3.5 respectively).

Fig. 3.7. We disable the attention connection between the pair of human-object

and object-object in row (5) and (6), respectively, and also supplement the human-

geometry connection in row (7). The inferior results reported in rows (5) and (6)

verify the significance of incorporating all these pair connections in our full 2G-GCN.

3.5 Summary

We propose a two-level graph GCN for tackling HOIs in videos, which consists of

a geometric-level graph using human skeletons and object bounding boxes, and a

fusion-level graph fusing the geometric features with traditional visual features. We

also propose a novel MPHOI-72 dataset to enable and motivate research in multi-

person HOI recognition. Our 2G-GCN outperforms state-of-the-art HOI recognition

networks in single-person, two-hand and multi-person HOI domains.

Our method is not limited to two humans; the geometric-level graph can represent

multiple humans and objects. To handle an arbitrary number of entities, a graph

can be constructed by only considering the k-nearest humans and objects, allowing

better generalization [161]. If there are a large number of entities, to avoid handling

a large fully-connected graph, we can apply an attention mechanism to learn what

nodes are related [162], thereby better recognizing HOIs.

Building on the promising results from 2G-GCN, where the integration of geo-

metric features demonstrated effectiveness, the next chapter will investigate novel

approaches to achieve a more meaningful fusion of geometric and visual features.
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CHAPTER 4

Learning Multi-Person HOI From Category to Scenery

Portions of this chapter have previously been published in the following peer-reviewed

publication [163]:

• Qiao, T., Li, R., Li, F. W., & Shum, H. P., “From Category to Scenery: An End-

to-End Framework for Multi-Person Human-Object Interaction Recognition in

Videos.” In International Conference on Pattern Recognition (ICPR), 2024.

Video-based HOI recognition explores the intricate dynamics between humans and

objects, which are essential for a comprehensive understanding of human behavior and

intentions. While previous work has made significant strides, effectively integrating

geometric and visual features to model dynamic relationships between humans and

objects in a graph framework remains a challenge. In this work, we propose a novel

end-to-end category to scenery framework, CATS, starting by generating geometric

features for various categories through graphs respectively, then fusing them with

corresponding visual features. Subsequently, we construct a scenery interactive graph

with these enhanced geometric-visual features as nodes to learn the relationships

among human and object categories. This methodological advance facilitates a deeper,
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more structured comprehension of interactions, bridging category-specific insights

with broad scenery dynamics. Our method demonstrates superior performance

on the two-person HOI MPHOI-72 dataset and comparable performance on the

single-person HOI CAD-120 dataset.

4.1 Introduction

HOI recognition delves into the subtle dynamics between humans and objects,

aiming to capture the breadth of their interactions from basic actions to complex

activities. This field transcends mere identification to explore the depth of their

interactions, from elementary actions to intricate sequences, which are essential

for a comprehensive understanding of human behavior and intentions [5, 146,164].

Accurate HOI recognition is crucial across various domains, serving as a cornerstone

for developing sophisticated surveillance [1,2], enhancing video analysis techniques

[165–167], and facilitating effective human-robot collaboration [3, 4].

Prior work on single-person HOI video datasets marks a significant advancement

[19, 62, 63], enabling the development of models that understand spatio-temporal

actions through visual cues [5, 14, 15]. A notable progression is presented by 2G-

GCN [146], which leverages geometric features informed networks for HOI recognition

in videos, broadening the scope to encompass two-person HOIs with the introduction

of a novel dataset.

While fusing geometric and visual features achieves remarkable performance,

video-based HOI recognition still faces challenges in effectively fusing these features

and learning dynamic relationships between humans and objects in a graph model.

2G-GCN [146] attempts to enrich visual data with geometric information via a graph-

based network. However, merging geometric features of all humans and objects with

individual visual features in a single graph leads to a critical flaw by neglecting

category-specific characteristics. This fusion difficulty hampers accurate and specific

HOI learning, especially in complex multi-person scenes.

Categorization simplifies learning and improves behavior discrimination by group-

ing similar features, enhancing model accuracy in identifying diverse interactions.
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In this work, we follow natural cognitive processes [168, 169] to learn HOIs from

category-level feature fusion to scenery-level graph representation, facilitating a struc-

tured and comprehensive understanding. This strategy enables a more sophisticated

integration of varied feature types, ensuring each level is fully leveraged for enhanced

representational efficacy. We propose a novel end-to-end CATegory to Scenery frame-

work (CATS), which initially generates geometric features via a graph for different

categories, integrating them with corresponding visual features. Subsequently, a

scenery interactive graph is constructed using these enriched geometric-visual features

as nodes, to deeply understand the interaction dynamics among all humans and

objects.

Our approach achieves superior performance on the two-person HOI MPHOI-

72 [146] dataset and comparable performance on the single-person HOI CAD-120 [19]

dataset. Additionally, we conduct ablation studies to evaluate the core components

of our model. Our main contributions are:

• We propose an end-to-end framework CATS ranging from category-level feature

fusion to scenery-level graph for multi-person HOI recognition in videos.

• We propose a multi-category multi-modality fusion module that fuses visual

features and graph-based geometric features for human and object categories,

respectively.

• We propose a scenery interactive graph to learn the relationships among human

and object categories via an attention-based graph.

4.2 An End-to-End Category to Scenery Frame-

work (CATS)

We propose an end-to-end framework CATS (Fig. 4.1) to learn HOIs from category-

level to scenery-level, which first focuses on the inherent characteristics of different

categories, capturing their physical properties and contextual visual cues to achieve

a rich feature representation. It then adopts a graph attention neural network to
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Figure 4.1: Overview of our end-to-end framework CATS. We first learn geometric
features via a graph for human and object categories, fusing them with corresponding visual
features. Subsequently, a scenery interactive graph is constructed to deeply understand
the interaction dynamics between multi-categories.

learn multi-category features as a scenery graph representation, which represents the

true HOI. This approach mirrors natural cognitive processes [168,169] facilitating a

structured and comprehensive understanding of interactions within various contexts.

Alternative architecture performs suboptimally, an approach treats each human

and object as an entity independently, ignoring the correlation between the same

category and compromising the model’s ability to understand complex dynamics.

An alternative method [146] groups all human poses and object bounding boxes into

a single category for geometric feature learning, and then combines these geometric

features with visual features in a single graph learning, which complicates entity

representation and hampers explicit HOI learning. We compare these alternative

architectures with our method in Experimental Results 4.3.

4.2.1 Multi-Category Multi-Modality Fusion

Previous CNN-based methods for HOI recognition in videos have predominantly

focused on visual features [5,155,156], which may not be sufficient in cases of occlusion.

While more advanced approaches like 2G-GCN [146] have attempted to incorporate

geometric features to complement visual features, they categorize all human skeletons

and object bounding boxes under a single category for geometric feature learning,

thereby neglecting the distinct characteristics unique to each category and potentially
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Figure 4.2: The process of learning and fusing geometric and visual features for human
and object categories.

generating skewed geometric features.

To this end, we propose a multi-category multi-modality fusion module that

first learns geometric features via a graph for human and object two categories

and then fuses them with corresponding visual features (Fig. 4.1). These category-

specific features establish a rich multimodal context, providing a solid foundation for

subsequent accurate interaction recognition.

Geometric Features

For feature representation in human category and other related tasks, following

previous successes [146, 170], we concatenate the position and velocity of all humans

into keypoint channels, forming human geometric features HG = {hgt,h,j}T,H,J
t=1,h=1,j=1 ∈

R4, where hgt,h,j denotes the body joint of type j in human h at time t, T denotes

the total number of frames in the video, H and J denote the total number of humans

and keypoints of a human body in a frame, respectively. Similar to humans, object

geometric features OG = {ogt,o,u}T,O,2
t=1,o=1,u=1 ∈ R4, where ogt,o,u denotes the bounding

box diagonal points u in object o at time t and O denotes the total number of objects.

As shown in Fig. 4.2, human and object geometric features are adopted n-

layer GCNs to capture spatial dynamics and interactions in each category. This

enables deeper analysis through successive transformations, allowing the graph-based

network to learn intricate patterns of spatial dynamic interactions at multiple levels

of abstraction [171,172]. Here, taking human geometric features as an example, the
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operation of each GCN layer is formalized as:

H(l+1) = σ
(
AH(l)W (l)

)
, (4.1)

where H(l) represents the activation matrix at the lth layer (H(0) = HG for the initial

layer), A is the adjacency matrix defining the graph structure, W (l) is the weight

matrix for the lth layer, and σ is the Tanh activation function.

For an n-layer GCN, this transformation is applied iteratively to obtain the final

embedded human geometric features:

HG′ = H(n) = σ
(
AH(n−1)W (n−1)

)
(4.2)

where n is the total number of GCN layers, iterating the process from l = 0 to n− 1.

We choose n = 4 based on empirical experimental results. Through this operation,

we can obtain the embedded human and object geometric features: HG′ ∈ RT×HJ×C2

and OG′ ∈ RT×2O×C2 .

Visual Features

In contrast to geometric features, visual features in videos offer a wealth of contextual

information and essential feature representations. Following [5, 146], we derive

2048-dimensional visual features of entities from Region of Interest (ROI) pooled

2D bounding boxes around humans and objects in video frames. As shown in

Fig. 4.2, they are subsequently reduced dimensionally to C1 through an MLP with

learnable embeddings and aligned dimensionally with geometric features. This

process results in the embedded human and object visual features: HV ′ ∈ RT×HJ×C1

and OV ′ ∈ RT×2O×C1 .

Multi-Modality Fusion

Finally, we fuse embedded geometric and visual features in the human and object

keypoint channel, producing new enriched human and object feature representations,
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respectively:

H̃ = HG′⊕HV ′ ∈ RT×HJ×C3 ; (4.3)

Õ = OG′⊕OV ′ ∈ RT×2O×C3 , (4.4)

where ⊕ represents concatenate operation and C3 = C1 + C2. This refined fusion

of geometric and visual cues creates a richly contextualized blend, laying a solid

foundation for enhanced scenery graph learning of HOIs.

4.2.2 Scenery Interactive Graph

To effectively model the interactions between humans and objects, the existing

method [5] focuses exclusively on their visual features to construct an interaction

graph. This approach taps into the visual aspect of interactions, which is essential but

insufficient for grasping the dynamic spatial relationships critical to understanding the

complexities of HOI. Furthermore, 2G-GCN [146] offers a more comprehensive view

but fuse geometric features representing all entities with visual features representing

individuals, which results in hierarchical misalignment and fails to explicitly learn

HOIs.

To overcome the constraints of prior approaches, we propose a scenery interactive

graph that adopts a graph attention neural network to learn interactions between

different categories with enriched feature representation (Fig. 4.1), to deeply un-

derstand the interaction dynamics among all humans and objects. This structured

approach facilitates a comprehensive understanding of interactions within various

contexts.

GAT for Learning Scenery Graph

Specifically, we adopt Graph Attention Networks (GAT) [173] in learning scenery

graph interactions is particularly advantageous due to their ability to dynamically

adjust to rapid changes in human and object interactions within scenery graphs,

thanks to their adaptive edge weighting and handling of non-static features. This

ensures a precise focus on relevant entities and their evolving relationships, optimizing
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the model’s responsiveness to the complex dynamics of interactions.

We construct the HOI scenery graph Gs−t = (V , E), where V ∈ RT×(HJ+2O)×C3 rep-

resents the node features, which is obtained by concatenating the local human feature

representation H̃ and object feature representation Õ, and E ∈ RT×(HJ+2O)×(HJ+2O)

denotes the initialized fully-connected adjacency matrix. For each node Vi at time

step t ∈ [1, . . . T ], the feature representation is:

V t
i = σ

 ∑
j∈N(i)∪i

αt
i,jΘV t

j

 , (4.5)

and the attention coefficients αi,j are computed as:

αt
i,j =

exp
(
LeakyReLU

(
W⊤[ΘV t

i , ∥,ΘV t
j ]
))∑

n∈N(i)∪i
exp (LeakyReLU (W⊤[ΘV t

i , ∥,ΘV t
n]))

, (4.6)

where Θ(·) is the transformation function, N (·) is the neighbor set of node i and

W represents learnable parameters. This dynamic weighting is crucial as it allows

the model to adaptively focus on the most relevant nodes and edges, reflecting the

changing nature of interactions and relationships within the scene.

RNN-based Network for Learning Temporal Dependency

After obtaining the learned HOI scenery graph representations at each time step

t, we employ an RNN-based network to learn the temporal dependencies across

all the time steps. Specifically, we utilize a Bi-direction Gated Recurrent Unit

(Bi-GRU) [174] that enables our model to integrate both past and future contexts,

enhancing its understanding of the sequential dynamics in HOIs. The GRU’s gating

mechanisms effectively manage long-term dependencies, ensuring robust temporal

modeling. For the learned step-wise feature representations, we utilize a Gumbel-

Softmax module [175], enabling precise and adaptable delineation of sub-event

lengths in video sequences. This module is instrumental in enabling gradient-based

optimization while maintaining probabilistic integrity in segmenting actions, a crucial

aspect when dealing with the inherently fluctuating characteristics of video content.

Subsequently, we employ another Bi-GRU to discern the temporal relations among
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segmented sub-actions. The processed features are then leveraged to identify specific

sub-activities/affordances associated with entities, with the granularity of recognition

tailored to suit the requirements of the specific dataset.

4.3 Experiments

4.3.1 Datasets

We evaluate CATS on two datasets: MPHOI-72 [146] and CAD-120 [19], showcasing

the superior results on multi-person and single-person HOI recognition.

The MPHOI-72 dataset is valuable for two-person HOI tasks. It contains 72

videos of 8 pairs of people performing 3 distinct activities (Cheering, Hair cutting and

Co-working) with 13 human sub-activities (e.g., Sit, Pour). Each video showcases two

participants interacting with 2-4 objects from 3 unique angles. Geometric features

and human sub-activities labels are frame-wise annotated.

CAD-120 is a prominent dataset for single-person HOI recognition. It contains

120 RGB-D videos, capturing 10 distinct activities executed by 4 participants, each

repeated three times. In each video, a participant interacts with 1-5 objects. The

dataset provides frame-wise annotations for 10 human sub-activities (e.g., opening,

placing).

4.3.2 Evaluation Protocol

Following the evaluation protocol of [5, 146], we assess CATS on the task of joint

segmentation and label recognition, which requires the model to segment the timeline

for each entity in a video and assign labels to each segment. The F1@k metrics [145]

with the commonly used thresholds k = 10%, 25% and 50% are reported. For the

MPHOI-72 and CAD-120 datasets, we use leave-two-subject and leave-one-subject

cross-validation to evaluate the generalization effort of CATS in unknown subjects,

respectively.
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Table 4.1: Joined segmentation and label recognition on MPHOI-72.

Model
Sub-activity

F1@10 F1@25 F1@50

ASSIGN [5] 59.1 ± 12.1 51.0 ± 16.7 33.2 ± 14.0
2G-GCN [146] 68.6 ± 10.4 60.8 ± 10.3 45.2 ± 6.5

CATS 71.3 ± 5.0 65.8 ± 3.9 48.8 ± 5.3

4.3.3 Network Setting

The visual features of humans and objects are extracted from 2D bounding boxes

within the video using a Faster R-CNN module [83] that has been pre-trained [158]

on the Visual Genome dataset [39]. For multi-modality fusion, we set C1 = 512 and

C2 = 256, resulting in a fused dimension of C3 = 768, which supports varied feature

dimensions as shown in Fig. 4.2.

4.3.4 Quantitative Comparison

Multi-person HOIs

In the MPHOI-72 dataset, results in Table 4.1 demonstrate CATS surpasses the pre-

vious state-of-the-art models, ASSIGN [5] and 2G-GCN [146], showcasing significant

performance improvements. This is highlighted by CATS’s superior performance

across all F1 configurations coupled with substantially lower standard deviations.

Specifically, in the F1@10 score, CATS achieves 71.3%, which is approximately 3%

and 12% higher than 2G-GCN and ASSIGN, respectively, marking a clear advance-

ment in both predictive accuracy and consistency in the domain of HOI recognition.

These experimental outcomes further underscore the significance of geometric features

in the Multi-Person Human-Object Interaction (MPHOI) domain.

Single-person HOIs

In the CAD-120 dataset, as presented in Table 4.2, CATS does not perform as reliably

as in the multi-person HOI scenario. For human sub-activity labeling task, CATS

performs competitively and surpasses various prior methods, including those reliant

on visual features like ATCRF [160] and [5], as well as the more sophisticated visual-
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Table 4.2: Joined segmentation and label recognition on CAD-120.

Model
Sub-activity Object Affordance

F1@10 F1@25 F1@50 F1@10 F1@25 F1@50

rCRF [116] 65.6 ± 3.2 61.5 ± 4.1 47.1 ± 4.3 72.1 ± 2.5 69.1 ± 3.3 57.0 ± 3.5
Independent BiRNN 70.2 ± 5.5 64.1 ± 5.3 48.9 ± 6.8 84.6 ± 2.1 81.5 ± 2.7 71.4 ± 4.9

ATCRF [160] 72.0 ± 2.8 68.9 ± 3.6 53.5 ± 4.3 79.9 ± 3.1 77.0 ± 4.1 63.3 ± 4.9
Relational BiRNN 79.2 ± 2.5 75.2 ± 3.5 62.5 ± 5.5 82.3 ± 2.3 78.5 ± 2.7 68.9 ± 4.9

ASSIGN [5] 88.0 ± 1.8 84.8 ± 3.0 73.8 ± 5.8 92.0 ± 1.1 90.2 ± 1.8 82.4 ± 3.5
2G-GCN [146] 89.5 ± 1.6 87.1 ± 1.8 76.2 ± 2.8 92.4 ± 1.7 90.4 ± 2.3 82.7 ± 2.9

CATS 89.6 ± 2.1 87.3 ± 1.5 76.0 ± 3.5 90.2 ± 1.5 89.1 ± 2.4 80.5 ± 2.8

geometric approach offered by 2G-GCN [146]. Notably, CATS secures competitive

performance in both F1@10 and F1@25 metrics, registering improvements of 1.6%

and 0.1% over ASSIGN and 2G-GCN, respectively. This achievement underscores

CATS’s capability to accurately model and predict the dynamics of human actions.

However, it cannot accurately recognize object affordances in the single-person

HOI, which drops by about 1%-2% in all F1 configurations. This outcome may stem

from two primary factors. First, there is an imbalance in feature representation, with

fewer keypoints representing objects compared to humans. For instance, while a

human entity may be defined by nine keypoints, an object is often represented by only

two. This disparity may reduce the model’s emphasis on objects within the scene

graph, potentially leading to suboptimal attention to object affordances. Second, our

task involves both segmentation and label recognition, a two-stage process requiring

the model to first divide the timeline and then assign appropriate labels. Such a task

may not align well with an end-to-end framework, as it demands distinct stages of

processing that the current setup may struggle to accommodate effectively.

4.3.5 Qualitative Comparison

In this section, we present a qualitative comparison of CATS with the state-of-the-art

method across the MPHOI-72 and CAD-120 datasets.

Fig. 4.3 and Fig. 4.4 illustrate Cheering and Hair Cutting activities within the

MPHOI-72 dataset, comparing the segmentation and labeling tasks performed by

CATS and 2G-GCN [146] against the ground truth. Significant segmentation errors

are marked with red dashed boxes. Although both methods exhibit some discrepancies
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Figure 4.3: Visualization of segmentation on MPHOI-72 for Cheering activity. Red
dashed boxes highlight major segmentation errors.
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Figure 4.4: Visualization of segmentation on MPHOI-72 for Hair cutting activity. Red
dashed boxes highlight major segmentation errors.

in their predictions, CATS more closely aligns with the ground truth, offering a more

precise and stable visualization across a variety of actions. Conversely, 2G-GCN

is prone to generating inappropriate sub-activities such as cheers and lift in the

Cheering activity. Moreover, in the Hair Cutting activity, 2G-GCN oversegments the

cut sub-activity into dry sub-activity, further deviating from the expected interaction

dynamics. This segmentation error may occur due to the model’s inability to

effectively leverage contextual clues, causing misclassification of fine-grained actions

when subtle motion and interaction changes are not recognized as interconnected

within the overall activity. While CATS provides category-to-scenery information, it

can handle these challenges by leveraging contextual awareness to maintain coherence

across fine-grained actions.

Fig. 4.5 and Fig. 4.6 illustrate the Cleaning Objects and Making Cereal activities

from the single-person CAD-120 dataset, with abnormal segmentation instances

accentuated by red dashed boxes. For the Cleaning Objects activity, both methods

effectively match the overall ground truth. However, CATS provides a visualization

that more closely approximates the ground truth. In the Making Cereal activity,

CATS significantly outperforms 2G-GCN, particularly in sub-activities such as
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Figure 4.5: Visualization of segmentation on CAD-120 for Cleaning objects activity. Red
dashed boxes highlight major segmentation errors.
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Figure 4.6: Visualization of segmentation on CAD-120 for Making Cereal activity. Red
dashed boxes highlight major segmentation errors.

pouring, moving, and reaching, while 2G-GCN yields some inaccurate segmentations

and over-segments.

4.3.6 Alternative Architectures and Ablation Studies

Architecture Alternatives Comparison

We evaluate the HOI recognition performance on the MPHOI-72 and CAD-120

datasets by conducting tests on various alternative model structures. The experimen-

tal outcomes, as detailed in Tables 4.3 and 4.4, reveal that our model consistently

delivers superior results compared to these alternatives. This superior performance

is likely attributable to the unique consideration our model gives to category-level

interactions, specifically the distinct analysis of human-human and object-object

interactions. Unlike other approaches that might treat interactions generically or

overlook the nuanced distinctions between different types of interactions, our model

maintains a comprehensive view.

Table 4.3: Comparison between architecture alternatives and CATS on MPHOI-72.

Model
Sub-activity

F1@10 F1@25 F1@50

Independent-entity architecture 65.1 ± 3.3 58.7 ± 1.7 40.4 ± 3.9
2G-GCN [146] 68.6 ± 10.4 60.8 ± 10.3 45.2 ± 6.5

CATS 71.3 ± 5.0 65.8 ± 3.9 48.8 ± 5.3
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Table 4.4: Comparison between architecture alternatives and CATS on CAD-120.

Model
Sub-activity

F1@10 F1@25 F1@50

Independent-entity architecture 85.9 ± 4.0 84.1 ± 4.9 72.8 ± 5.2
2G-GCN [146] 89.5 ± 1.6 87.1 ± 1.8 76.2 ± 2.8

CATS 89.6 ± 2.1 87.3 ± 1.5 76.0 ± 3.5

Table 4.5: Results of different GCN layers in multi-category multi-modality fusion on
MPHOI-72.

Model
Sub-activity

F1@10 F1@25 F1@50

1-layer GCN 70.4 ± 1.7 62.0 ± 2.5 43.9 ± 3.8
2-layer GCN 68.8 ± 4.3 62.1 ± 4.3 44.0 ± 3.3
3-layer GCN 67.4 ± 4.2 63.3 ± 3.4 44.2 ± 1.3
5-layer GCN 70.4 ± 5.7 60.0 ± 2.3 43.7 ± 2.2

4-layer GCN (Ours) 71.3 ± 5.0 65.8 ± 3.9 48.8 ± 5.3

GCN Layers for Geometric Feature Learning

In this section, we conduct ablation studies to elucidate the impact of the depth

of GCN layers on the geometric learning of human joints and object keypoints

within our network, results are shown in Table 4.5. To assess the influence of

GCN layer depth on model performance, we explore configurations with 1, 2, 3,

4, and 5 GCN layers. Through this comparative analysis, we aim to identify the

most effective layer depth that balances computational efficiency with the nuanced

understanding of spatial relationships essential for interpreting complex interactions

between humans and objects. The results indicate that a configuration of 4-layer

GCN offers the optimal balance, providing the best performance in terms of both

accuracy and computational efficiency. This depth allows for sufficient complexity to

understand and model the geometric relationships critical for accurate interaction

recognition, without incurring the diminishing returns or increased computational

demand associated with additional layers.
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4.4 Summary

In summary, we propose CATS, an end-to-end framework that enhances video-based

HOI recognition through sophisticated integration of category-level and scenery-level

analyses. It first fuses multi-modal features of different categories, and then constructs

a scenery interactive graph to learn the relationships between these categories. CATS

achieves superior results on the multi-person HOI benchmark and delivers comparable

performance on the single-person HOI benchmark.

Based on insights gained from CATS, we decide to move away from the end-to-end

framework and return to a two-stage approach, as seen in models like ASSIGN [5]

and 2G-GCN [146]. We recognize a persistent challenge in achieving more effective

multimodal feature fusion and accurately capturing the complex dynamics of multi-

person interactions in intricate environments. In the next chapter, we focus on

maximizing the representational capabilities of features for each entity, while enabling

simultaneous representation of pairwise interactions and complex interdependencies

among entities.
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CHAPTER 5

Geometric and Visual Feature Fusion in Multi-Person HOI

Portions of this chapter have been submitted to the peer-reviewed venue in the

following publication:

• Qiao, T., Li, R., Li, F. W., Kubotani, Y., Morishima, S., & Shum, H. P.,

“GeoVis-GNN: Geometric Visual Fusion Graph Neural Networks for Multi-

Person Human-Object Interaction Recognition in Videos.” 2024.

Video-based multi-person HOI recognition is crucial for understanding complex

human behaviors in real-world scenarios. Prior work has largely underutilized

the potential of effectively fusing geometric and visual features of humans and

objects. Recognizing the multimodality of features across various entities within

HOI scenes, we propose GeoVis-GNN to learn representative features following a

bottom-up approach. It first optimizes the feature representation of each entity by a

dual-attention feature fusion mechanism at the feature level, then models explicit

interactions and implicit interdependencies among entities and neighbors through

an interdependent entity graph. To demonstrate the novelty and effectiveness of

our method, we propose a new open-access multi-person HOI dataset (MPHOI-
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Figure 5.1: Two examples (Teaching and Signing) of our collected three-person HOI
datasets. Geometric features such as skeletons and bounding boxes are annotated.

120), which includes three humans interacting with multiple objects in daily life,

surpassing existing datasets in terms of complexity and human participation. Our

method outperforms state-of-the-arts across multiple datasets, including MPHOI-120

(three-person HOI), MPHOI-72 (two-person HOI), CAD-120 (single-person HOI)

and Bimanual Actions (two-hand HOI) datasets.

5.1 Introduction

Video-based multi-person HOI recognition focuses on understanding the dynamic

interactions between multiple individuals and various objects within the scene.

This task requires models to interpret complex temporal and spatial relationships,

discerning various actions despite challenges like frequent occlusions, overlapping

actions, and diverse interaction patterns. The previous effort of 2G-GCN [146] first

introduces graph-based geometric features to video-based HOI recognition, extending

beyond single-person scenarios to two-person HOI with a new dataset. CATS [163]

presents an end-to-end framework to learn geometry-informed HOI from category to

scenery.

Video-based HOI recognition faces challenges with aligning and fusing multimodal

features in a meaningful way. 2G-GCN [146] merges geometric features representing

all entities, with visual features for individual entities. This may lead to misalignment

of feature hierarchies, as high-level spatial information may not align well with

detailed, entity-specific visual data. Consequently, this inefficiency in feature fusion

compromises the model’s ability to distinguish between entities effectively. Directly
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concatenating visual and geometric features in CATS [163] treats all feature types

uniformly, potentially diluting the unique contributions of each. This approach

may overemphasize dominant features while underestimating subtle geometric cues,

reducing accuracy in recognizing fine-grained interactions.

In this work, we propose to learn HOI features following a bottom-up approach

ranging from the feature-level fusion to the entity-level graph. Our insight is that

it allows for more nuanced and effective integration of diverse feature types, and

ensures that each level is optimally exploited for maximum representational power.

We present a novel Geometric Visual Fusion Graph Neural Network (GeoVis-GNN)

that first optimizes the feature representation of each entity by a dual-attention

geometry-visual fusion. These enriched entity-specific representations are then fed

into the interdependent entity graph to further model explicit interactions and

implicit interdependencies.

To provide the context of truly multi-person multi-object interactions, we in-

troduce a novel multi-person human-object interaction dataset, MPHOI-120. This

dataset surpasses existing ones [19, 146] in terms of the number of humans and

objects involved, capturing intricate scenarios where three individuals interact with

multiple objects in daily life (Fig. 5.1). The frequent occlusions between humans and

objects add to its complexity. Frame-wise annotations include geometric features of

human skeletal poses, bounding boxes for humans and objects, and ground-truth

HOI sub-activity labels.

Our approach surpasses state-of-the-art performance on multiple datasets, includ-

ing the proposed three-person HOI MPHOI-120 dataset, the two-person MPHOI-

72 [146] dataset and the single-person HOI CAD-120 [19] dataset and the two-hand

Bimanual Actions [62] dataset. Additionally, we conduct ablation studies to evaluate

the core components of our model. Our main contributions are:

• A bottom-up framework GeoVis-GNN for multi-person HOI recognition in

videos, which first optimizes the feature representation of each entity by fus-

ing geometric and visual features at the feature level while learning entity

interactions at the entity level.
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Figure 5.2: Sample video screenshots from our new MPHOI-120 dataset, displaying
annotated labels for sub-activities along the timeline of four different multi-person HOI
activities.

• A dual-attention fusion mechanism optimizes multimodal feature integration

by embedding and adaptively fusing visual and geometric features to create a

rich, entity-specific representation.

• A interdependent entity graph simultaneously models explicit interactions

between independent entities and implicit interdependencies among neighboring

entities surrounding a specific entity.

• A new MPHOI-120 showcases three humans interacting with multiple objects

in daily life1. It contains more humans and objects than any other existing HOI

datasets, making it especially challenging due to the frequent body occlusions

between humans and objects.

5.2 The Three-Person HOI Dataset

Most video-based HOI datasets mainly record single-person HOIs, although they

provide different perspectives [19, 73, 75, 76]. Efforts to portray multiple human

interactions remain nascent, with the UCLA HHOI [176, 177] dataset capturing

1Data collection performed in the UK, under Durham University Ethics Approval Ref:
COMP-2022-06-03T19 29 22-cbmw62.
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interactions of up to two people and one object, and MPHOI-72 [146] slightly

extending this to two people and several objects. However, these collections do not

fully capture the full complexity of multi-person and multi-object interactions in

different real-world scenarios.

We propose a new multi-person HOI dataset MPHOI-120 to address this gap by

capturing more intricate daily activities involving three humans and various objects,

approximating real-world HOIs. The inclusion of an additional person and more

objects exponentially escalates the complexity, not only multiplying the possibilities

of human-human, human-object, and object-object interactions but also significantly

increasing occlusions among the entities. Thus, MPHOI-120 presents a far more

intricate challenge than traditional two-person HOI datasets.

5.2.1 Dataset Details

MPHOI-120 includes 120 videos captured from 3 different angles at 30 fps, with

1920× 1080 resolution and an average length of 15 seconds. We have 4 males and 3

females randomly combined into 10 groups with 3 people per group and perform 4

different HOI activities interacting with 2 to 5 objects. There are 6 objects: notebook,

pen, bottle, cup, laptop and snooker cue. In total, 4 activities = {Signing, Cheering,

Teaching and Snooker} and 17 sub-activities = {Sit, Stand, Pass, Approach, Retreat,

Lift, Place, Note, Shake hands, Hold, Pour, Drink, Cheers, Showcase, Teach, Listen,

Play snooker} are defined. The sub-activity label of each subject is annotated frame-

by-frame. Fig. 5.2 shows some sample video screenshots with annotated sub-activities

along the timeline of all activities.

Signing is a fairly complex activity that simulates three people signing a contract.

It represents that Subject1 first stands holding a notebook and passes the notebook

to Subject 2; Subject 2 signs with a pen then passes the notebook and pen to Subject

3; Subject 3 further signs on the notebook, and then passes them back from Subject

2 to Subject 1; Subject 2 and Subject 3 finally shake hands. Massive high-level

occlusions exist between humans, notebooks and pens during the entire activity.

Cheering is one of the most common multi-person activities. We provide two

bottles and three cups for the three subjects to enhance the interaction between
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human-human and human-object. In the beginning, two randomly chosen subjects

each pour juice from bottles into their cups. One of these subjects then hands the

bottle to a third subject without a bottle, who also pours juice into his/her cup.

Finally, all subjects raise their cups in a collective cheering gesture and drink the

juice.

Teaching simulates the interaction between a teacher and students, where a

randomly selected subject plays the teacher, using a laptop to demonstrate and talk

with the other two subjects (students), each equipped with a pen and a notebook.

This activity requires the system to carefully distinguish the dynamic state of whether

the subject is holding a pen and writing in a notebook to determine whether the

subject is noting or listening.

Snooker is a rather interesting activity in this work, three subjects are designed

to play snooker together with only 2 snooker cues in one pool table. Three subjects

take turns to serve, and after a subject finishes, he/she will pass the snooker cue

to the subject who is without one. This setup results in significant body occlusion

among the subjects, particularly when a player navigates around the pool table to

position themselves for their shot.

Leveraging the Azure Kinect SDK along with the Body Tracking SDK [151], we

acquire RGB-D videos to capture the comprehensive dynamics of multiple individual

skeletons. We offer 2D human skeletal data and bounding boxes for both subjects

and objects within each video, serving as geometric characteristics. The integration

of depth information within our dataset further broadens its utility, such as versatile

benchmarks for 3D human pose estimation [178, 179] and 3D object estimation

[180,181], among other applications.

5.2.2 Statistical Comparison of Datasets

We perform a statistical comparison between MPHOI-120 and existing HOI datasets,

as shown in Tab. 5.1. MPHOI-120 includes scenarios with three people interacting

and 17 sub-activities, which is higher than any other listed dataset, standing out

for its complexity and richness. With a substantial 53,604 frames across 120 videos,

it provides ample data for training robust models. Additionally, the high video
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Table 5.1: A statistical comparison between MPHOI-120 and existing HOI datasets.

Datasets MPHOI-120 MPHOI-72 [146] CAD-120 [19] Bimanual Actions [62]

No. people interacting 3 2 1 1
Total videos 120 72 120 540
Total frames 53604 26383 61585 221000
Video average length 15s 12s 17s 15s
No. sub-activities 17 13 10 14
No. subjects/objects 7/6 5/6 4/10 6/12
Total activities 4 3 10 9
Fps 30 30 30 30
Resolution 1920×1080 3840×2160 640×480 640×480

resolution (1920 × 1080) ensures detailed feature capture, essential for advanced

HOI analysis. In contrast, although Bimanual Actions [62] is large, it is limited to

dual-hand movements of an individual, leading to a more monotonic data distribution.

5.3 Methodology

We propose a bottom-up approach to design GeoVis-GNN, which first optimizes the

feature representation of each entity by fusing geometric and visual features at the

feature level, then proceeds to learn interactions in the entity-level graph. The bottom-

up approach has been widely used in pose estimation [182–184] and object detection

[185–187] tasks with considerable performances. It ensures a thorough understanding

of the fundamental aspects of each entity before delving into complex entity-level

interactions. This approach, starting from basic features and building upwards,

enables detailed feature integration to achieve more effective entity interaction

analysis.

Alternative design performs suboptimally, a top-down approach begins with a

broad view of entity-level relationships before focusing on specific entity features can

lead to missed crucial interaction details and a misalignment between overarching

patterns and individual interaction nuances. An alternative method [146] that

combines feature fusions and entity graph learning within a single graph entangles

the entity concept, lacking a specific feature to represent each entity, which fails to

learn HOIs explicitly. We compare these alternative architectures with our method

in Experimental Results 5.4.
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Figure 5.3: Overview of our bottom-up framework GeoVis-GNN. We first design a
dual-attention fusion for feature optimization, which embeds and fuses visual and geometric
features in a graph attention-based mechanism and channel attention module, respectively.
The enriched entity-specific representations are then inputted into the interdependent
entity graph to further model explicit interactions and implicit interdependencies. Finally,
we apply a BiGRU to capture the temporal dependencies to obtain segmentation and
recognition results.

5.3.1 Dual-Attention Fusion for Feature Optimization

Prior approaches of CNN-based HOI recognition in videos mainly focused on visual

features [5, 155,156], which may prove inadequate in occluded scenarios. Advanced

methods such as 2G-GCN [146] attempt to integrate geometric features within

a GCN framework to augment visual data. However, their fusion of collective

geometric features with individual visual features risks hierarchical misalignment,

fusion inefficiencies, and difficulties in entity distinction. CATS [163] also employs

GCN to model geometric features but directly combines them with visual features,

which may dilute their distinct contributions.

We propose a dual-attention fusion mechanism at the feature level to optimize

multimodal feature integration (Fig. 5.3). It first embeds visual and geometric features

of each entity to establish a rich multimodal context, with geometric features learned

through a graph attention-based mechanism. A second channel attention module

then adaptively emphasizes informative features while suppressing less relevant ones

and fuses them, ensuring a targeted amalgamation of the corresponding multimodal

features per entity. This results in a well-contextualized feature representation

that effectively blends geometric and visual cues, providing a robust foundation for

subsequent entity-level graph learning.
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Graph Attention-Based Feature Embedding

Previous research [109,146,163] learns geometric features by GCNs, which typically

apply the same convolution operation to all neighbors of a node, without distinguish-

ing between the different roles or importance that different neighbors might play in

the context of multi-person HOIs. This can lead to a homogenization of features

that fails to capture the complexity of multi-entity dynamics.

We propose a graph attention-based [188] embedding to learn multi-entity ge-

ometric features, adaptively weighting the importance of each entity’s geometric

features through an attention mechanism to capture the evolving significance of

interactions. This enables the model to expertly handle occlusions and dynamic

environments for multi-person HOI recognition.

For feature representation, following previous successes [146,163], we concatenate

the position and velocity of all entities into keypoint channels, forming geometric

features G = {ge,kt }T,E,K
t=1,e=1,k=1 ∈ R4 with ge,kt as the k-th type features for entity e

at frame t, where T denotes the total number of frames in the video, E and K

denote the total number of entities and keypoints of an entity in a frame, respectively.

Human joints and object bounding box diagonals are extracted as keypoints.

We adaptively infer spatial correlations with a GAT among keypoints k1 and k2

for a single timestep among entities as follows:

gs
t = αk1,k1Θgt,k1 +

∑
k2∈K

αk1,k2Θgt,k2 , (5.1)

and the attention coefficients αk1,k2 are computed as:

αk1,k2 =
exp

(
Γ
(
a⊤[Θgk1 ∥Θgk2 ]

))∑
k3∈K∪{k3} exp (Γ (a⊤[Θgk1 ∥Θgk3 ]))

, (5.2)

where Θ and Γ are the transformation function and LeakyReLU activation, respec-

tively.

gs
t is then fused with a 1 × 1 convolution along the temporal channel to form

spatial-temporal geometric features gst
t ∈ RT×NK×C1 , effectively summarizing tempo-

ral dynamics while avoiding the complexities of 3D convolutions. It is then reshaped
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to gst
t ∈ RT×N×KC1 and embedded by a Multi-Layer Perceptron (MLP) to get

low-level entity geometric features g′
t ∈ RT×N×C2 .

Unlike geometric features, visual features in videos contain rich contextual infor-

mation and fundamental feature representations. Following [5,146], we extract entity

visual features vt,n ∈ R2048 from ROI pooled 2D bounding boxes of humans and

objects in videos, utilizing a pre-trained Faster R-CNN [83] module on the Visual

Genome [39]. They are subsequently aligned dimensionally with geometric features

to v′
t ∈ RT×N×C2 through an MLP with learnable embeddings.

Geo-Vis Channel Attention-Based Feature Fusion

Incorporating geometric and visual features poses a significant challenge due to their

inherent representation and scale discrepancies. Prior approaches have attempted

multimodal fusion by element-wise addition [109] or feature concatenation [120, 163].

However, such direct operations are infeasible for our task as they do not account

for the disparate nature of feature spaces, leading to suboptimal learning outcomes.

We propose a novel geometry-visual channel attention-based feature fusion to

effectively integrate geometric and visual features of all humans and objects, which

achieves selective feature enhancement and encourages complementarity between

multimodal features. We exploit channel attention mechanisms [189] in geometry-

visual channels of all entities, allowing adaptively emphasizing informative features

while suppressing less relevant ones across different channels, which is particularly

advantageous for learning more representative visual and geometric features in diverse

HOI scenarios. For instance, visual features often suffer in noisy backgrounds but

thrive in scenarios with small backgrounds. Geometric features demonstrate strength

in addressing partial occlusions [146], which is a common situation in multi-person

HOI scenarios.

Specifically, as shown in Fig. 5.3, our attention-based feature fusion module first

concatenates g′
t and v′

t along the entity dimension to entity geometry-visual features

gvt ∈ RT×2N×C2 , and compute a channel attention A as:

A = σ (W2δ (W1 (GAP (gvt)))) , (5.3)
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where GAP denotes Global Average Pooling [190], W1 and W2 are weights of

Fully-Connected (FC) layers, δ and σ represent the ReLU and Sigmoid activation.

Apply these values to original features for attended geometry-visual fusion features:

gv′
t = A · gvt. (5.4)

After assigning distinct weights to each geometry-visual channel of an entity,

the weighted features are strategically split into separate geometric and visual

streams. These are then adeptly fused back together, producing a new enriched

entity representation g̃vt ∈ RT×N×C3 . This refined feature fusion set, being a

weighted and well-contextualized blend of geometric and visual cues, sets the stage

for more discerning entity-level graph learning.

Compared to our attention-based feature fusion, [144,191] apply Transformer to

fuse geometric and visual features in image-based HOI detection, which is constrained

in processing video data due to memory inefficiency. Graph-based feature fusion

treats multimodal features as graph nodes [192,193], which is heavily reliant on the

design of graph representation. As HOI is a dynamic process, it is non-trivial to

manually define an appropriate representation.

5.3.2 Interdependent Entity Graph

In HOI analysis, most approaches [5,6,9] construct an independent entity graph that

assumes a fixed structure to decipher spatial interactions between entities focusing

solely on visual features. 2G-GCN [146] represents geometric features of all entities

as a single entity linked with visual features of object entities, failing to explicitly

model interactions between all entities. CATS [163] learns interactions between

human and object categories but neglects relationships between entities within the

same category, which is particularly limiting in multi-person HOI scenarios.
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Figure 5.4: In the interdependent entity graph, we model neighbor features ① before
aggregating them to the target entity ②.

Our insight is that an effective entity-level graph should not only capture explicit

interactions among independent entities but also concurrently discern the implicit

interdependencies that exist among neighboring entities surrounding a specific entity.

This dual focus is crucial for understanding the intricate graph network of relations

that exist around any specific entity within the scene.

To this end, we propose an interdependent entity graph to capture the inter-

dependencies among all neighboring nodes around a particular entity with fused

geometric and visual features, then refine it by applying attention weights between

the entity in focus and its neighbors (Fig. 5.3 right). This entity-level graph offers a

richer representation of spatial interactions, advancing the understanding of complex

behavioral patterns beyond the reach of previous methods.

Specifically, as illustrated in Fig. 5.4, given a specific entity e at each frame t, we

first calculate the features from its neighbor u to itself as follows:

Su
t = λ× g̃vu

t + (1− λ)× (GAP(W3(g̃v
u
t )))

N − 1
, (5.5)

where λ controls the contextual fusion threshold, and W3 is the weight of a FC layer.

These neighboring features are then aggregated into a robust representation that

encapsulates the collective attributes of the neighboring group:

Se
t = STACKu∈N,u̸=e(S

u
t ⊙M(Su

t )), (5.6)

where M(·) is the mask indicator for valid neighbors and ⊙ denotes element-wise

multiplication. Meanwhile, we apply a dot-product attention mechanism [5,194] to
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obtain the attention weights between node e and its neighbors as:

W e
t =

∑
u∈N,u̸=eSoftmax(

Se
t (S

u
t )

T

√
d

), (5.7)

where d is the feature dimension. Finally, the refined feature representation of the

entity is F e
t = W e

t ⊙ Se
t , ensuring a contextually aware integration of features.

After obtaining the fused features of each entity at each time step, we apply a

Gumbel-Softmax module [175] to F e
t , enabling precise and adaptable delineation

of sub-event lengths in video sequences. It efficiently facilitates gradient-based

learning and ensures probabilistically coherent segmentation, essential for handling

the dynamic nature of video data. Finally, we apply a Bi-directional Gated Recurrent

Unit (BiGRU) [174] to capture the temporal dependencies between each sub-action

and then use the output features to recognize sub-activities for humans and object

affordances for objects, varying according to the dataset.

5.4 Experimental Results

5.4.1 Datasets

We evaluate GeoVis-GNN on multiple datasets: MPHOI-120, MPHOI-72 [146], CAD-

120 [19], and Bimanual Actions [62], showcasing the superior results on three-person,

two-person, single-person and two-hand HOI recognition.

The MPHOI-72 dataset is valuable for two-person HOI tasks. It contains 72

videos of 8 pairs of people performing 3 distinct activities (Cheering, Hair cutting

and Co-working) with 13 human sub-activities (e.g ., Sit, Approach, Pour). Each

video showcases two participants interacting with 2-4 objects from 3 unique angles.

Geometric features and human sub-activities labels are frame-wise annotated.

CAD-120 is a prominent dataset for single-person HOI recognition. It contains

120 RGB-D videos, capturing 10 distinct activities executed by 4 participants, each

repeated three times. In each video, a participant interacts with 1-5 objects. The

dataset provides frame-wise annotations for 10 human sub-activities (e.g ., opening,

cleaning, placing) and 12 object affordances (e.g ., openable, cleanable, placeable).
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The Bimanual Actions dataset is a large-scale collection of 540 RGB-D videos

capturing HOIs using both hands. It documents the actions of 6 subjects who engage

in 9 varied bimanual tasks, with each task performed 10 times. The dataset assigns

14 unique action labels to each hand, with frame-wise annotations for each entity

within the videos.

5.4.2 Implementation Details

We follow [5,146,163] to evaluate GeoVis-GNN on the task: joined segmentation and

label recognition, and report F1@k score [145] with standard thresholds of k = 10%,

25%, and 50%.

For dataset evaluation, we use a leave-one-subject-out cross-validation method

for CAD-120 and Bimanual Actions, and a leave-two-subjects-out approach for

MPHOI-72. For MPHOI-120, our cross-validation scheme specifies three subjects

not present in the training set as the test set. Training MPHOI-120, MPHOI-72,

CAD-120 and Bimanual Actions on four Nvidia Titan RTX GPUs take 6, 4, 8 hours

and 7 days respectively, while testing the entire set takes approximately 2, 2, 6 and

20 minutes respectively.

In the network configuration, we set C1 = 128, C2 = 256, and C3 = 512 to

support varied feature dimensions. As Bimanual Actions has a significantly more

monotonic data distribution, we set C2 = 32, C3 = 64 and [Su
t = 0].

5.4.3 Quantitative and Qualitative Comparison with SOTAs

Three-person HOIs

In the MPHOI-120 dataset, GeoVis-GNN beats ASSIGN [5], 2G-GCN [146] and

CATS [163] by a considerable gap (Tab. 5.2). Especially under multi-person HOI

conditions, ASSIGN drops below 60% in F1 metrics due to occlusions affecting

visual features in HOI tasks. GeoVis-GNN shows an improvement of about 2%

to 4% in F1@{10, 25, 50} over SOTA, highlighting that the effective dual-attention

fusion strategy and interdependent entity graph enable our model to learn essential

features and stable interactions even when unexpected occlusion and more complex
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interactions appear.

Table 5.2: Joined segmentation and label recognition results on MPHOI-120.

Model
Sub-activity

F1@10 F1@25 F1@50

ASSIGN [5] 58.0 ± 8.5 53.7 ± 7.9 39.1 ± 7.4

2G-GCN [146] 60.7 ± 6.5 55.3 ± 6.9 39.6 ± 6.5

CATS [163] 62.8 ± 2.7 56.7 ± 4.2 42.8 ± 3.9

GeoVis-GNN 65.1 ± 5.2 59.8 ± 4.7 46.6 ± 5.1
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Figure 5.5: Visualization of segmentation on MPHOI-120 for Signing activity. Red
dashed boxes highlight major segmentation errors.

Fig. 5.5 illustrates the visualization results of GeoVis-GNN and CATS on MPHOI-

120 comparing with Ground-truth for the Signing activity, where red dashed boxes

highlight major segmentation errors. Although both GeoVis-GNN and CATS make

errors compared to Ground-truth, GeoVis-GNN can contribute relatively plausible

segmentation results in all three subjects. For example, in subject 3, CATS over-

segments sit in the beginning and then completely misses pass and lift before note,

while our GeoVis-GNN can accurately segment sit and pass but miss lift. This is

likely due to the lift action of the subject being very fast and closely resembles the

note action, leading our model to misclassify lift as note. Incorporating temporal

attention mechanisms could potentially enhance performance in the short duration

of the action and its overlapping features with subsequent actions.
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Two-person HOIs

GeoVis-GNN achieves an impressive performance on the MPHOI-72 dataset (Tab. 5.3),

with an F1@10 score of 84.3%, significantly outstripping the 71.3% scored by

CATS [163]. Across all F1 configurations, GeoVis-GNN exhibits substantial im-

provements of 13.0%, 10.8%, and 10.6%, respectively. The advanced technique for

fusing geometric and visual features allows to capture more complex patterns in the

data, while CATS and 2G-GCN cannot leverage it due to its inefficient fusion.

Table 5.3: Joined segmentation and label recognition results on MPHOI-72.

Model
Sub-activity

F1@10 F1@25 F1@50

ASSIGN [5] 59.1 ± 12.1 51.0 ± 16.7 33.2 ± 14.0

2G-GCN [146] 68.6 ± 10.4 60.8 ± 10.3 45.2 ± 6.5

CATS [163] 71.3 ± 5.0 65.8 ± 3.9 48.8 ± 5.3

GeoVis-GNN 84.3 ± 5.5 76.6 ± 4.5 59.4 ± 4.9

Fig. 5.6 shows the visualization of segmentation and labeling on the MPHOI-72

dataset with the two advanced models for the Cheering activity comparing with

Ground-truth. GeoVis-GNN presents more reasonable and robust segmentation

results in all sub-activities, while CATS provides some unexpected abnormal results

in certain sub-activities, such as pour and place. Interestingly, CATS directly

recognizes the static action sit rather than the ongoing action retreat following place

at the end of the activity for subject 1. This may result from the dominant role of

visual features, as these two actions appear similar in the front view.

Ground-truth

GeoVis-GNN

CATS
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GeoVis-GNN
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b
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b
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Figure 5.6: Visualization of segmentation on MPHOI-72 for Cheering activity. Red
dashed boxes highlight major segmentation errors.
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Single-person HOIs

Table 5.4: Joined segmentation and label recognition results on CAD-120.

Model
Sub-activity Object Affordance

F1@10 F1@25 F1@50 F1@10 F1@25 F1@50

rCRF [116] 65.6 ± 3.2 61.5 ± 4.1 47.1 ± 4.3 72.1 ± 2.5 69.1 ± 3.3 57.0 ± 3.5

Independent BiRNN 70.2 ± 5.5 64.1 ± 5.3 48.9 ± 6.8 84.6 ± 2.1 81.5 ± 2.7 71.4 ± 4.9

ATCRF [160] 72.0 ± 2.8 68.9 ± 3.6 53.5 ± 4.3 79.9 ± 3.1 77.0 ± 4.1 63.3 ± 4.9

Relational BiRNN 79.2 ± 2.5 75.2 ± 3.5 62.5 ± 5.5 82.3 ± 2.3 78.5 ± 2.7 68.9 ± 4.9

ASSIGN [5] 88.0 ± 1.8 84.8 ± 3.0 73.8 ± 5.8 92.0 ± 1.1 90.2 ± 1.8 82.4 ± 3.5

2G-GCN [146] 89.5 ± 1.6 87.1 ± 1.8 76.2 ± 2.8 92.4 ± 1.7 90.4 ± 2.3 82.7 ± 2.9

CATS [163] 89.6 ± 2.1 87.3 ± 1.5 76.0 ± 3.5 90.2 ± 1.5 89.1 ± 2.4 80.5 ± 2.8

GeoVis-GNN 89.9 ± 2.0 87.8 ± 1.9 76.7 ± 3.1 92.7 ± 0.4 90.4 ± 0.6 83.3 ± 1.8

Tab. 5.4 shows the effectiveness of GeoVis-GNN in CAD-120 evaluated by sub-activity

and object affordance labels. GeoVis-GNN beats previous visual-based [5, 116,160]

and geometry-informed [146,163] networks for both labels and achieves the highest

F1 scores of mean in every configuration. Notably, the two geometry-informed

networks show comparable performance in human sub-activity recognition, but

CATS performs poorly in object affordance recognition. This may be due to two

main factors: an imbalance in feature representation, with fewer keypoints for objects

than humans, reducing object emphasis in the scene graph, while the dual-attention

feature fusion in GeoVis-GNN helps mitigate this. Additionally, our task requires

both segmentation and label recognition, a two-stage process that does not align

well with the end-to-end framework of CATS, which may struggle with such distinct

processing stages. Although CATS performs well in multi-person HOI scenarios,

empirical results indicate that it is less suited for single-person HOI tasks. Therefore,

in the subsequent HOI recognition comparisons involving a single individual, we use

2G-GCN as the state-of-the-art benchmark.
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Figure 5.7: Visualization of segmentation on CAD-120 for Cleaning objects activity. Red
dashed boxes highlight major segmentation errors.

Fig. 5.7 presents the visualization outcomes for the Cleaning Objects activity

in CAD-120, depicting a scene where a person uses a cloth to clean a microwave.

The qualitative analysis shows that GeoVis-GNN surpasses 2G-GCN in recognizing

human sub-activities and object affordances, notably reachable and movable for the

microwave, closely matching the Ground-truth.

Two-hand HOIs

GeoVis-GNN achieves the superior performance on the large-scale Bimanual Actions

dataset (Tab. 5.5), with near 1% improvement in the same standard deviation at

F1@10. The slight improvement is partly due to the limited hand pose estimation

that OpenPose [22] uses for the hand skeleton of the dataset, which may introduce

noise, especially in occlusions. Fig. 5.8 presents the visualization outcomes for the

Pouring activity in Bimanual Actions. The qualitative analysis demonstrates that

GeoVis-GNN has outstanding performance in segmenting and recognizing actions of

both hands, which almost overlaps the Ground-truth, while 2G-GCN over-segments

some sub-activities like pour.
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Table 5.5: Joined segmentation and label recognition results on Bimanual Actions.

Model
Sub-activity

F1@10 F1@25 F1@50

Dreher et al. [62] 40.6 ± 7.2 34.8 ± 7.1 22.2 ± 5.7

Independent BiRNN 74.8 ± 7.0 72.0 ± 7.0 61.8 ± 7.3

Relational BiRNN 77.7 ± 3.9 75.0 ± 4.2 64.8 ± 5.3

ASSIGN [5] 84.0 ± 2.0 81.2 ± 2.0 68.5 ± 3.3

2G-GCN [146] 85.0 ± 2.2 82.0 ± 2.6 69.2 ± 3.1

GeoVis-GNN 85.8 ± 2.2 82.7 ± 2.8 69.7 ± 3.0

Le
ft

 H
an

d
R

ig
h

t 
H

an
d

Figure 5.8: Visualization of segmentation on Bimanual Actions for Pouring activity. Red
dashed boxes highlight major segmentation errors.

5.4.4 Ablation Study and Alternative Architecture

We extensively evaluate the design of channel attention-based feature fusion. Fig. 5.9

shows four design strategies, in which: (a): Separately concatenate human features

hv, hg and object features ov, og on feature-channel with attentions; (b): Separately

concatenate human features hv, hg and object features ov, og on entity-channel with

attentions; (c): Separately concatenate visual features hv, ov and geometric features

hg, og on entity-channel with attentions; (d) Ours: Concatenate all features hv, hg,

ov, og on entity-channel with a unified attention. The results of the comparison are

shown in Tab. 5.6. Our design (d) presents the highest F1 score with a significant

improvement gap compared to the other designs. Notably, design (a) shows the

lowest score, indicating the importance of entity-channel fusion. Although (b)

and (c) contribute relatively high score, they still show 3.7% and 6% performance

degradation in F1@10, respectively. This demonstrates the efficiency of our holistic
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entity-channel attention in selectively enhancing the most crucial visual or geometric

features among all entities.

Figure 5.9: Different designs to combine geometric and visual features in channel attention-
based feature fusion.

Table 5.6: Results of different strategies in channel attention-based feature fusion on
MPHOI-120.

Model
Sub-activity

F1@10 F1@25 F1@50

(a) ho feature-channel attention 58.2 ± 4.0 50.7 ± 4.2 38.4 ± 3.6

(b) ho entity-channel attention 61.4 ± 5.7 56.5 ± 5.3 40.4 ± 4.7

(c) vg entity-channel attention 59.1 ± 5.3 50.4 ± 6.0 39.9 ± 4.8

(d) GeoVis-GNN (ours) 65.1 ± 5.2 59.8 ± 4.7 46.6 ± 5.1

To further validate the effectiveness of our proposed modules in GeoVis-GNN, we

perform ablation studies on MPHOI-120, where CAF and IEG denote the attention-

based feature fusion and the interdependent entity graph, respectively. Detailed

results are presented in Tab. 5.7, in which: variant (1) denotes the IEG module

is removed in our method; variant (2) indicates that both CAF and IEG modules

are removed; variant (3) represents not only the proposed CAF and IEG modules

being removed, but also the GAT for geometric feature embedding being replaced by

GCN; variant (4) denotes the alternative architecture with top-down design. From
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Table 5.7: Architecture alternative and ablation study on MPHOI-120. CAF and IEG
denote the channel attention-based feature fusion and the interdependent entity graph,
respectively.

Model
Sub-activity

F1@10 F1@25 F1@50

(1) GAT, w CAF, w/o IEG 61.2 ± 6.0 55.7 ± 5.2 45.4 ± 4.6
(2) GAT, w/o CAF&IEG 59.3 ± 6.1 52.5 ± 5.7 39.4 ± 4.3
(3) GCN, w/o CAF&IEG 58.6 ± 6.4 51.5 ± 5.3 38.3 ± 5.7
(4) Top-down architecture 62.8 ± 5.7 56.7 ± 5.2 42.8 ± 4.9

(5) GeoVis-GNN (ours) 65.1 ± 5.2 59.8 ± 4.7 46.6 ± 5.1

the results, removing any component from our model will result in a significant

performance reduction. In particular, (1) shows 3.9% performance degradation in

the F1@10 metric, clearly validating the contribution of IEG to the final perfor-

mance. Besides, (2) and (3) show 5.8% and 6.5% performance degradation in F1@10,

which indicates that CAF for feature fusion and GAT embedding are important for

segmentation and recognition tasks. The comparative results between (4) and (5)

highlight the strengths of our bottom-up architecture, exhibiting its enhanced ability

for detailed feature integration and a more refined understanding of interactions.

5.4.5 HOI Attention Analysis

Cheering

Cheering

Cheering

Output

Approaching

Approaching

Lifting

Output

Figure 5.10: Visualization of HOI attention maps for GeoVis-GNN and 2G-GCN during
a Cheering activity. Correct and incorrect recognition results are highlighted in green and
orange, respectively.

To enhance the interpretability of our model, we deep into the attention analysis in

the HOI graph. We compare GeoVis-GNN with the recent advanced method that

constructs entity-level HOI graphs. Fig. 5.10 presents a comparative analysis of HOI

attention maps in entity-level graphs generated by GeoVis-GNN and 2G-GCN for

a Cheering activity involving three subjects, each holding a cup, with two bottles

placed on the table. In the left attention map, our GeoVis-GNN model demonstrates
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its superior interpretability by accurately focusing on all three cups, even effectively

handling occlusions, such as Cup2 being partially hidden behind Cup1. This targeted

attention enables the model to correctly recognize the Cheering sub-activity for all

three subjects (highlighted in green).

In contrast, the 2G-GCN model exhibits less precise attention, incorrectly focusing

on Cup3 and Bottle1, leading to erroneous sub-activity predictions such as Approach-

ing and Lifting (highlighted in orange). This comparison highlights GeoVis-GNN’s

ability to maintain robust attention across relevant entities, even in occluded or

cluttered environments, thereby ensuring more accurate HOI recognition. The clear

distinction in attention focus between the two models underscores the effectiveness of

our bottom-up approach in capturing the essential elements of complex interactions,

which is critical for accurate activity recognition in multi-person scenarios.

5.4.6 Analysis of Varying Number of Objects

Table 5.8: Results of different number of object usage on MPHOI-120.

Model
Sub-activity

F1@10 F1@25 F1@50

2 objects only 61.4 ± 3.4 55.4 ± 2.0 40.1 ± 3.2

3 objects only 62.6 ± 6.9 56.2 ± 8.2 41.8 ± 9.1

4 objects only 63.1 ± 6.4 56.7 ± 7.5 43.2 ± 8.7

GeoVis-GNN (5 objects) 65.1 ± 5.2 59.8 ± 4.7 46.6 ± 5.1

Tab. 5.8 presents a comprehensive analysis of our model’s performance when varying

the number of objects considered on the MPHOI-120 dataset. Notably, MPHOI-120

contains 2-5 objects in total, even when using only 2 objects, our model outperforms

the 2G-GCN baseline, demonstrating its robustness and highlighting its capability

to extract meaningful interactions even from a limited set of objects.

Increasing the number of objects from 2 to 5 improves performance across all F1

metrics, but also increases memory cost. This trade-off suggests that while more
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objects provide richer interaction contexts, leading to better recognition accuracy,

the memory requirements scale with the number of objects included. However, in

highly cluttered environments with potentially hundreds of objects, our design offers

an advantage by enabling the selection of a fixed number of objects to avoid a linear

increase in memory consumption.

5.4.7 Cross-Dataset Zero-Shot Study

In real-world applications, models usually perform reliably on unseen data distribu-

tions without the luxury of extensive retraining or domain-specific adaptations. To

demonstrate the robustness and generalization capabilities of our proposed GeoVis-

GNN, we conduct a cross-dataset zero-shot evaluation, as detailed in Table 5.9. This

study involves training GeoVis-GNN exclusively on the three-person MPHOI-120

dataset and subsequently testing it on the two-person MPHOI-72 dataset.

Table 5.9: Zero-shot results of training on three-person HOI dataset (MPHOI-120) and
testing on two-person HOI dataset (MPHOI-72).

Model
Sub-activity

F1@10 F1@25 F1@50

ASSIGN [5] 33.7 31.5 28.2

2G-GCN [146] 36.2 33.3 30.4

CATS [163] 38.5 35.6 33.2

GeoVis-GNN 42.1 40.3 34.5

Our results show that GeoVis-GNN significantly outperforms the existing base-

lines, ASSIGN, 2G-GCN and CATS, achieving an improvement of over 3.6% in the

F1@10 score. This substantial performance gain underscores the stronger generaliza-

tion ability of GeoVis-GNN compared to state-of-the-art methods. The ability to

effectively transfer learned features from a more complex three-person HOI scenario

to a simpler two-person setting highlights the model’s adaptability and transferability

across diverse multi-person HOI datasets.
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Additionally, in many real-world scenarios, target domain fine-tuning or transfer

learning is often employed to adapt models to specific environments. However,

our zero-shot results, while not reaching the performance levels achievable when

training and testing on the same two-person dataset, are achieved without any such

fine-tuning, relying solely on training with one dataset and testing on another that

do not necessarily share a direct relationship. This suggests that GeoVis-GNN has

the potential to generalize across different datasets with varying characteristics, even

without extensive retraining. Although there is room for improvement, the results

are promising and indicate that our approach can still be valuable in scenarios where

labeled data for every possible situation may not be readily available.

5.5 Summary

Our bottom-up GeoVis-GNN framework for video-based multi-person HOI recog-

nition innovates by a novel dual-attention fusion, optimizing feature integration

by embedding and fusing visual and geometric features through a graph attention

mechanism and a channel attention module. These enhanced entity-specific represen-

tations are then fed into an interdependent entity graph, enabling the modeling of

both explicit interactions and implicit interdependencies for a more comprehensive

understanding of multi-person HOI. Additionally, we propose a challenging three-

person HOI dataset (MPHOI-120), and GeoVis-GNN sets new benchmarks across

three-person, two-person, single-person, and bimanual HOI scenarios.

Our fusion-based bottom-up approach is not limited to the HOI recognition

domain, but also shows promise in other similar fields. For trajectory prediction

tasks [167, 195], unlike traditional approaches that simply merge contextual and

geometric features [196, 197], our methodology can enhance their integration. In

action quality assessment, our approach uniquely fuses visual and geometric features,

providing a richer contextual feature representation than previous studies which

focused on only one of these aspects [198–200].
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CHAPTER 6

Conclusion

In the domain of multi-person HOI recognition, the integration of geometric and

visual features, along with innovative graph neural networks, is crucial for improving

accuracy in complex interactions. The contributions made during this doctoral

research include novel graph neural network architectures (Chapters 3 to 5) and

high-quality MPHOI datasets (Chapter 3 and Chapter 5). These advancements

collectively enhance the understanding and modeling of multi-person interactions,

addressing challenges like occlusions and dynamic complexities in real-world scenarios.

The research contributions are reviewed in Section 6.1, and potential directions for

future research are discussed in Section 6.2.

6.1 Review of Contributions

This thesis specifically focuses on the segmentation and recognition of distinct human

sub-activities along the video timeline. Our research makes multiple key contributions

to multi-person HOI recognition:

First, in Chapter 3, we introduce a Two-level Graph Convolutional Network

(2G-GCN) that leverages a geometric-level graph to incorporate human skeletons
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and object bounding boxes, and a fusion-level graph that integrates these geometric

features with traditional visual features. To support this framework, we also devel-

oped the MPHOI-72 dataset, designed to facilitate research in multi-person HOI

recognition.

Building upon these insights, in Chapter 4, we present CATS, an end-to-end

framework that advances HOI recognition by integrating category-level and scenery-

level analyses. CATS fuses multi-modal features across different categories and

constructs a scenery interactive graph to learn relationships among these categories,

enhancing the model’s ability to recognize complex interactions.

Finally, in Chapter 5, we propose the Geometric Visual Fusion Graph Neural Net-

work (GeoVis-GNN), a bottom-up framework that uses a dual-attention mechanism

to fuse multimodal features of each entity before feeding them into an entity-level

graph for comprehensive interaction analysis. This enables a more precise and effec-

tive integration of diverse feature types, ensuring that each level is optimally utilized

to maximize representational power. To further validate this approach, we develop a

challenging three-person HOI dataset, MPHOI-120, demonstrating that GeoVis-GNN

sets new benchmarks across various HOI scenarios. Collectively, these contributions

advance the field by providing robust and scalable solutions for complex, real-world

HOI recognition tasks.

6.2 Future Research Directions

The methodologies presented in Chapters 3 to 5, while demonstrating promising

performance, also have certain limitations. In this section, we will critically discuss

these limitations and suggest potential directions for future research to address these

challenges.

6.2.1 Object Geometric Representation

All methods in Chapters 3 to 5 utilize human skeletons and object bounding boxes

as geometric features for human bodies and objects, respectively. While human

skeletons are inherently more informative, the coarse nature of object bounding
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boxes limits the ability to fully capture the complexity of HOIs. Unlike human body

features, which offer rich spatial and temporal insights, bounding boxes only indicate

an object’s approximate location and size, failing to capture finer details like shape,

orientation, or interaction points [201].

To address this limitation, it is necessary to adopt a more informative geometric

representation of objects and allow for a better understanding of how objects are

manipulated or interacted with by humans. The rotation-equivariant detector [202]

enriches the object representation with rotated bounding boxes, resulting in improved

object detection performance. The convex-hull features [203] allow representing

objects of irregular shapes and layouts. The recently proposed self-supervised

keypoints learning method [13] uses segmentation masks to detect adaptive keypoints

for different object categories including humans in a unified manner.

Adopting more informative object geometric representations aligns better with

the complexity of human geometric features, ensuring a more balanced representation

in HOI recognition [13]. By providing both humans and objects with similarly rich

geometric details, the model can capture interactions more accurately and fairly.

This helps improve recognition accuracy and provides a clearer understanding of the

spatial and structural relationships in complex HOI tasks.

6.2.2 Non-Contact HOIs

A characteristic of human activity in the real world is the presence of a large number

of entities. For example, in a scenario where a person is surrounded by various

objects but focuses on watching TV, this key non-contact interaction can be captured

by the attention-based feature fusion module proposed in Chapter 5. This module is

adept at handling scenes with multiple entities by discerning the dynamic relevance

and underlying connections among individuals.

However, dealing with noisy environments, which may include hundreds of humans

and objects, presents a significant challenge. Jiang et al. [204] propose a method that

hallucinates human configurations in scenes where humans are not directly observed,

providing a more meaningful context for understanding object arrangements and

interactions. By leveraging infinite factored topic models, the system can infer hidden
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human-object relationships based on object affordances and configurations, even in

complex environments.

Nie et al. [205] handles noisy environments by focusing on human pose trajec-

tories and using a probabilistic model to generate multiple hypotheses for object

configurations, handling uncertainty and noise. A voting mechanism ensures that

predictions focus on relevant HOIs, minimizing the impact of distant or irrelevant

objects. Therefore, it is a research direction to efficiently extract both in-contact

and non-contact interactions, identifying the most probable HOIs in such complex

scenarios.

6.2.3 In-the-Wild HOI

In-the-wild HOI studies may face various challenges, such as data ambiguity and

mutual occlusion, which are common in uncontrolled environments. Data ambiguity

stems from the fact that a 2D image can represent multiple 3D configurations of

humans and objects, making it difficult to determine the true spatial arrangement

[206]. For example, a large surfboard far away and a small one closer to the camera

can have the same 2D projection. This ambiguity in scale and depth poses a challenge

for accurately reconstructing the scene. Mutual occlusion further complicates this

issue, as the interaction regions of the human and object can be partially or fully

obscured, making it challenging to fully perceive the interaction [207]. This is

especially problematic in uncontrolled environments where objects and body parts

can overlap in complex ways [206].

One key insight is that considering humans and objects jointly can provide valuable

contextual cues and constraints to resolve ambiguity. Zhang et al. [206] leverage

“3D common sense” constraints to improve the reconstruction of human-object

arrangements in the wild. They tackle ambiguity by using a scale loss, incorporating

object size priors, and employing an occlusion-aware silhouette reprojection loss

to optimize object poses using 2D segmentation masks. Cao et al. [207] address

ambiguity stemming from 2D images by employing 3D contact priors learned from

motion capture data and utilizing differentiable rendering with depth information to

refine hand and object poses in the presence of occlusions. Huang et al. [208] employ
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multi-view data to resolve occlusions by reconstructing human bodies from multiple

viewpoints to accurately capture human-scene contact. DECO [45] reasons about

contact in occluded regions using cross-attention between scene context and body-

part features and employs a 2D pixel-anchoring loss to ground 3D contact estimations

to 2D image evidence. LEMON [46] infers contact regions by integrating semantic

information with geometric correlations between human and object shapes and

disambiguates interactions by leveraging multi-branch attention to derive interaction

intention features from geometric and image features.

Although these methods showcase the significant progress being made in address-

ing the challenges in in-the-wild HOI studies, these challenges are primarily addressed

in image-based HOI studies and remain largely unexplored in video-based studies.

One future direction aims to extend our work into in-the-wild HOI recognition in

videos, tackling the unique obstacles that arise in these less structured, real-world

scenarios.

6.2.4 Weakly-Supervised Learning in HOI

In the current landscape of HOI recognition, precise action label annotations are a

common requirement for training deep learning models [209]. For instance, labeling

specific sub-activities, such as “lifting” or “drinking”, requires meticulous frame-

by-frame annotation, which is both time-consuming and expensive. Additionally,

there is often variability in how different annotators interpret and label sub-activities,

leading to inconsistent annotations. This issue is especially pronounced in complex

multi-person HOI scenarios, where interactions are more dynamic and less clearly

defined. As a result, the reliance on fully-supervised approaches that depend on

detailed, accurate labels limits the scalability of HOI recognition systems and their

ability to generalize to real-world scenarios.

To overcome the limitations of expensive and inconsistent label annotations,

weakly-supervised learning offers a promising solution. Ren et al. [210] train a

temporal action localization model using only video-level category labels, generating

pseudo-labels by thresholding the attention sequence of an S-MIL model trained in

the first stage of a two-stage pipeline. Rizve et al. [211] similarly exploit only video-
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level labels for training, but it generates confidence-aware pseudo-action snippets,

incorporating priors into the training process. Li et al. [209] eliminate the need

for precise annotations of interaction types or spatiotemporal locations. Instead, a

contrastive weakly supervised training loss is used to associate spatiotemporal regions

with actions and objects while ensuring temporal continuity through self-supervision.

By utilizing weakly-labeled data, models can generalize better to varied environments

and complex HOIs, reducing the dependency on costly annotation efforts. These

approaches open new avenues for improving the robustness and efficiency of HOI

recognition systems in real-world applications.
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