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Abstract

Fuzzy logic has been successfully widely utilised in many real-world applications. The
most common application of fuzzy logic is the rule-based fuzzy inference system, which
is composed of mainly two parts including an inference engine and a fuzzy rule base.
Conventional fuzzy inference systems always require a rule base that fully covers the entire
problem domain (i.e., a dense rule base). Fuzzy rule interpolation (FRI) makes inference
possible with sparse rule bases which may not cover some parts of the problem domain (i.e., a
sparse rule base). In addition to extending the applicability of fuzzy inference systems, fuzzy
interpolation can also be used to reduce system complexity for over-complex fuzzy inference
systems. There are typically two methods to generate fuzzy rule bases, i.e., the knowledge-
driven and data-driven approaches. Almost all of these approaches only target dense rule
bases for conventional fuzzy inference systems. The knowledge-driven methods may be
negatively affected by the limited availability of expert knowledge and expert knowledge may
be subjective, whilst redundancy often exists in fuzzy rule-based models that are acquired
from numerical data. Note that various rule base reduction approaches have been proposed,
but they are all based on certain similarity measures and are likely to cause performance
deterioration along with the size reduction.

This project, for the first time, innovatively applies curvature values to distinguish
important features and instances in a dataset, to support the construction of a neat and concise
sparse rule base for fuzzy rule interpolation. In addition to working in a three-dimensional
problem space, the work also extends the natural three-dimensional curvature calculation to
problems with high dimensions, which greatly broadens the applicability of the proposed
approach. As a result, the proposed approach alleviates the ‘curse of dimensionality’ and
helps to reduce the computational cost for fuzzy inference systems. The proposed approach
has been validated and evaluated by three real-world applications. The experimental results
demonstrate that the proposed approach is able to generate sparse rule bases with less rules but
resulting in better performance, which confirms the power of the proposed system. In addition
to fuzzy rule interpolation, the proposed curvature-based approach can also be readily used
as a general feature selection tool to work with other machine learning approaches, such as

classifiers.



The proposed approach makes several contributions. For the first time, it utilises the
curvature values in sparse rule base generation to support fuzzy inference systems. It
provides an objective tool to distinguish the important things in a dataset; thus efficiently
constructs a sparse rule base with a smaller number of important instances and features. In
addition, it originally extends the three-dimensional curvature idea into high-dimensional
problems; thus highly increases its applicability. To some extent, it also alleviates the
‘curse of dimensionality’ and helps to reduce the computational cost for sparse rule base
generation by using a one-time process to carry out curvature calculation off-line. The
proposed approach has been validated and evaluated by three real-world applications. The
accuracy of the classification result by the proposed method are comparable or outperform
the existing methods, using only several important instances with their several important
features. Furthermore, in the zero-shot learning image classification application, the proposed
method makes the image representation more interpretable and discriminative. The results
demonstrated the power of the proposed system in reference to the conventional methods

from both aspects of system effectiveness and efficiency.
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Chapter 1

Introduction

1.1 Fuzzy Logic and Fuzzy Inference Systems

Fuzzy logic was firstly proposed in 1965 which provides an approximate reasoning approach
based on partial membership, rather than simply true or false as used in the traditional
Boolean Logic. Fuzzy sets and fuzzy logic theory provide an efficient way of handling
vague information that arises due to the lack of sharp distinctions or boundaries between
pieces of information. With the ability to effectively represent and reason human natural
language, fuzzy logic theory is considered as an advanced methodology in the field of
control systems. It has been widely used in many real-world applications such as in science,
engineering, business, psychology, medicine and other fields. Some early commercial
applications of fuzzy systems include: fuzzy automatic transmissions and fuzzy anti-skid
braking systems developed by Nissan, auto-focusing cameras by Canon, digital image
stabilisers for camcorders by Matsushita, hand-writing recognition systems by Hitachi, hand-
printed character recognition systems by Sony, voice recognition systems by Ricoh and
Hitachi, stock-trading portfolio systems used in Tokyo stock market, Sendai station subway
control systems in Japan, and so on [5-19].

Fuzzy logic is a mathematical approach to problem solving. It performs exceptionally
well in producing exact results from imprecise or incomplete data. Fuzzy logic differs from
classical logic in that its statements are no longer simply true or false. In traditional logic a
variable takes on a value with a certainty degree or truth measure of either O or 1; in fuzzy
logic, a variable can assume a value with any degree between 0 and 1, representing the extent
(membership) to which an element belongs to a given concept. Human brains can reason with
uncertainties, vagueness, and judgements. Computers can only manipulate precise valuations.

Fuzzy logic is an attempt to combine the two [20].
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In real life, fuzzy logic provides the means to compute with words. Using fuzzy logic,
experts are no longer forced to summarise and express their knowledge in a language that
machines or computers can understand. What traditional expert systems failed to achieve
may be realised through the use of fuzzy expert systems. Fuzzy logic comprises fuzzy sets
and fuzzy (linguistic) variables. It is a way of representing non-statistical uncertainty and
performing approximate reasoning, which includes operations that implement knowledge-
based inferences. A fuzzy (linguistic) variable, as its name suggests, is a variable whose
values are words rather than numerical numbers, for example, S (small), M (medium), L
(large), L (low), H (high), or even ‘very hot’, ‘rather old” and ‘quite slow’.

A fuzzy set is distinct from a crisp set in that it allows its elements to have a degree of
membership. The core of a fuzzy set is its membership function that defines the relationship
between a value in the domain of set and its degree of membership. Membership of an
element x to a fuzzy set A, denoted as 4 (x), can vary from O (full non-membership) to 1
(full membership), i.e., it can assume all values in the interval [0,1]. The value of p4(x)
describes a degree of membership of x in A. Clearly, a fuzzy set is a generalisation of the
concept of a classical set whose membership function takes on only two values O or 1, as
shown in Fig. 1.1. Each fuzzy set defines a portion of the domain of variable. However, this
portion is not uniquely defined. Fuzzy sets overlap as a natural consequence of their elastic

boundaries.

Crisp Set A

il /
ZEDN

!"’{x} Fuzzy Set A

/

0 'r 1 >

Support

Membershipvalue

Fig. 1.1 Fuzzy set

Fuzzy inference systems have been successfully applied in fields such as automatic
control, data classification, decision analysis, time series prediction, robotics, and computer
vision [5—19]. The most common fuzzy model is the rule-based fuzzy inference systems,
which is mainly composed of two parts: a rule base (or knowledge base) and an inference

engine, as shown as the Fig. 1.2. The rule base is usually generated in two ways. The first way
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is directly transferring human expert knowledge into rules. The second way is using machine

learning approaches to extract rules from data. No matter which approach is employed to

generate the rule base, the resulting rule base has to cover the entire input domain.

Fuzzy Rule Base

Crisp Fuzzy Fuzzy
Input P Input .
P2 Fuzzification |2l Inference Engine |2UtRUL,

Crisp

Defuzzification

output

Fig. 1.2 The rule-based fuzzy inference system
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05 _/.\ ..................... 7[\.@ 03
03 | e e
/ ) N | A :
Inputs Output:

Fig. 1.3 Limitation of conventional fuzzy inference systems

A common feature of all the classical fuzzy inference systems is that they are only

applicable to problems with dense rule bases, by which the entire input domain must be

fully covered (the input space is completely covered by the rule premises). When a given

observation does not overlap with any rule antecedent in the rule base (which usually termed

as a sparse rule base), no rule can be fired, and thus no result can be generated.
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This is an example of Mamdani inference with two inputs and one output, as shown as

the Fig. 1.3. Suppose that there are two rules. The first rule is
If x=A; and y = By, then z = Cj, (1.1)

and the second rule is
If x=A, and y = B;, then z = ;. (1.2)

Given an input with x is equal to x¢ and y is equal to yo. The Mamdani inference firstly
calculates the matching degree of the inputs. For example, from the input x(, the matching
degree of the antecedent of first rule is about 0.85, and the matching degree of xo with the
antecedent of second rule is about 0.5. Similarly, the matching degree of the input for variable
y can be calculated, which is about 0.45 for the first rule and about 0.3 for the second rule.
From this the firing degree of each rule is computed using a T-norm. Particularly for
Mamdani inference, the T-norm operator is implemented using ‘minimum’, or ‘and’. For
example, for the first rule, the minimum of 0.85 and 0.45 is 0.45, then the firing strength
or rule strength is 0.45. From this, the consequence is computed as the shadow part of line
1. Using the same way, the consequence from the second rule is the shadow part of line 2.
The final consequence is the combination of these two intermediate results through the logic
union operation. In this example, the final result is the combined shadow part of line 3.
From the above example, it is clear that no rule will be fired if a given input is not covered
by any rule antecedents in the rule base. In other words, the rule base has to cover the entire
input domain such that a logic consequence can be generated from any input. In order to
address this problem, the following section 1.2 Fuzzy rule interpolation (FRI) was proposed.

1.2 Fuzzy Rule Interpolation

As shown as in Fig. 1.4, a tomato problem was initially proposed by Mizumoto and Zimmer-
man [21]. Suppose there are only two rules: if the tomato is green, then it is unripe; and if
the tomato is red, then it is ripe; Even though there is no rule if the tomato is yellow then
what it is (conclusion like ripe or unripe), the result can still be achieved by FRI based on its
neighbouring rules.

FRI not only can solve the issues when inputs are not covered by any rule antecedents. It
can also be employed to reduce the complexity of complex fuzzy models by excluding those
rules that can be approximated by their neighbouring ones. A number of important fuzzy

rule interpolation methods have been proposed in the literature [22-26], which have been



1.3 Rule Base Generation and Reduction 5

successfully applied to deal with real-world problems [27-33]. Some other FRI methods are
also developed and discussed, such as [34-39].

n

@ * &

unripe ripe Y

Fig. 1.4 Fuzzy rule interpolation example [1]

Fuzzy rule interpolation alleviates the problem of lack of expertise or data for rule base
generation, as FRI enables the performance of inference upon sparse rule bases. Fuzzy rule
interpolation strengthens the power of fuzzy inference. When observations do not overlap
with any rule antecedent values, traditional fuzzy inference systems will not be applicable, as
no rule can be fired. However, fuzzy rule interpolation can still generate a conclusion through
a sparse rule base, thus improve the applicability of fuzzy models. Also, with the help of
fuzzy interpolation, the complexity of an inference system can be reduced by omitting those

rules which may be approximated with their neighbouring ones.

1.3 Rule Base Generation and Reduction

The fuzzy rule base (set of fuzzy rules) is the core part of a fuzzy inference system that
contains knowledge that is utilised by the reasoning mechanism of the system. If the rule
base covers the entire input domain then one of the possible reasoning mechanisms would be
compositional rule of inference (CRI). However, if the rule base does not cover the entire
input domain then fuzzy rule interpolation (FRI) may offer a potential solution. This thesis
mainly focus on curvature-based sparse rule base generation for FRI.

Although a dense fuzzy rule base is not required by FRI, a sparse rule base is still

needed. Fuzzy rule base generation has been intensively studied in literature and is usually
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implemented in one of two ways: data-driven (extracting rules from data) [40—42] and
knowledge-driven (generating rules from human expert knowledge) [43]. Both approaches
may suffer from the ‘curse of dimensionality’, which means the number of rules will grow
exponentially while the number of input variables and the number of fuzzy terms increasing.
In addition, the knowledge-driven method may be further negatively affected by the limited
availability of expert knowledge. Data-driven rule base generation was proposed to minimise
the involvement of human expertise. The success of data-driven approaches is built upon
a large quantity of training data. In this work only the data-driving methods are mainly
discussed.

No matter which kind of approach (knowledge-driven or data-driven) is used to generate
rule bases, all the above approaches usually only target dense rule bases that are used for
traditional fuzzy inference approaches [44—48]. In addition, redundancy often exists in
fuzzy rule-based models that are acquired from numerical data. This results in unnecessary
structural complexity and reduces the interpretability of the system.

In order to reduce the complexity of such rule bases, various rule base reduction ap-
proaches have been developed to minimise the redundancy [49-61]. According to [62] two
types of rule redundancy can be distinguished: overlap redundancy and interpolation redun-
dancy. In this work, only the interpolation redundancy is treated, considering that choosing
a uniformly partitioned universe of discourse does not lead to high levels of overlapping
between the fuzzy rules. Most of existing rule base generation and reduction approaches
are based on certain similarity measures; therefore, they are likely to cause performance
deterioration along with the size reduction of the rule base. Usually a fuzzy clustering
technique associated with some fuzzy partition are used to extract the initial fuzzy rule-base

and find out the optimal number of fuzzy rules.

1.4 Existing Issues and Motivation

Fuzzy rule interpolation (FRI) [63] was initially proposed to address above limitation due
to its ability to work with a spare rule base. When system inputs or observations do not
overlap with any rule antecedent values, traditional fuzzy inference systems are not applicable
as no rule can be fired. However, fuzzy rule interpolation can still generate a conclusion
through a sparse rule base, thereby improving the applicability of fuzzy models. Fuzzy rule
interpolation provides a tool for specifying an output fuzzy set even when one or all of the
input spaces are sparse.

The most common application of fuzzy logic is the rule-based fuzzy inference system,

which is composed of mainly two parts: an inference engine, and a fuzzy rule base. The
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fuzzy rule base is usually generated in two ways. The first way is directly transferring human
expert knowledge into rules. The second way is using machine learning approaches to extract
rules from data. In early-stage, a fuzzy rule base is traditionally built upon human expertise,
which greatly limits the system modelling as experts may not always be available. Nowadays
the data-driven rule base generation was proposed to minimise the involvement of human
expertise, in an effort to automate the generation of rule bases during the system modelling
process. They both may suffer from the ‘curse of dimensionality’, which means as many
attributes and attribute values need to be considered, the number of rules grows exponentially
with the number of input variables and the number of fuzzy terms. And almost all of these
approaches are targeting dense rule bases for traditional fuzzy inference approaches, which
may be low efficient. In addition, the knowledge-driven method may further be negatively
affected by the limited availability of expert knowledge. And expert knowledge may be
subjective, even in the same situation it can get different solutions as different experts have
different opinions on what is important. On the other hand, redundancy often exists in fuzzy
rule-based models that are acquired from numerical data. This work mainly concerns about
the data-driven methods for fuzzy rule base generation, proposing a novel data-driven rule
base generation approach for FRI, which is able to efficiently generate a sparse rule base
from data.

Furthermore, most of existing rule base generation and reduction approaches are based
on certain similarity measures; therefore, they are likely to cause performance deterioration
along with the size reduction of the rule base. That means, existing methods lack a more
accurate and efficient way to distinguish important rules (or important instances and their
important features).

Therefore, to solve about issues, more study should be invested in how to keep a good
balance between model accuracy, efficiency and transparency, i.e., how to generate a sparse
rule base which is very accurate, computationally efficient, and linguistically tractable. So
the aim of project is to develop a novel fuzzy rule base generation/reduction approach for

fuzzy rule interpolation and apply it to real-world applications.

1.5 Curvature-based Rule Base Generation

Different to the conventional fuzzy rule base generation approaches, the proposed work
discriminates rules by calculating their curvature values. Note that curvature values are only
workable in three-dimensional spaces (or a rule with two antecedents and one consequence)
and thus cannot be directly used for higher-order problems. As a solution, for any given
higher-order problem, the proposed approach firstly decomposes the higher-order space
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into a number of three-dimensional spaces, and then approximates the importance of the
higher-order spaces by aggregating the curvature values of the corresponding decomposed
three-dimensional ones. From this, the most important rules are selected to form a raw rule
base, which is then optimised using a general optimisation approach, such as the genetic
algorithm.

Note that the proposed method provides an important key to solve the issues of ‘curse of
dimensionality’. The difficulty of feature selection lies in how to find good clues to select
feature variables that can most efficiently represent the intrinsic characteristics of the data.
Its essence is a complex combinatorial optimization problem. Irrespective of all desirable
features of fuzzy rule interpolation techniques the success of a particular method depends on
its computational complexity, which should be minimised. For example, if there are n feature
variables, each feature variable has two possible states when we are modelling: “selected"
and “omitted". Then the number of elements in the sets of feature combination dimensions
is 2", If n = 3, the traditional exhaustive methods need 8 combinations. However, use the
proposed curvature based method the curse of dimensionality is greatly reduced as only need
3 combinations. That means, it reduced the traditional feature combination dimensions from
2"to C2 = ﬁlz)v’ when n is large the reduction number is very huge. For example, If n =
20, the proposed method reduces the combinations dimensions from 1048576 to only 190,
which is less than the 0.02% of traditional one.

The proposed approach is validated and evaluated by one experiment and three applica-
tions; the results demonstrate that the proposed approach is promising. The contribution of

this PhD project are summarised below:

1. Applying curvature values for rule base generation and thus leading to a novel curvature-

based rule base generation approach;

2. Providing an objective tool to distinguish important instances and features, and thus to
ease the subjectiveness of expert knowledge;

3. Alleviating the ‘curse of dimensionality’ by generating sparse rule bases with a smaller

number of rules;

4. Applying the proposed curvature-based fuzzy rule base generation approach to three
real-wold applications with promising results demonstrated.

1.6 Structure of Thesis

This subsection outlines the structure of the remainder of the thesis.
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Chapter 2 introduces the theoretical underpinnings of fuzzy inference systems, fuzzy
rule interpolation, rule base generation and previously curvature utilisation, which this work
is built upon. It provides a comprehensive review of typical FRI methods that have been
developed in the last two decades.

Chapter 3 presents the proposed curvature-based sparse rule base generation approach.
The inference problems with two inputs and one output (referred to as the basic case) is
considered first, followed by the general situation with multiple inputs (referred to as the
general case).

Chapter 4 details the experimentation for demonstration and validation. The proposed
method was evaluated using a synthetic dataset and three real-world applications, i.e., an
indoor environment localisation problem, a student knowledge level evaluation problem,
and the zero-shot learning image classification problem. The experiment demonstrates the
working procedure of the proposed approach, while the applications show the power of the
proposed approach in solving real-world problems.

Chapter 5 concludes the thesis and suggests probable future developments. The thesis
has proposed a curvature-based sparse rule base generation method to support fuzzy rule
interpolation. It first fuzzy partitions the problem domain either into a number of hypercubes
for problems with dense datasets, or by representing each data instance as a hypercube if
only a small dataset is available. From this, the hypercubes are discriminated by effectively
using the curvature values and each important hypercube is represented as a fuzzy rule. The
capabilities and potential of the developed applications have been experimentally validated,
and compared with conventional work. The proposed approach has very comparative results
in the experiments, which shows the potential of the proposed approach for a wider range of
real-world applications. A number of initial thoughts about the directions for future research
are also represented.

Appendices:

Appendix A lists the publications arising from the work presented in this thesis, containing
both published conference papers, and the proceeding journal publication.

Appendix B summaries the acronyms employed throughout this thesis.






Chapter 2
Background

This chapter provides a literature review on fuzzy inference and fuzzy inference systems,
fuzzy rule interpolation, rule base generation and reduction, and previously curvature util-
isation. Fuzzy inference mimics the crucial ability of the human mind to summarise data
and focus on decision-relevant information. Fuzzy inference is one of the most advanced
technologies in control field. It has been widely applied to solve real-world problems due to
its simplicity and effectiveness in representing and reasoning on human natural language.
The most common application of fuzzy logic is the rule-based fuzzy inference system, which
is composed of mainly two parts: an inference engine, and a fuzzy rule base. A number of
inference engines have been developed, with the Mamdani method and the TSK method
being the most widely used. The traditional fuzzy inference approaches require the entire
domains of input variables to be fully covered by rules in a given rule base. Otherwise, no
rule can be fired when a given observation does not overlap with any rule antecedent. Fuzzy
rule interpolation strengthens the power of fuzzy inference. When given observations have
no overlap with any rule antecedent values, fuzzy interpolation through a sparse rule base
can still obtain certain conclusions and thus improve the applicability of fuzzy models.

The rest of this chapter is organised as follows. Section 2.1 explains the fuzzy inference
systems or fuzzy rule-based systems. Section 2.2 briefly discusses fuzzy rule interpolation
(FRI), which helps to understand why the proposed curvature based method works. Sec-
tion 2.3 briefly discusses rule base generation and reduction, which is an important part of
the proposed method. Section 2.4 discusses existing curvature utilisation, and introduces two

types of methods for curvature calculation.



12 Background

2.1 Fuzzy Inference and Fuzzy Inference Systems

2.1.1 Fuzzy Inference

Inference is the process of deriving logical conclusions from premises known or assumed
to be true or partially true. When conclusions are derived from fuzzy linguistic variables
using fuzzy set operators (AND, OR, NOT), then the process is called the approximate
reasoning or fuzzy inference. Fuzzy inference is more effective and useful for those systems
where a system cannot be defined in precise mathematical terms/models due to uncertainties,
unpredicted dynamics and other unknown phenomena. In the real world much of the
knowledge is naturally unclear, confusing, ambiguous, imprecise, and vague. Fuzzy inference
mimics the crucial ability of the human mind to summarise data and focus on decision-
relevant information.

Fuzzy inference is a convenient way to map a fuzzy input space onto a fuzzy output
space. This mapping is implemented by using fuzzy If-Then rules. These rules (together with
the fuzzy sets that the rules used) serve to partition the input and output spaces into fuzzy
regions [64]. A fuzzy rule can be expressed in the form: If a set of conditions are satisfied
Then a set of consequences can be inferred. The If part is called the antecedent and the
Then part is called the consequent. The antecedent describes to what degree the rule applies,
while the consequent assigns a fuzzy function to each of one or more output variables [65].
A fuzzy If-Then rules provide an easy means to express and capture human ‘rule of thumb’
type knowledge, because they are expressed with linguistic terms. A collection of fuzzy
rules (rule base) can be derived from subject matter experts or extracted from data through a
rule induction process. The rule base is the key component of a fuzzy inference system and
such a system is also known as a fuzzy rule-based system (FRBS). Fuzzy inference is only
possible in a dense rule base when the rule base is large enough to cover the complete input
space, i.e., every input condition should be covered by at least one rule. The compositional
inference and compatibility-modification inference are two main classical approaches to
fuzzy inference [66]. Based on these basic inference principles, many inference methods
have been proposed such as: Zadeh inference [67, 68], Mamdani inference [69, 70], Larsen

inference [71], Sugeno inference [72, 73], and Tsukamoto inference [74, 75].

2.1.2 Fuzzy Inference Systems

The inference engines have been defined by different inference approaches, the most impor-
tant two are the Mamdani model [76] and the TSK model [73]. Compared to the Mamdani

approach, the TSK approach is more convenient when the crisp outputs are required. Al-
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though the TSK model is able to generate crisp output, the Mamdani fuzzy inference method
is more intuitive and suitable for handling human natural language inputs, which is an imple-
mentation of the extension principle [77]. As fuzzy outputs are usually led by the Mamdani
approach, a defuzzification approach, such as the centre of gravity method [78], has to be
employed to map fuzzy outputs to crisp values for general system use. The TSK approach
uses polynomials to generate the inference consequence, and it therefore is able to directly
produce crisp values as outputs, which is often more convenient to be employed when the
crisp values are required. Some interpretability measures are discussed in [79]. Precise Fuzzy
Modelling (PFM) is mainly developed by means of Takagi-Sugeno system, which is focused
on the accuracy and associated with the data-driven approach, resulting in very robust and
accurate models [80]. Linguistic Fuzzy Modeling (LFM) is mainly developed by means of
linguistic (or Mamdani) system, which is focused on the interpretability and associated with
the expert-driven approach, resulting in very interpretable models [81]. Some hybrid learn-
ing models were proposed to get the interpretability—accuracy trade-off in fuzzy modeling,
thus accuracy improvements are proposed in LFM whilst interpretability improvements are
proposed in PFM, as reviewed in [82].

Fuzzy inference systems, which tend to mimic the inference behaviour of human, are
a vital part of many successful knowledge-based systems in many field [17, 83]. The
basic concepts which underlie fuzzy systems are fuzzy If-Then rules (it is assumed that the
reader should know the fundamentals of fuzzy logic). Fuzzy inference describes systems
by establishing relations between the relevant variables in the form of if-then rules. Fuzzy
If-Then rules are of the general form: If antecedent(s) Then consequent(s), where antecedent
and consequent are fuzzy propositions that contain linguistic variables. A fuzzy If-Then rule
is exemplified by If the quality score is less than or equal to 12 Then the quality category is
‘Not Reliable’ [84], or If the temperature is high Then the fan-speed should be high [85].

2.1.3 Inference Engine

There are mainly two types of fuzzy engines, Madamni [76] and TSK [73], with different
forms of the consequent part in the if-then rules. A multi-input and single-output (MISO)

fuzzy model is represented as a collection of fuzzy rules in the following form:

R; :IF x; =A;; and xp = Ajpp and x,, = Ay,

2.1)
THEN y; = 7i(x),
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where z;(x) takes different forms depending on the fuzzy inference engines. In the Mamdani
engine, it is linguistic labels represented by fuzzy sets: z;(x) = B;; or in the TSK engine, it is
often a linear function: z;(x) = b;jp + ):;:1 bijx;.

The Mamdani engine is a particular implementation of the Compositional Rule of Infer-
ence, which is more intuitive and commonly utilised to deal with human natural language.
Compared to the Mamdani engine, the TSK engine is more convenient when the crisp outputs
are required. The main advantage of the TSK engine is that the resulting global model can
be non-linear (of high order) while the local models can be as simple as necessary, since
the local regions are fuzzily defined. Generally the local sub-models can be non-linear,
however, usually linear (first-order) or singleton (zero-order) sub-models are considered.
Although the TSK engine is able to generate crisp output, Mamdani engine is more intuitive
and suitable for dealing with human natural language inputs using max-min operators during
the inference, ie. Mamdani engine has higher interpretability.

Subsections below will introduce the two types of typical rule-based fuzzy inference

systems, one is the Mamdani engine and the other is the TSK engine:

2.1.2.1 Mamdani Engine

From the introduction of fuzzy sets by Zadeh in 1965, fuzzy logic has become a significant
area of interest for researchers in artificial intelligence. In particular, Mamdani was the
pioneer who investigated the use of fuzzy logic for interpreting the human derived control
rules, and therefore his work was considered a milestone application of this theory. The
original Mamdani fuzzy inference system was proposed as the first attempt to control a steam
engine and boiler combination by a set of linguistic control rules obtained from experienced
human operators. A fuzzy system with two inputs x and y (antecedents) and a single output z

(consequence) is described by a linguistic If-Then rule in Mamdani form :
If x=Aand y=B, thenz=C, (2.2)

where A and B are fuzzy sets in the antecedent and C is a fuzzy set in the consequence.
Fig. 2.1 is an illustration of how a two-rule Mamdani fuzzy inference system derives the
overall output z when subjected to two crisp inputs x and y. If using min and max for the
T-norm and T-conorm operators, respectively, and using the original max-min composition,
then the resulting fuzzy reasoning is shown in Fig. 2.1, where the inferred output of each rule
is a fuzzy set scaled down by its firing strength via max. Other variations are possible if using

different T-norm and T-conorm operators. For example, using product and max for T-norm
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and T-conorm operators results in the max-product composition. In general, to compute the

Ha (x) A, e () B, hel) g G
1 1 1
\ LN N
X y z
M@t A, B0t B, He ()4 c,
1 1 1
IR A
o ol/ N\ o L AIITIN

1 ﬂ max
min 1 c

LA

2coA z

Fig. 2.1 Mamdani approach

output for the given input observation, a Mamdani inference system follows the following

steps:

1. Determining a set of fuzzy rules
2. Fuzzifying the inputs using the input membership functions
3. Combining the fuzzified inputs according to the fuzzy rules to establish a rule strength

4. Finding the consequence of the rule by combining the rule strength and the output

membership function
5. Combining the consequences to get an output distribution
6. Defuzzifying the output distribution (this step is involved only if a crisp output is
needed)
2.1.2.2 TSK Engine

The TSK fuzzy model was proposed by Takagi, Sugeno, and Kang in 1985, and a typical
fuzzy rule for the TSK model is of the following form:

IF uis A and vis Bthenw = f(u,v) , (2.3)
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where A and B are fuzzy sets regarding antecedent variables x and y respectively, and f(u,v)
is a crisp function (usually polynomial), which determines the crisp value of the consequence.

For instance, assume that a rule base for TSK model is comprised of two rules:

R;:IF xisA;andyis B THEN z = fi(x,y) = aix+ bjy + ¢;

(2.4)
R;j:IF xisAjandyis Bj THEN z = fj(x,y) =ajx+bjy+c;j,

where a;, aj, b;, bj, c;, and c; are constants in the polynomial equation in the consequent
part of the rule. The consequences of rules R; and R; deteriorate to constants c;and ¢; when
a; =aj=b; =b;=0. TSK model is usually employed to crisp inputs and outputs problems.
Given an observation with singleton values as input (xo,yo), the working progress of this
approach is demonstrated in Fig. 2.2. The inferred output from the given observation from
rules R; and R; are f;(xo,y0) and fj(xo,y0), respectively. The overall output is then taken as
the weighted average of outputs from all rules, where the values of weights are the firing
strengths of corresponding rules. Suppose that pi4,(xo) and g, (yo) represent the matching
degrees between input (xo,yo) and rules R; and R}, respectively. The firing strength (weight)
of rule R;, ¢, is calculated as:

o = Ua, (XO) /\.LLBI'(yO)a (25)

where A is a t-norm, which usually implemented as a minimum operator. Obviously, if a
given input (x1,y;) does not overlap with any rule antecedent, the matching degree between
this input and rules R; and R; are u4,(x1) and up,(y) are equal to 0, then no rule will be
fired. Therefore, no consequence can be derived for such case. As the final result of the
consequent variable z is a crisp value, the defuzzification progress then can be saved, which

in turn reduces the overall computational efforts.

2.2 Fuzzy Rule Interpolation

A fuzzy rule interpolation method usually maintains the similarity between the antecedent
fuzzy sets and that between the consequent fuzzy sets. This means the similar observations
lead to similar results [86—90]. Various interpolation methods have been developed [34—
37, 39], which can be categorised into two classes with several exceptions (such as type II
fuzzy interpolation [91, 92]). These two classes are alpha-cuts based fuzzy rule interpolation

and analogy based fuzzy rule interpolation.
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Fig. 2.2 TSK approach

2.2.1 Alpha-cuts Based Fuzzy Rule Interpolation

The first class of approaches directly interpolates rules whose antecedent variables are
identical to the observed (o-cuts based). The most typical approach in this group is the
very first proposed fuzzy interpolation [93-95], denoted as the Koczy-Hirota (KH) approach,
which was based on the concept that the approximated conclusion divides the distance
between the consequent sets of the used rules in the same proportion as the observation
does the distance between the antecedents of those rules. This method is developed by
using two fundamental principles. The first is the definition of the fuzzy distance using
classical Shepard interpolation extension [96], and the second is the fact that fuzzy sets
can be decomposed into and composed from ¢-cuts i.e. the Decomposition and Resolution
Principles [97, 98]. This method can also be applied to multidimensional environment using
the Minkowski distance.

KH approach is implemented in the following steps: 1. Determine the o-cut sets and
infimum and supremum values for all the available fuzzy sets. 2. Determine the lower
and upper distances through infimum and supremum values of two @-cut sets by Euclidean
distance (single dimension) and Miskowski distance (multi dimension). 3. Determine the
infimum and supremum values of conclusion fuzzy set by applying the linear interpolation
formula. According to these principles, each fuzzy set can be represented by a series of o-
cuts (o € (0, 1]). Given a certain o, the o-cut of the consequent fuzzy set is calculated from
the ot-cuts of the observation and all the fuzzy sets involved in the rules used for interpolation.

Knowing the a-cuts of the consequent fuzzy set for all a € (0, 1], the consequent fuzzy set



18 Background

can be assembled by applying the Resolution Principle. The closed form fuzzy interpolation
was proposed [26]. It not only can be represented in a closed form but also guarantees that
the interpolated results are valid fuzzy sets. Another approach is based on the areas of fuzzy
sets and uses the weighted average method to infer the FRI results [99]. Approaches such
as[26, 100-102] also belong to this group.

KH approach has many advantages, for example it is approximately linear between the
a levels. Its computational complexity is light because it calculates the a-cut set for the
conclusion and therefore, it may be suitable for real time application. It is more suitable
for triangle and trapezoidal shaped fuzzy sets because these can be easily described by few
characteristics points that the a-cut process. It is initially developed for Single Input Single
Output (SISO) fuzzy systems, but it can be extended for the case of Multiple Input Single
Output (MISO) fuzzy systems using Minkowski distances. It preserves the original rule base
and supports multiple rules.

However, KH approach is restricted to convex and normal fuzzy (CNF) sets. It is
shown to rely on implicative rules, viewed as constraints. It does not always provide the
normal conclusion and does not maintain the piece-wise linearity of the resultant conclusion.
Theoretically, an infinite number of ¢-cuts are required for a correct result. However, it
considers only two & levels which may cause error in the result. Sometimes the bounds of
the results are not in the expected order, because the interpolation weights for left-hand sides
and for the right-hand sides are not related to each other. It does not always produce the
convex and normal conclusion even if the given fuzzy sets are convex and normal [86, 103].

In particular, the Stabilised-KH approach extends the original KH approach, which is
based on a certain interpolation of a family of distances between fuzzy sets in the rules and in
the observation [104]. Unlike the original KH approach, it does not consider the two closest
neighbouring rules. Instead, it takes all the rules and computes the conclusion based on the
consequent parts weighted by the distances. This approach is outlined below. Suppose that a

sparse rule base is composed of n rules R;,i € {1,2,...,n} that are represented as follows:
R;:IF x1s A; and y is B; THEN z is C;. (2.6)

Suppose each variable value A is represented as a triangular fuzzy set and conveniently

denoted as (ay,as,as), where a; is the core and (ay,a3) is the support. Given an observation
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(A*,B*), the result C* can be calculated by
n . 1
i=1 l”f{c'a} TA% A
min Cp, = : n : 1dL(Am =
J=1dL(Ay, Aia)
Z?:l i”f{cja} dB+B»
- ] L( o ))/2’
j:l d[_(B*a, Bi(x) (2 7)

n . 1

j=1 Sup{C]a} dy (A, Aia) +
n 1
J=1dy (A, Aia)

Y/i_ysup{Cja} W
: U( as Di ))/2’

n e —
j=1 dy(B%, Bia)

*
max Cy =

where A;q and A}, represent the at-cut of A; and A* respectively; dr (Aiq,A}) and dy (Aj,Al,)

represent the lower and upper Euclidean distance between A* and A;, respectively. The values

of dr(Aj,A},) and dy (Aj,A},) are illustrated in Fig. 2.3 and calculated as follows:

dL(Al'OhAE) = d(lnf{Al(X}alnf{A*OC )7
dU(Ai(X7A*(x) = d(Sup{Aia},Sup{A*a )

(2.8)

From this, the conclusion C* can be generated by assembling all Cy, (@ € (0, 1]) based on

the resolution principle.
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Fig. 2.3 Tllustration of lower and upper distances
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2.2.2 Analogy Based Fuzzy Rule Interpolation

The second class of the FRI approaches is based on the analogical reasoning mechanism
[105] and therefore, referred to as “analogy based fuzzy rule interpolation” (intermediate-rule
based). Instead of directly inferring conclusions, this class works by first creating an interme-
diate rule such that its antecedent is as “close" (given a fuzzy distance metric) to the given
observation as possible (given a fuzzy distance metric or other measures based on certain
similarity principles). Then, a conclusion is derived from the given observation by firing the
generated intermediate rule through the analogical reasoning mechanism. That is, the shape
distinguishability between the resultant fuzzy set and the consequence of the intermediate
rule is analogous to the shape distinguishability between the observation and the antecedent
of the generated intermediate rule. A number of ways to create an intermediate rule and then
to infer a conclusion from the given observation by that rule have been developed, such as the
weighted fuzzy interpolative reasoning [22], and another approach based on the areas of fuzzy
sets and uses the weighted average method to infer the FRI results [99]. The most important
methods in this class are the HS approach based on scale and move transformation [23] and
its extensions [106, 107]. The HS approaches introduce the general concept of representative
values (RVs), and then use this to interpolate fuzzy rules involving arbitrary polygonal fuzzy
sets, by means of scale and move transformations. The HS approaches not only guarantee
the uniqueness, normality, and convexity of the interpolated fuzzy sets, but can also handle
the interpolation of multiple antecedent variables with different types of fuzzy membership
function. The HS methods not only inherit the common advantages of fuzzy interpolative
reasoning (helping reduce rule base complexity and allowing inferences to be performed
within simple and sparse rule bases), but also have two other advantages compared to the
existing fuzzy interpolation methods. Firstly, they provide a degree of freedom to choose
various RV definitions to meet different application requirements. Secondly, they can handle
the interpolation of multiple rules, with each rule having multiple antecedent variables asso-
ciated with arbitrary polygonal fuzzy membership functions. This makes the interpolation
inference a practical solution for real-world applications.

In particular, the scale and move transformation-based FRI with triangle fuzzy sets is

introduced in detail as follows. Suppose that two fuzzy rules R; and R; (i, j € N) are given as:

R;:IF XjisAj; and X is Ay; and ... and X, is A,,;, THEN Y is B;,

R;:IF X;is Ajjand X; is Ay and ... and X, is A, j, THEN Y is By,

where each fuzzy set Ay, (k= {1,2,...,m},l = {i,j}) has a triangular membership function
and conveniently denoted as (ag;, by, cxr). Given observations (A},A3,...,A7), the calculation
process of the conclusion using FRI is summarised as the following steps.
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Step 1: Calculate the representative value of each given antecedent variable Ay; using
Equation 2.9, and do the same for the given observation.
_agtby -ty

Rep(Ay) = S E— (2.9)

Step 2: Calculate the relative placement factor Ay, by Equation 2.10 based on the relative
location of the observation regarding to the two antecedents, and then calculate the average

Aaverage for later use.

(k=1,2,....m) (2.10)

Step 3: Based on A calculated above, obtain the antecedents of the new intermediate rule A;<
by Equation 2.11.
A = (1= A)Axi + LA (2.11)

Step 4: By comparing the size of A;C and A7, obtain the Scale Rate S; using Equation 2.12.

I !
A

Sk = (2.12)

* * 7
Cr — 9

Step 5: Obtain the average of Scale Rate Syyerage based on the Sy...S,, calculated above.
Step 6: Apply scale rate Sy to A; to obtain AZ by Equation 2.13, 2.14, 2.15 (k= 1,2, ...,m).

v ap(1428k) +by(1—Sk) +cp (1 — Sk)

a, = 3 (2.13)
vod(1=8)+b.(1+28 "(1—S
bk:ak( k) b, ( ;r W+ (1—S) 2.14)
v oa,(1=8)+b.(1-S (1428
ck:ak( k)+ k( . k)+ck( + k) (2.15)

Step 7: By comparing the shapes of A; and AZ, obtain Move Transformation Rate My, then
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calculate the average of move transformation rate Myyerqge for later use.

" "
3(a, —ay)

f " S
1y a a
bi—a; k= "k
Me=1 B ’ (2.16)
a,—ay . %
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Step 8: To compute B’ from the rule consequences using Equation 2.11 based on the /lavemge
calculated above.

Step 9: Finally, the fuzzy set B* of the conclusion can then be estimated by apply Saverage
and Mgyerage ON B'.

The HS method not only inherits the common advantages of fuzzy interpolative reasoning
— allowing inferences to be performed with simple and sparse rule bases, but also has another
two advantages: 1) It provides a degree of freedom to choose various RV definitions for
different application requirements. 2) It can handle the interpolation of multiple rules, with
each rule having multiple antecedent variables associated with arbitrary fuzzy membership
functions, such as complex polygonal, Gaussian and other bell-shaped fuzzy membership
functions. The method works by first constructing a new intermediate rule via manipulating
two adjacent rules (and the given observations of course), and then converting the intermediate
inference result into the final derived conclusion, using the scale and move transformations.

Note that the antecedent of the generated intermediate rule is expected to be very close
to the given observation. Thus, the interpolation problem actually becomes the similarity
reasoning [108—110]: the more similar between the observation and an antecedent, the more
similar conclusion must be concluded to the corresponding consequent set. As traditional
generated rule bases are almost all based on certain similarity measures, therefore they are

likely to cause performance deterioration along with the size reduction of the rule base.

2.2.3 Adaptive Fuzzy Rule Interpolation

Common to all above fuzzy interpolation techniques is the fact that interpolations are carried
out in a linear manner. However, when dealing with realistic problems this is not always
feasible and may lead to inconsistencies in inferred rules and reasoning results after a certain
amount of interpolations. Therefore, adaptive fuzzy rule interpolation was proposed to
adaptively address this [24, 25, 111-113], and successfully applied to a number of real-world
problems [114]. This system has to main components: 1) a diagnostic system that is imple-
mented by the use of the classical candidate generation procedure of the general diagnostic

engine (GDE) [115] through the exploitation of inconsistent interpolative (intermediate)
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results that are recorded in an assumption-based truth-maintenance system (ATMS) [116],
and 2) a corrective system that is developed from the fuzzy extension of the conventional
numerical piece-wise linear interpolation theory [117] and its application in approximate
computation [118]. The method works, first, by the extraction of the entire set of interpolated
rules, which depend on the same pair of neighbouring rules in the generated candidate
list. Then, it imposes a group of equations and inequations, which not only constrain the
modified propositions and ensure their propagation to be consistent but guarantee the orig-
inal similarity-based reasoning in fuzzy interpolation to be followed as well. Finally, the
approach corrects the culprit interpolated rules by solving the set of simultaneous equations
and inequations. Another method was proposed based on similarity measures of polygonal
fuzzy sets and novel move and transformation techniques for solving contradictory fuzzy
interpolative reasoning results [119].
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Fig. 2.4 Adaptive Fuzzy Rule Interpolation [2]

A novel rule base generation and adaptation system for FRI was also introduced in [2],
and the system framework is outlined in Fig. 2.4, which comprises of mainly four parts:
rule base initialisation, rule selection for interpolation, transaction-based FRI, and rule base
revision. Firstly, an initial set of rules is generated from limited a priori knowledge. For a
given observation, the system then selects the ‘best’ two rules from the current rule base for
interpolation, based on a particular set of metrics, including the usage frequency/experience
information, the previous performance index and the distances between the given observation

and the rule antecedents. From this, a new rule is interpolated based on the selected ‘best’



24 Background

rules from the given observation. Afterwards, the performance index will be utilised to
support the rule base updating, whenever it is available from the feedback system. Rule
Selection was presented a novel rule base generation and adaptation approach for FRI, which
is able to adaptively generate and revise the rule base with limited training data and/or expert
knowledge for control problems, as long as a performance index is available to indicate
if the inference result is acceptable or not. Some work focuses on automated rule base
construction in an effort to enhance the potential of the Takagi-Sugeno fuzzy regression
models for situations where only limited training data are available [120].

2.2.4 Dynamic Fuzzy Rule Interpolation

The HS approaches have been also extended as dynamic fuzzy rule interpolation [3, 30, 121-
123]. A initial dynamic fuzzy rule interpolation approach [3] has been firstly introduced to
better exploit the interpolation results provided by a given FRI method. It has presented an
initial attempt towards building an intelligent framework for dynamic FRI: the interpolated
rules are analysed, aggregated, and promoted into the original sparse rule base. Fig. 2.5
illustrates the overall operation for this framework. Initially, there is a set of original (sparse)
rules R. While running the FRI system, an interpolation method such as HS approach
continuously fills a pool of interpolated rules R’. The antecedent domains of R’ are then
partitioned into a set of hypercubes H, so that certain regions that have accumulated a good
number of interpolated rules can be determined. A clustering algorithm is then employed to
group the similar rules together, for each ‘filled’ hypercubes, whilst the most informative
clusters are also identified. Finally, an aggregation process is applied to the selected groups
of rules, in order to construct and promote new rules to becoming member of R.

However, the above approach relies heavily on the use of the standard k-means clustering
algorithm. Yet, for many application problems, it is difficult to predict the value of k (the
number of clusters) [124]. Therefore the initial approach was improved by employing a
genetic algorithm (GA) based clustering technique [125, 126] in place of k-means clustering.
In these works, the collection of the interpolated rules is pre-partitioned into hypercubes
(multidimensional blocks), in order to reduce the search complexity of the GA process. The
non-empty hypercubes are then identified and used as the input into GA. After a certain
number of generations, GA identifies a ‘best” chromosome (cluster arrangement) based on
a given fitness function such as the Dunn Index [127]. Here, a chromosome is viewed as a
combination of strong and weak clusters, where the weak clusters are merged into the closest
strong clusters in order to obtain the final result. In the end, the densest clusters that have
accumulated a sufficient number of candidate rules are selected for rule aggregation and
promotion.
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Fig. 2.5 Dynamic Fuzzy Rule Interpolation [3]

2.3 Rule Base Generation and Reduction

2.3.1 Rule Base Generation

Most fuzzy rule base generation methods are based on grid-type fuzzy partition [8, 11, 42,
58, 82, 128—-133].These methods firstly divide the input and output spaces into fuzzy regions:
given a set of examples with multiple inputs (m) and single output, denoted as (x’J‘. :¥X) where
j=1,...,mand k=1,. . . n Define the universe of discourse of each input variable as
[xJT ;x;r] and the output variable as [ y~;y "] and then divide each universe of discourse into
N regions. The minimal and maximal values of each variable are often used to define its
universe of discourse. That is [x;;xj]:[min(x i),max(x;)]. They are also considered to be
the centre of the left end term and the right end term, respectively. That is, ¢ ; = min(x;)
and c¢,; = max(x;j). Accordingly, the other linguistic term centre of each region, ¢;;, can be
computed as follows:

Cij = min(x;) + i(max(x;)) — min(x;))/(N —1), wherei=2,....N — 1. (2.17)

Then these methods secondly generate fuzzy rules from given examples, by determining
its membership degrees in every fuzzy partition of the input and output spaces, and associating
each example a rule with the linguistic labels best covered by the example. Based on a

collection of n-inputs-dimensions data examples, a multi-input and single-output (MISO)
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fuzzy model is represented as a collection of fuzzy rules in the following form:
Ri :IF X1 :Ail and X2 :AiZ and Xn :Ain; THEN yVi = zi(x), (218)

where R; is the ith rule, A;; are linguistic labels represented by fuzzy sets of the universes
of discourse in the [x;;xj], with its linguistic term centre as C;;. According to the different
form of the consequences in the if-then rules, there are two types of fuzzy models, Madamni
or TSK. The z;(x) takes the following forms: linguistic labels represented by fuzzy sets of
the universes of discourse in the [y]T; y}r] , zi(x) = B;, which is Mamdani model; or linear
function, z;(x) = b + Zj.:l b;jxj, which is TSK model.

Finally the rule base can be optimised or adjusted to avoid conflicting rules. The most
common way to optimise the membership functions is to change their definition parameters.
For example, triangular shaped membership functions are usually considered due to their

simplicity:

ux) =< =X ife<x<r (2.19)

0, otherwise ,

changing the basic parameters of left, centre, right values will vary the shape of the fuzzy
set (I,c,r) associated to the membership function, thus influencing the fuzzy rule base per-
formance. The same yields for other shapes of membership functions (trapezoidal,gaussian,
sigmoid, etc.).

Most fuzzy rule base generation methods are based on grid-type fuzzy partition. They
divide a given problem space into a number of fuzzy regions, each representing a fuzzy rule
that is used to construct the final rule base. From this, the raw rule base is optimised by a
general optimisation approach, such as the genetic algorithm. As an important benchmark, the
Wang and Mendel’s (WM) method in [41] provides a fast and non-iterative way to learn the
linguistic rules from data and has been proven with many successful applications [134, 135].
It performs rule induction by considering that the fuzzy partitions and the membership
functions are already set, with domains even partitioned (uniformly partitioned). The detailed
procedures of the benchmark WM model are described as follows:

Step 1: Divide the input and output spaces into fuzzy regions. Given a set of examples with
k.
j’
Define the universe of discourse of each input variable as [x;;xj] and the output variable

multiple inputs (m) and single output, denoted as (x%;y*) where j=1,.. ., mandk =1, .. ., n.
as [ y~;y"] and then divide each universe of discourse into N regions. The minimal and
maximal values of each variable are often used to define its universe of discourse. That is

[x;;xj]=[min (xj),max(x;)]. They are also considered to be the centre of the left end term
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and the right end term, respectively. That is, ¢;j = min(x;) and c¢y; = max(x;). Accordingly,

the other term centre, ¢;;, can be computed as follows:
Cij = min(x;) + i(max(x;)) — min(x;))/(N —1), wherei=2,....N — 1. (2.20)

Step 2: Generate fuzzy rules from given examples. Firstly, determine the membership
degrees of each example belonging to each fuzzy term defined for each region, variable by
variable (including the output variable). Secondly, associate each example with the term
having the highest membership degree variable by variable, denoted as md ;. Finally, obtain
one rule for each example using the term selected in the previous step. The rules generated
are “and" rules and the antecedents of the IF part of each rule must be met simultaneously
for the consequence of the rule to occur. Letting 7x; be a term selected for variable x; of an

example, a rule could look like:

IF xy is Tx) (with mdy) and x; is Tx, (with mdy) and... and x,, is Txy, (with md,,)
THEN y is Ty (with md,).
(2.21)
Step 3: Assign a degree to each rule. The rule degree is computed as the product of the
membership degree of all variables (m inputs xjfox,, and 1 output y). Let DX be the degree

of the rule generated by example k, mathematically,

D= J] md. (2.22)
j=1,...m and y

Step 4: Create a combined fuzzy rule base. When the number of examples is high, it is
quite possible that the same rule could be generated for more than one example. These rules
are redundant rules. In addition, rules with the same if part but a different then part could
also be generated. These rules are conflicting rules. The redundant and conflicting rules must
be removed to maintain the integrity of the rule base. This is achieved by keeping only the
rule with the highest degree for each fuzzy region: this rule is deemed most useful. Up to
this step, the fuzzy rule base is complete; however, the usefulness of the rule base must be
shown using some fuzzy inference methods, as introduced in the next step.

Step 5. Determine a mapping based on the combined fuzzy rule base. To predict the
output of an unseen example denoted as x;, the centroid defuzzification formula is used.

Accordingly, the predicted output, y, is computed as

R amd’c"

_ Lmama e 223
Y amd" 22
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where amd” =T]j—i _n mdjr., ¢ is the centre value of the consequent term of rule r, and R
denotes the total number of combined rules.

Another successful method based on grid-type fuzzy partition is the ‘cooperative rules’
(COR) strategy, developed by Cordén and Herrera and refined in [130]. The COR method
extends non-iterative methods such as WM, by creating a large pool of possible rule-bases
using search heuristics. It can be divided into two steps: the generation of the pool of all
possible rule bases, and the heuristic selection of the final rule base. The pool is generated
by allowing two or more consequences for the same pair of antecedents. Then the heuristic
selection uses each chromosome to represent a possible rule base from the rule base pool,
which is evaluated on the set of training examples. Some recent studies proposed the selection-
reduction (SR) method [136], which uses an iterative procedure to learn the system rule
base. Here, unlike the COR approaches, iterations are performed in a greedy way, yielding
a low-complexity and time-deterministic method. In [131, 137], to improve the system
accuracy, fuzzy rules consider linguistic terms that are defined in flexible fuzzy partitions
with different granularity levels, being changed from even partitions into uneven partitions.

In the non-grid fuzzy partition type, fuzzy clustering is another well recognised paradigm
to generate the initial fuzzy model [138]. Each cluster represents a certain operation region
of the system, and the number of clusters equals the number of rules. One of the most widely
used approaches in fuzzy modelling is based on the fuzzy C-means (FCM) algorithm such
as [139]. The FCM algorithm partitions a collection of n data points (X = x1,xp,...,x,) into
c fuzzy clusters, where the number c of clusters must be predetermined. Methods like cluster
validity measures or compatible cluster merging can be applied to find a suitable number of
clusters. Other algorithms such as evolutionary algorithms have also been used for building
compact fuzzy rules [140], both in grid fuzzy partition or non-grid partition types.

A number of ways are available in the implementation of the aggregation operator, in-
cluding max and min operators [69, 141], arithmetic averaging (AA) [142—-145], weighted
arithmetic averaging (WAA) [142], ordered weighted averaging (OAA) [143], generalised
ordered weighted average (GOWA) [146], fuzzy weighted averaging (FWA) [147], geo-
metric averaging [148], weighted geometric averaging (WGA) [149, 150], induced ordered
weighted averaging (IOWA) [144], weighted ordered weighted averaging (WOWA) [145],
and weighted order statistic averaging (WOSA) [151]. These operators have been used
in a wide range of applications, such as database systems [152, 153], fuzzy logic con-
trollers [154, 155], and decision making [143, 156, 157]. The most commonly used approach
in these aggregation approaches is WAA, which is also applied in this work. work. This
approach first weights all the given arguments, and then aggregates all these weighted

arguments into a collective one.
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More focus should be invested in how to keep good balance between model accuracy,
efficiency and transparency, that means, how to generate a sparse rule base which is very

accurate, computationally efficient and linguistically tractable.

2.3.2 Rule Base Simplification

Almost all the existing rule base generation approaches may suffer from the redundancy
problem and the ‘curse of dimensionality’. These issues can be addressed by reducing
the constructed fuzzy rules through feature selection and instance selection. Empirical
studies shows that some variables or features are not sufficiently important to be included in
the realisation of the fuzzy model during the fuzzy rule base generation process, as some
features may be redundant or barely relevant. Thus, to implement feature selection before
constructing the fuzzy models may reduce the fuzzy rule search space and increases the
accuracy of the model, as introduced in many references such as [158-161]. In general,
the feature selection algorithms can be classified into three categories: filters, wrappers,
and embedded methods [162]. The filter method selection criterion is independent of the
learning algorithm. In contrast to the wrapper method, the selection criterion is dependent
on the learning algorithm and uses its performance index as the evaluation criterion. The
embedded method incorporates feature selection as part of the training process. Many
feature selection methods combined with constructing fuzzy models were developed as the
orthogonal transformation approach [163—-166], the computational geometric approach [167],
the evolving of Takagi—Sugeno fuzzy model [168], pareto multi-objective cooperative co-
evolutionary algorithm [169], clonal selection algorithm [38], and more methods are reviewed
and compared in medical data mining [170], and in synthetic data [171].

Instance selection is to choose the relevant data in training data set which are important
to reflect the knowledge for solving the concerned problems. Commonly, several instances
are stored in the training set but some of them are not useful for classifying as there may
be noise and redundancy. Therefore, it is possible to get acceptable classification rates
ignoring non-useful cases. The WM method was also completed in [172] (WMC) to reduce
the influence of noisy data in original WM method. Like in feature selection, according to
the strategy used for selecting instances, the instance selection algorithms can be mainly
classified into two categories: wrappers and filters [173]. Most of the methods are wrappers.
They are mainly based on the k-NN rule such as [174] [175], and several methods are
based on coevolutionary fuzzy system approach [176], memetic algorithms [177], or class
conditional instance selection based on variance [178]. In contrast, the filters methods are
not based on a classifier to distinguish the instances to be selected or discarded from the
training set, for example, they may be based on clustering for instance selection, or prototype
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selection by relevance. Filter methods may have better performance with respect to wrappers,
and as an additional characteristic they spend less runtime than the wrappers [179].

Some instance selection methods such as tabu search (TS), clonal selection algorithm
(CSA), prototype selection by relevance (PSR) are reviewed in [173], and many methods
particularly in partial least squares regression (PLSR) are also reviewed in [180]. Instance
selection needs to choose the important data from training data set, but before the proposed
work it lacks an easy way to efficiently and reasonably distinguish the relevant data is
important or not.

Instead of to perform feature selection and instances selection separately, hybrid method
focuses on the integration of feature selection and instances selection in the construction
of the fuzzy models. Both processes are applied simultaneously to the initial data set, in
order to obtain a suitable subset of feature and data to construct the parameters for the
fuzzy model. Some hybrid methods have been proposed, such as scalable simultaneous
evolution [181], clustering and evolving fuzzy rules [182], cooperative coevolution with the
nearest neighbour rule [183], [184], rule similarity checking and gradient learning [185],
fuzzy complex numbers [186], or particle swarm optimization [161]. Several sparse fuzzy
system generation methods have been proposed [8, 187-192]. One of their important features
is that in most of the cases the resulting rule base is sparse, which ensures a reduced
system complexity. Clustering are often used in these methods. However, some methods
just simply increase the number of the fuzzy rules by inserting new rules in the required
positions [190, 191].

Existing rule base reduction techniques consist of mainly five categories: feature-based
reduction, merging and removal-based reduction, orthogonal transformation based methods,
interpolative reasoning methods and hierarchical fuzzy reasoning. Feature based reduction
reduces the number of variables before the data is fed into machine learning tools. Merging
and removal-based reduction simplify the rule bases by merging the similar rules or fuzzy sets,
and removing the inconsistent or inactive rules. Orthogonal transformation based methods
make use of matrix computation to optimise fuzzy rule bases. Interpolative reasoning methods
not only simplify the rule base by eliminating the rules which can be approximated by their
neighbors, but also provide a wise inference solution for sparse rule bases. Hierarchical fuzzy
systems modify the structure of the conventional rule models and hence avoid the curse of
dimensionality.

Most of existing rule base generation and reduction approaches are based on certain simi-
larity measures [58, 193—195]; therefore, they are likely to cause performance deterioration
along with the size reduction of the rule base. They usually reduce redundant information

that 1s found in the form of similar fuzzy sets in the rule base [195]. It simplifies the rule base
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by merging fuzzy sets having a similarity higher than a given threshold. Merging creates a
common fuzzy set that replaces the occurrence of the merged ones in the rule base, which
reduces the number of fuzzy sets that are used in the model, and thus simplifies the rule
base. The compatible cluster merging algorithm for rule base generation [193] is based on
the work of Krishnapuram and Freg [196]. Then Chao, Chen and Teng [194] utilised fuzzy
similarity based merging. They first derive simple triangular approximate equations from
Gaussianshaped fuzzy sets. Then the measurement between two triangular fuzzy sets is
proposed, and similar linguistic terms are merged into one. This method indirectly results in
decreasing of the number of rules. The work reported in [195] follows the same similarity
merging procedure except that different fuzzy modelling techniques (Gustafson-Kessel and
fuzzy c-means algorithms) are used. In addition, a similarity measure on trapezoid functions
is used instead of triangular ones as described in [194]. After all the fuzzy sets and fuzzy
rules are merged, to improve the accuracy of the simplified model, a fine-tuning procedure
for parameters that define fuzzy sets is executed using the gradient-descent algorithm.

The similarity measure can be divided into two main groups [195]: one is set-theoretic-
based and the other is geometric-based. The former set-theoretic-based similarity measure
is sensitive among different pairs of joint fuzzy sets, while the latter representative value
geometric-based similarity measure is sensitive among different pairs of disjoint fuzzy sets.

Set-theoretic-based measurements are the most suitable for capturing similarity among
overlapping fuzzy sets. Based on the set-theoretic operations of intersection and union,
the similarity between fuzzy sets is defined as 2.24. The work of [194, 195] implement

set-theoretic-based similarity measurements.

_ANA
AUAT

S(A,A") (2.24)

The geometric-based measurements represent fuzzy sets as points in a metric space
and the similarity between the sets is regarded as an inverse of their distance in this metric
space. As an example of geometric-based similarity merging methods, Jin makes use of
the distance concept rather than the set operations [197]. Based on different measurement
standards, various similarity measures have been proposed in literature to calculate the degree
of similarity between two fuzzy sets, such as [198-200]. Note that, in order to generate
reasonable measurement of similarity, the corresponding variable domain is required to be
normalised first. This work also focuses on the geometric-based similarity.

Given two triangle fuzzy sets on the variable with normalised domain, A = (aj,a»,a3)
and A’ = (d},d},d}), where 0 < a; <ay <az <1,and 0 < da| <d}, <d} <1, the degree of



32 Background

similarity S(A,A’) between fuzzy sets A and A’ can be calculated as follows [198]:

3
) lai—aj
S(A,A)=1- ﬂT . (2.25)
The larger value of S(A,A’) means that there is more similarity between fuzzy sets A and A'.
This method is also the most wildly applied method. It requires a normalisation progress for
the concerned variable domain.

A graded mean integration representation distance-based similarity degree measurement
does not need such normalisation. This geometric-based similarity measure is summarised
as [201]:

1
SAA)= ——————— 2.26
( Y ) 1 _|_ d(A’A/) ) ( )
where d(A,A”) = |P(A) — P(A”)|, P(A) and P(A’) are the graded mean integration representa-
tion of A and A’, respectively [201]. In particular, the graded mean integration representation
P(A) and P(A’) can be defined as:

4
P(A) = % 7

2.27)
PA) = % '

Usually the larger value of S(A,A”) means higher degree of similarity between fuzzy sets A
and A’

The above two approaches may not provide correct similarity degrees in certain situations,
(such as two generalised fuzzy sets, which may not be normal), although they are usually
able to produce acceptable results and have been widely applied. A generalised triangle
fuzzy set regarding variable x can be represented as A = (ay,az,a3,U(az)), where W(ay)
(0 < p(az) < 1) is the membership of element a;, and p(a;) > p(a),Va € Dy, Dy is the
domain of variable x, as illustrated in Fig 2.6. If u(ay) = 1, the generalised triangle fuzzy set
deteriorates to normal a fuzzy set which is usually denoted as A = (a;,az,a3). A centre of
gravity method (COGQG) has been proposed to work with generalised fuzzy sets [200]. The
concept COQG is that of an average of the masses factored by their distances from a reference
point. The COG is an important property since it reflects both the location and the shape
of a fuzzy set [202]. The COG metric is used to determine the closeness of two sets based
on their COG reference points. The process to calculate the COG-based similarity degree

measure is summarised as below.
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Step 1: Determine the point of centre of gravity for each triangle fuzzy set. Given a

generalised triangle fuzzy set A, its COG G(a*, u(a*)) is shown in Fig. 2.6, which can be

calculated by:
* = W , (2.28)
3
As u(ay) = u(az) =0, u(a*) can be simplified to:
. a
u(a*) = “(32) . (2.30)
) A
w(@y) oo (a2 1 (22))
COG(a*, (@)
/
1 (32)/3 ......................
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(au 1 (a1)) (as 1 (a3))

Fig. 2.6 An example triangular fuzzy set and its COG [4]

Step 2: Calculate the similarity degree S(A,A’) between fuzzy sets A and A’ by:
3
Y lai —ajl s
AAN = 1_i:1— (1=l —a, B(Suppa,Supp

S( 9 ) ( 3 ) ( |ClA ay |) (231)

“min(p(a} ), 1(ay )
max(u(ay), u(ay)
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where a} and a, are calculated by Equation 2.28, p(a}) and u(aj,) are obtained from

Equation 2.30, and B(Suppa,Suppy) is defined as follow:

1, if Suppa+Suppar #0
B(Suppa,Suppyr) = (2.32)
0, if Suppa+ Suppa =0,

where Suppa and Supp, are the supports of the fuzzy sets A and A’ respectively, which in

turn are calculated as:

SuppA:a3_a1 ) (2 33)

Suppy = a3 —dj .
In the above equation, B(Suppa,Supp) is used to determine whether COG distance (1 —
]a} — ajf‘, ) needs to be considered. For instance, if fuzzy sets A and A’ both are the crisp values,
(i.e., Supps = Supps = Suppa + Supps = 0), the COG distance will not be considered for
the degree of similarity measure; otherwise, the COG distance will be considered. In this
measure, again the larger value of S(A,A’) means that the two fuzzy sets A and A" are more

similar.

2.3.3 Rule Base Adaptation

There is a need for effective methods for tuning the membership functions so as to minimise
the output error measure or maximise performance index. Considering the data-driven
methods for rule base generation, usually a raw rule base is generalised from the data firstly,
by which the fuzzy partition of variable domains and the number of rules are determined.
For instance, neuron-fuzzy system has been employed to initialise membership functions
and to extract fuzzy rules from a large data set [203]. Secondly, the raw rule base is adapted
or fine-tuned using optimisation algorithms, with Genetic Algorithm (GA) being a popular
choice [204] and other hybrid choice [205, 206]. Knowing that the success of data-driven
approaches is built on a large amount of training data and complex calculations, the system
may perform poorly if the quantity of the available data is not able to reach the minimum
requirement for the appropriate use of neural networks or GAs.

Tuning fuzzy rule-based systems for linguistic fuzzy modeling is an interesting and
widely developed task. It involves adjusting some of the components of the knowledge
base without completely redefining it. One of the most promising research topics in fuzzy
modelling relates with the quest of a good trade-off between interpretability and accuracy.
It is usually implemented by tuning the surface structure using linguistic hedges or by
tuning the deep structure by changing the basic membership functions parameters and using
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nonlinear scaling factors [207]. Genetic tuning of fuzzy rule is often used for such rule base
adaption [208, 209, 207].

The adaption for TSK model is relatively simple because the adaption has no need
to consider the linguistic meaning for adjusted rules. In [210], a recursive approach for
adaptation of fuzzy rule-based model structure has been developed and tested. It uses on-line
clustering of the input—output data with a recursively calculated spatial proximity measure.
The proposed algorithm is instrumental for on-line identification of Takagi—Sugeno models,
exploiting their dual nature and combined with the recursive modified weighted least squares
estimation of the consequent-part parameters of the model. The procedure for the on-line

rule-base adaptation can be summarised as follows:
1. Initialisation of the rule-base structure (antecedent part of the rules).
2. Reading the next data sample at the next time step.
3. Recursive calculation of the potential of each new data sample.

4. Recursive update of the potentials of the established centres because of the influence
of the new data.

5. Possible modification or innovation of the rule-base structure based on the comparison
between the potential of the new data sample and the potential of the existing rules’

centres (continues for the next time step from step 2).

The adaptive-network-based fuzzy inference system (ANFIS) [211] serves as a basis for
constructing a set of fuzzy If-Then rules with appropriate membership functions to generate
the stipulated input-output pairs. It can construct an input-output mapping based on both

human knowledge in the form of fuzzy If-Then rules and stipulated input-output data pairs.

2.4 Curvature Value Calculation

Curvature is an important concept in the field of geography, which is conventionally used to
investigate the water flow over a landscape. It is used in 2D images or maps, and 3D digital
elevation models. It has been used to match finger print, describe shapes of Devanagari
characters [212], and localise the nose tip point of 3D-face images [213]. It is used in
graphical and engineering applications that contain more irregular discrete data, such as
feature recognition, segmentation, rendering, and face recognition [214-217].

There are mainly two types of methods for curvature calculation. The first type is based

on the directional derivative with meshes or curve fitting [218], such as the profile curvature,
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the streamline curvature, and the planform curvature. The second type is based on relation of
points and surface, usually works on a moving least-squares (MLS) surface [219], such as the
Gaussian curvature, the mean curvature, the maximum principal curvature and the minimum
principal curvature. The maximum and minimum principal curvatures can be derived from
the Gaussian curvature and the mean curvature. The first type is relatively simple and is
usually used in meshes or curve fitting situations with more regular data, in comparison, the

second type is more suitable for irregular data with complex model.

2.4.1 Directional Derivative

The first type of curvature calculation methods is based on a directional derivative [218].
A directional derivative represents the steepest downward gradient for a given direction. It
refers to the rate at which any given scalar field F(x,y), changes as it moves in the direction
of some unit vector, 7:

Dn)(F) = F-n, (2.34)

where F(x,y) is a scalar field, 7 is a unit vector. This expression can be used to define several
different kinds of curvature, among which the profile curvature is a typical one. It is the
rate at which the surface slope, S, changes as it moves in the direction of the unit vector
—(7f/S), i.e., in Eq. 2.34, the scalar field F is as S, the unit vector 7 is as —(5/f/S), and
V[ 1s the gradient of this surface. Note S is the slope defined as the magnitude of the gradient

S(xy) =Ivl=\/f2+ 1, (2.35)

where the subscripts x and y indicate the partial derivatives of the surface f(x,y).

vector:

As illustrated in Fig. 2.7, eight directions are defined to represent the directions clockwise
from the centre of the sub-region to the four corners and the central points of the four edges.
Based on these directions, different directional derivative values (D;,i = 1,2,...,8) can be
calculated, with the profile curvature going along the steepest downward gradient. That
is, the profile curvature value takes the maximum absolute value of the eight directional
curvature values: V,, = max(D1,D,,D3,D4,Ds,Dg,D7,D3). Note that during the calculation,
the unit vector 7 in the red directions is \/§ times of the one in the green directions. After the
calculation, a zero curvature value indicates that the surface is flat or linear, while the positive
or negative value indicates that the surface is upwardly concave or convex. As the current
work only interests in the linearity of the surface, the biggest absolute curvature value D; of

the eight directional curvature values is utilised. The profile curvature can also be directly
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calculated using the partial derivatives with following formula derived from Eq. 2.34.

(fEfeet2fcfofor+ i)

V,=— =

(2.36)

A Directions

>
X

Fig. 2.7 Directions for profile curvature value approximation

2.4.2 MLS surface

The second type of curvature calculation methods is based on a MLS surface. It defines a MLS
surface S as the stationary set of a projection operator ¥, , i.e., S = {(x € R*| yp(x) =x}.
As a smooth surface defined by a projection process [220, 221], MLS surfaces have been
proposed and proven not only to be successful in 3D modeling and rendering, but also

been applicable for point set de-noising, up-sampling, down-sampling, offsetting and so on.
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Based on a more general definition of this projection [222, 223], a mathematical proof of the
convergence of the projection procedure is presented in [224, 225].

Except for the previously surfaces methods such as curve fitting [226, 227], polygonal
meshes [228, 229], high-order surface based methods by locally fitting a surface or by least
square fitting of a local parametric quadric surface [230, 231], an new implicit MLS surface
method was proposed in [219]. It explicitly defines the MLS surface as the local minimal
of an energy function e(y,a) along the directions given by a vector field n(x). Here, y is a
position vector and a is a direction vector. Following this, the MLS surface S can be implied
or implemented by determining the vector field n and the energy function e. Suppose a
normal vector v; is assigned to each point of q; € R? of an input-point set Q, then the vector

field n is:
YqcqVif(x,qi)

n(x) = , (2.37)
|| LgieqVif (x,qi)]]
where
—[|x—q;
0(x,qi)=e (2.38)

is a Gaussian weighting function, in which 4 is a Gaussian scale parameter that determines
the width of the Gaussian kernel. If the normal vector v; is not readily available, as can be
the case in some applications, it can easily compute a normal vector for any point with the
normalised weighted average of the normals of its nearby sample points. The energy function
e: R?® x R* = R can be defined as

e(y,n(xj)) = ZQ(<y—qi>Tn<xj>)2e<y,qi>. (2.39)
qi€

It has been proven in [224] that the MLS surface is actually the implicit surface function:
de(y,n(x))

g(x)zn(x)T< 5y y_x), (2.40)

where n : R? — R? is the vector field defined in Eq. 2.37 and e : R® x R® — R is the energy

function defined in Eq. 2.39. Applying the curvature formulas for implicit surfaces given

in [232], the Gaussian and mean curvatures of this implicitly defined MLS surface can be

et (H(g(x)) ng<><>)

vg(x) 0
g (x)I*

readily obtained as:

, 2.41)

KGaussion = -
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Kvean =
_ <Vg(x) H(g(x))-vTg(x) _ [[vg(x)||?- Trace(H)> (2.42)
Ivg(x)|]? Ivg(x)]? ’

T
where Vg(x) :( 25 8§(yx) I )

is the gradient of g(x),

dg(x) dg(x) g\ T

and H(g(x)) = v(v(g(x))) = %i (axy) %‘i S‘y) %‘i S‘Z) is the Hessian matrix of g(x). Notice

that Det(A) and Trace(A) denote the determinant and the trace of the matrix A respectively.

2.5 Summary

This chapter reviews fuzzy inference and fuzzy inference systems, fuzzy rule interpolation,
rule base generation and reduction, and previously curvature utilisation. The most common
application of fuzzy logic is the rule-based fuzzy inference system, which is composed of
mainly two parts: an inference engine, and a fuzzy rule base. Fuzzy rule base is constructed
using any available information, which can be in the form of measured data or might come
from some computational simulation. Traditional fuzzy rule base generation approaches
usually only target dense rule bases that are used for traditional fuzzy inference approaches
and most of them are based on certain similarity measures, therefore they are likely to cause
performance deterioration along with the size reduction of the rule base.

This work presents a novel data-driven rule base generation approach for FRI, which
directly generates sparse rule bases from datasets by effectively using curvature values tradi-
tionally utilised in geography. The proposed work not only can use curvature values to help
perform feature selection and instance selection separately, but combine them simultaneously.
It designed a curvature-based mechanism to effectively select the important data (also with
the important features), thus to maintain very high accuracy even when there are only several
rules left in the sparse fuzzy rule base.






Chapter 3

Curvature-based Sparse Rule Base

Generation

It is important to keep a good balance between model accuracy, efficiency and transparency,
as discussed in Section 1.4. Sparse rule base generation with the support of FRI is one
solution which is performance-wise accurate, computationally efficient, and linguistically
tractable. Therefore, a novel data-driven rule base generation approach for FRI is proposed,
which directly generates sparse rule bases from datasets by using curvature values [233]. It
should provide an objective tool to distinguish what is important in datasets and is helpful
for solving existing issues in Section 1.4. In this chapter, an initial investigation into the
feasibility of a curvature-based sparse rule base generation approach for FRI is carried. This
chapter details the mechanism and the implementation of the proposed method. The whole
work flow of the proposed method is summarised as in Fig. 3.1.

The proposed approach can directly generate sparse rule bases from datasets by effectively
using curvature values traditionally utilised in geography. Note that curvature is an important
concept in the field of geography, which is conventionally used to investigate the water flow
over a landscape. Therefore, the curvature values are only workable in three-dimensional
spaces (or a rule with two antecedents and one consequence) and thus cannot be directly used
for higher-order problems. As a solution, for any given higher-order problem, the proposed
approach firstly decomposes the higher-order space into a number of three-dimensional
spaces, and then approximates the importance of the higher-order spaces by aggregating the
curvature values of the corresponding decomposed three-dimensional ones. From this, the
most important rules are selected to form a raw rule base, which is then optimised using a
general optimisation approach, such as the genetic algorithm. Different to the conventional
fuzzy rule base generation approaches (which usually only target dense rule bases that

are used for traditional fuzzy inference approaches and most of them are based on certain
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Fig. 3.1 Work flow of the proposed work

similarity measures, therefore they are likely to cause performance deterioration along with
the size reduction of the rule base), the proposed approach discriminates rules by calculating
their curvature values.

For better understanding, the rest of the chapter is organised as follows. Section 3.1
explains the key idea and the novel contribution of the curvature utilisation for fuzzy rule
selection, which is the backbone of the proposed curvature-based sparse rule base generation
method. Following this, in Section 3.2, the inference problems with two inputs and one output
(referred to as the basic case) is considered first. In Section 3.3, the general situation with
multiple inputs (referred to as the general case) is discussed. Finally, Section 3.5 summarises
this chapter.

3.1 Curvature-Based Fuzzy Rule Selection

The proposed data-driven rule base generation approach for FRI is based on the utilisation of
curvature, which is presented in this section. By artificially viewing an inference problem

(such as classification, diagnosis or prediction) with two inputs and one output as a geometry



3.2 Basic Case with Two Inputs 43

object, the curvature values as introduced in Section 3.1 can be used to represent the linearity
of the object surface. This then reveals the extents to which the geometric object deviates
from being ‘flat’ or ‘straight’. Considering that most of the existing FRI approaches are
essentially fuzzy extensions of crisp linear interpolation [113], the ‘flat’ or ‘straight’ parts
of the geometry object can be easily approximated by its surroundings, and therefore can
be omitted. Given a training dataset with two input features and one output feature, the
data instances that represent higher curvature values are more important in summarising and
generalising the pattern entailed by the dataset. Therefore, they can be used to construct a

sparse rule base or to simplify an existing complex rule base.

3.2 Basic Case with Two Inputs

A sparse rule base generation approach based on above motivation for a problem with two
inputs and one output is presented below.

3.2.1 Problem Domain Partition

The partition approaches used in conventional fuzzy rule base generation methods, such as
the partitioning and clustering approaches reported in [234], can also be used in this work.
Specifically, if the training dataset is sparse, non-grid partition is applied; otherwise, grid
partition is used. Given a dataset with two input features (x, x) and one output feature (y),
denote the universe of discourse of the inputs to be [x1,X1], [x2,X2], and that of the output to
be [y,y]. If the dataset is very sparse, each data instance in the dataset is used to represent a
region. Therefore, the number of regions is equivalent to the number of the data instances in
the dataset. If the dataset is dense, the domain is evenly divided into n; * ny regions. The
values of n1 and n; for a given problem are usually empirically determined. Large values of
n1 and ny lead to a large rule base, which requires more memory and greater computation
efforts. Smaller values of n; and n; lead to a more compact rule base, which may only offer
poorer performance. The general partition equation for more general case with multiple

inputs (more than two inputs as in basic case) is summarised in 3.3.1.

3.2.2 Curvature-based Region Selection

Curvature values represent the ‘straightness’ or ‘flatness’ of a surface, which serves as an
important description of intrinsic surface characteristics. Given that most of the existing
FRI approaches are essentially fuzzy extensions of crisp linear interpolation, the ‘flat’ or

‘straight’ parts of a pattern can be easily approximated by its surroundings, as shown as the



44 Curvature-based Sparse Rule Base Generation

blue dots in the Fig. 3.2, which can be omitted. The parts with higher curvature values need
to be explicitly represented by fuzzy rules, and the corresponding rules will be selected to
initialise the rule base, as shown as the red ones in the figure. Thus, the important rules for
FRI can be identified by the curvature values. Therefore, curvature is intuitively employed as
the criterion to select the most important regions and hence to generate the most important
rules in the implementation of FRI systems. The curvature value of a region is positively
proportional to the importance of the region. So the criterion of instance selection can be
summarised as: the higher the curvature value is, the more important the instance is. Based
on this selection criterion, there are two ways to select the instances: by a curvature value
threshold or by a pre-set number of needed rules for the sparse rule base. A predefined
curvature threshold leads to a certain number of rules. Reversely, a predefined rule size
implies a certain curvature threshold. The curvature threshold or the number of rules is
problem-specific and are usually determined based on empirical study.

Fig. 3.2 Example for the curvature-based region selection

As discussed in Section 3.2.1, if the dataset is very sparse, a non-grid partition is applied.

The curvature of each partitioned space representing a data instance can be directly calculated
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using the MLS-based curvature calculation approach as introduced in Section 3.1. Important
data instances can then be selected using either a rule size threshold or curvature value
threshold, and the selected important data instances can be directly used for rule base
initialisation as introduced in the next subsection.

If a given dataset is dense, grid-partition is used. In order to balance cost and performance,
a hierarchical partition and region selection approach is proposed herein to support the rule
base generation. The approach is implemented in a recursive manner, and the pseudo-code of
the approach is shown in Figure 3.3 and Algorithm 1. In this algorithm, if the curvature value
of a region is greater than the activating threshold 0 and is less than the ceiling threshold
0 « (1+ p), this region will be selected to generate a rule. If the curvature value of the region
is less than the threshold 6, the region will be discarded. However, if the curvature value
of the region is very large (i.e., larger than 6 % (1 + p)), the region cannot accurately be
represented by one rule. In this case, this region is further partitioned with the activating
threshold 6 being updated as 6 * (1 + p). Following this, the procedure is recursively applied
to each of the further partitioned regions until no region needs to be further partitioned. Note
that the curvature threshold is used in this algorithm; the rule size threshold can be applied in
a similar and straightforward way, which is thus omitted here.

3.2.3 Rule Base Initialisation

Each selected region is expressed as a fuzzy rule. If the region is led by the non-grid approach,
the corresponding data instance is used to represent the region. Denote the fuzzified value
of the representative of each region as (A1, A,, B); the generated corresponding rule for the
region can be expressed as:

Ifx1 :Al andxz :Az, theny:B. (31)

For simplicity, only isosceles triangular membership functions are utilised in this work. In
other words, each fuzzy set Ay, A, or B can be defined by a pair (c,s) with ¢ representing
the normal point and s representing the support of the fuzzy set, as commonly used in the
literature [235]. In this work, the data instance that represents the region is intuitively used
to represent the normal point of the triangular membership function, while a fixed support is
initially applied to every fuzzy values of a data instance.

If the dataset is dense (and accordingly grid-partition is employed), each region usually
covers multiple data instances, and a representative data point is required to represent the
region for fuzzy rule generation. This is implemented by firstly aggregating all the data
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instances into one artificially made data instance, and then such an artificially made data
instance is fuzzified using the same approach as discussed above.

Many regression methods are discussed in 2.3. For simplicity, as the curvature values
of the data instances already imply their importance, the curvature values are intuitively
employed as a means to rank their weights in the WAA method. Suppose a given region
is formed by n data instances, the artificially made data instance representing the selected
region can be calculated as follows:

n
c=WAA(ay,ay,...,a,) = Zwiai, (3.2)
i=1
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where a; (1 < i< n) represents the ith data instance included in the selected region, and w;

(1 <i< n)is the weight ranked by its curvature value:

) (3.3)

where C; represents the curvature value of the /' data instance.
This work makes great contribution of using curvature for fuzzy rule selection, not brings

the idea but also perfectly implements it, while no other literature ever considering about it.

3.3 General Case with Multiple Inputs

The majority of real-world applications consists of more than two inputs. Thus, the approach
proposed in the last section needs to be extended. Given that traditional curvature values
only work with three-dimensional data, the most challenging part to evaluate the importance
of a high-dimensional instance is that there is no exiting approach to be directly applied
for calculating the ‘curvature’ value of a high-dimensional instance. However, a higher-
dimensional complex problem can be regarded as a collection of three dimensional problems
with two inputs and one output (i.e., multiple basic cases). With the curvature-based approach
discussed in Section 3.2, any high-dimensional problems can thus be addressed by applying
the basic case solutions multiple times.

3.3.1 Problem Domain Partition

Suppose that a complex problem P, (n > 2) contains n input features X = {x1,xp,- -+ ,x,}
and one output feature y, and that the universe of discourse of the input features is [x,X1],
[x2,%2], ..., [xn,X,], whilst that of the output is [y, 1. Similar to the problem domain partition
for the basic cases, each data instance in the dataset represents a hypercube in the problem
domain. Therefore, the number of hypercubes will be equivalent to the number of the data
instances in the dataset if the dataset is very sparse. In this case, each hypercube is represented
as a fuzzy rule.

If the dataset is dense, grid partition is applied. In this situation, the input domain is
evenly partitioned into m * my * ... x m, hypercubes, where m;, 1 < i < n, represents the
number of partitions in the variable domain of x;. The values of m; are usually empirically

determined by experts or statistically calculated by clustering methods such as k-means.
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Traditional fuzzy partition methods represent each hypercube as a fuzzy rule. Hence, any
given complex problem P, will lead to a rule base with m xmy * ... x m,, fuzzy rules [236].

For simplicity, let 4 be the number of data instances if the given dataset is sparse, and
h = my xmy % ... xm, if the given dataset is dense. Accordingly, the generated hypercubes
can be collectively represented as H = {H,,H>,--- ,Hj }. Note that some of these rules may
not be necessary or can be represented by their neighbouring ones. Therefore, the importance
of the hypercubes needs to be discriminated such that a sparse rule base can be generated
based on the most significant hypercubes.

Here the input and output spaces are divided into fuzzy regions or hypercubes. Given
a set of examples with multiple inputs (m) and single output, denoted as (xlj‘-;yk) where j
=1,. . ., mand k =1, . . ., n. Define the universe of discourse of each input variable as
[x; ;x}L] and the output variable as [ y~;y "] and then divide each universe of discourse into
N intervals. The minimal and maximal values of each variable are often used to define its
universe of discourse. That is [x;;x;“]=[min(x j),max(x;)]. They are also considered to be
the centre of the left end term and the right end term, respectively. That is, ¢ ; = min(x;) and
CNj = max(x j). Accordingly, the other term centre of each interval, ¢;;, can be computed as
follows:

Cij = min(x;) + i(max(x;)) — min(x;))/(N—1), wherei=2,....N — 1. (3.4)

The selected regions or hypercubes can be represented by fuzzy rules as in 3.3.5.

3.3.2 Representing Hypercube by Cubes

The traditional curvature value is only applicable in a geometric space with three dimensions.
Hence, there is no equation to directly calculate a ‘curvature’ value for a high-dimensional
instance, and thus to directly use the value for representing its importance. However, based on
the curvature values of its decomposed cubes, the importance of a high dimensional hypercube
can still, to some extent, be identified. In order to distinguish important hypercubes, every
high-dimensional hypercube H;, 1 <i < h, is broken down into ¢ = C,% = ﬁiz)' cubes.
This is done by considering all the combination of two input features and the output feature.

Therefore, the collection of hypercubes and the corresponding decomposed cubes can be
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represented as:

Cii Gy Gp - Cn

Cio Cnp C3p - Cp
H=(HHyo H)= | “l (3.5)

Clc CZC C3c T Chc

where C;; represents the jth cube of the ith hypercube H;, 1 <i<hand 1 < j < c. Note that
cubes Cyj, Cyj, - - -, Cpj share the same two input features for any 1 < j <c.

The importance of a hypercube can be collectively determined by its decomposed cubes.
That is, the importance of hypercube H; can be determined by the curvature values of
Ci1,Cp, - -+ ,Cic. The curvature value v;; of each artificially created cube C;; can be calculated
using the approach detailed in Section 3.1. Collectively denoting the values of all cubes as V,

the calculated results of all cubes can then be represented as follows:

Vi1 V21 V31t o Vil
Vi2 V22 V32 ot Vp)

V=1 . . . . | (3.6)
Vie V2¢ V3¢ - Vi

3.3.3 Hypercube Selection

The importance of each hypercube can be represented by the summation of the curvature
values of its decomposed cubes. In particular, given a set of hypercubes H and the required
number of rules m in the to-be-generated rule base or an accumulated curvature threshold
0, the algorithm selects a set of the significant hypercubes as the output H', using a way
similar to the approach presented in Section 3.2.2. Note that if the parameter 6 is given, the
algorithm works on the same principle as Algorithm 1; thus, the details are omitted here.

If the parameter m is given instead of using 0, the hypercube selection process is sum-
marised in Figure 3.4 and Algorithm 2. The most significant m instances or hypercubes can
be selected simply by taking the first m hypercubes with the highest accumulated curvature
values after ranking them in descending order, as expressed in Line 8. The accumulated
curvature value regarding a hyper cube H;, represented as H;.weight, can be calculated as the
summation of all its related decomposed cubes (as expressed in Line 5).

Here the summation rather than maximum is used , which to some extent eases the
influence of noise. Furthermore, some hypercubes which has no significant highest values in

some cube 3D dimensions may still be very important because it may have relative higher
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curvature values in many cube 3D dimensions. However, in some experiments, the utilisation
of maximum probably produce better results, which should be further investigated.
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Fig. 3.4 Flowchart for the hypercube selection

3.3.4 Feature Discrimination

In addition to the fact that some hypercubes are more important than the others, some dimen-
sions in a selected hypercube may also be more significant than the others as demonstrated by
many feature selection approaches [237-241]. Therefore, selective dimensionally reduced hy-
percubes can be used to generate a more compact rule base with fewer rule antecedents. This
is summarised in Figure 3.5 and Algorithm 3. It takes the output of HypercubeSelection()
as its input, in addition to the number of selected features b and the training data 7. The
output of the algorithm is a subset of input features X', which represent the most significant
input features from the entire set of input features X. The number of selected input features
“b” is selected empirically, usually no more than 20% of total feature number.

The algorithm artificially generates c set of two-input and one-output fuzzy rule bases to
evaluate the importance of the pair of associated features. Recall that since Cy;,Cyj, - - Cp;j
share the same input features in Eq. 3.5, they jointly form the jth artificial rule base. Every
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Fig. 3.5 Flowchart for the feature discrimination

pair of input features is then evaluated by its corresponding rule bases by applying the
training dataset to perform FRI with the rule bases. From this, all the artificial rule bases,
representing every pair of features, can be ranked. A weight function is designed to convert
the ranking to a weight for the pair of features. To avoid that the curvature values calculated
in different 3D dimensions may has different metrics, here the weight function is using the
rank index number of each cube in each basic case. Note that each input feature appears
in | X — 1] artificial rule bases. Therefore, the importance of the feature is calculated as the
summation of the weights of all the rule bases that consider such feature.

Note that the proposed method provides an important key to solve the issues of ‘curse
of dimensionality’, which means that as many attributes and attribute values need to be
considered, the number of rules grows exponentially with the number of input variables
and the number of fuzzy terms. The difficulty of feature selection lies in how to find good

clues to select feature variables that can most efficiently represent the intrinsic characteristics



52 Curvature-based Sparse Rule Base Generation

of the data. Its essence is a complex combinatorial optimization problem. Irrespective
of all desirable features of fuzzy rule interpolation techniques the success of a particular
method depends on its computational complexity, which should be minimised. For example,
if there are n feature variables, each feature variable has two possible states when we
are modelling: “selected" and “omitted". Then the number of elements in the sets of
feature combination dimensions is 2. If n = 3, the traditional exhaustive methods need
8 combinations [242]. However, use the proposed curvature based method the curse of
dimensionality is greatly reduced as only need 3 combinations. That means, it reduced
the traditional feature combination dimensions from 2" to C,% = #iz)" when n is large
the reduction number is very huge. For example, If n = 20, the proposed method reduces
the combinations dimensions from 1048576 to only 190, which is less than the 0.02% of

traditional one.

3.3.5 Rule Base Initialisation

Similar to the basic case, each hypercube with selected features is expressed as a fuzzy rule.
Denote the fuzzified values of a data instance or a hypercube with b selected input features
and the output feature as (Ax1,Ax2, ..-Awp, Bx); the corresponding fuzzy rule can be expressed
as:

If x; = Agy,x00 = Aga, -+, and x;, = Ay, 3.7)
then y = By. '

Note that the above rule base is a Mamdani-style rule base, as the consequence of each
rule is a fuzzy set [243]. However, depending on the real-world application, a TSK-style rule
base may also readily be generated using the existing TSK rule base generation approaches
[244]. Note that the resultant rule base has only b antecedents, which is a subset of the input
features. In an extreme situation, the resultant rule base may only have two input features,

which backtracks to the basic case as discussed in Section 3.2.

3.4 Rule Base Optimisation

The initialised rule base can be improved by fine-tuning the involved fuzzy sets, given that the
initial fuzzy sets are specified based on empirical knowledge. This can be implemented using
any general optimisation approaches; the genetic algorithm (GA) is particularly employed
in this work due to its effectiveness in rule base optimisation [125, 140, 245]. Some other
methods can also be used to optimise the if-then rules such as [211].
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Genetic Algorithms (GAs) are a class of stochastic search and optimization procedures
that are inspired by the Darwinian principle of survival of the fittest individuals and natural
selection [246]. GAs can find closest optimal solutions in complex search spaces depending
on their defined parameters. GAs differ from classical optimisation and search methods in
the following ways [247]:

1. GAs work with a coding of the parameter set, not the parameters themselves.
2. GAs search from a population of points, not a single point.

3. GAs use fitness function, not derivatives or other auxiliary knowledge.

4. GAs use probabilistic transition rules, not deterministic rules.

Genetic algorithms can be used to encode a possible solution to a given problem using a
chromosome-like data structure, applying recombination operators to these structures in order
to exploit vital information. Generally, a random population of chromosomes is generated at
the beginning of the GA implementation. These chromosomal structures are then evaluated
by allocating reproductive opportunities to those chromosomal structures which better fit the
solution domain, whist discouraging similar opportunities with poorer solutions. The quality
of a solution is naturally defined with respect to the present population [248]. Their operation
is dependent on two important operators: crossover and mutation. The population (the set
of chromosomes) is initially generated randomly and their members are then selected for
reproductive process with respect to their fitness values. The chromosomes with higher fitness
values have better chances to reproduce. The reproductive process is repeated until desired

conditions are met, such as a desired fitness level, or a maximum number of generations.

3.4.1 Population Initialisation

Specifically, a chromosome is designed to represent all the fuzzy sets in the initialised rule
base [249]. Given the fixed representative value and isosceles shape of fuzzy set A, A can be
readily constructed from the support of A (denoted as S(A)). Then, the ith rule in Eq. 3.7 can
be represented by b+ 1 parameters: S(A;1),S(Ai2),....S(Ajp) and S(B;). Thus a chromosome
representing all the rules in the rule base has (b + 1) xm genes, as illustrated in Fig. 3.6,
where m represents the number of rules in the rule base. Following this, the initial population
can then be generated by creating a number of individuals, i.e., P = {I}, 1, ...,I|]P>|}. Each
individual /; is a chromosome representing a potential solution to the given problem, where
1<i<|P|.
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Typically, the size of population (|IP|) is determined based on the given problem, and it
may typically contain from several hundreds to several thousands of individuals, each of
which is a potential solution to the problem. The first individual /; in this case represents
exactly the raw rule base generated through the approach discussed in Section 3.2.3 and
Section 3.3.5, whilst the other individuals are modified versions of the first one. Intuitively,
the evolved individuals should have a larger chance to be similar to the one in the raw rule
base than others. Therefore, individuals {£,/3...,1p|} are randomly generated such that
the modified support values of a particular rule antecedent or consequence follow a normal
distribution. In particular, suppose that the value at position i of individual /; is supp;, then
the i’ position for the rest of the individuals can be generated using a Gaussian distributed
random number generation approach such as the classical Box-Muller-Wiener algorithm,

with supp; being the expected value [250].

Input 1 Input 2 Input b Output Input 1 Input 2 Input b Output
I1 | S(An) S(Au) . | S(Alb) | S(B1) ' | S(Aml)l S(Amz) . | S(Amh)l S(Bm) |
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Fig. 3.6 Chromosome representation in GA

3.4.2 Fitness Evaluation

An objective function is used in GA to measure the fitness or quality of individuals. Typically,
in this initial work, the objective function is defined as the root mean square of the error
(RMSE). Given an individual I;, 1 <i < |P|, the RMSE value regarding this individual can
be calculated as follows:

) (3.8)
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where m is the size of the training data set; z; is the labeled (defuzzifised) output value of the
' training data instance and 2 ; represents the (defuzzifised) output that is generated by a
particular FRI approach.

In this case, the fittest individuals will have the lowest numerical value of the associated
objective function. As the ‘roulette wheel’ selection method is used in the current work to
probabilistically select individuals for reproduction, a fitness function is used to transform
the objective function value into a measure of relative fitness [251], in an effort to prevent
premature convergence by limiting the reproductive range so that no individuals generate an
excessive number of offspring. The fitness of an individual /; in the current work is calculated

as follows [251]:
2(max—1)(r;i—1)

13 ’

where r; is the ranking position of individual /; in the ordered population PP, and max is the

f(li) =2—max+

(3.9

bias or selective pressure, towards the fittest individuals in the population.

3.4.3 Reproduction and Selection

Two genetic operations (crossover and mutation) are used to produce the next generation of
the population. The population [P are ranked based on their fitness values, and then k pairs
of individuals or elites are selected using a ‘roulette wheel” mechanism to produce the next
generation of individuals by crossover and mutation.

Crossover exchanges contiguous sections of the chromosomes, which takes two parent
solutions and produces two children solutions from them. Each pair of individuals in the k
pairs of selected elites acts as the parents for reproduction. A single crossover point on each
pair of selected parents, organism string is selected, and all data after the index point of the
two parents are swapped. The resulting individuals (after mutation) will be part of the next
generation, denoted as [P’

Mutation is used to maintain genetic diversity from one generation of a population to the
next, which simulates biological mutation. Mutation alters one gene value in a chromosome
from its initial state, which helps the algorithm to avoid local minima by preventing the
population of individuals from becoming too similar to each other. A certain percentage of
offspring in P’ are selected to take the mutation operation. In addition, a single or multiple
points of a rule can take the mutation procedure. Particularly in the current work, the mutation
procedure produces a random support value regarding a particular fuzzy set for the mutation
point using another Gaussian random number generation approach.

Suppose that the second generation of population (I”’) has been generated. The fitness
function, Equation 3.9, will be employed again to determine the quality of each individual in
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IP’. Finally, the best individuals in P/, which are represented by the smallest fitness values,
will be selected and used to replace the worst ranked individuals in [P, thus completing one
iteration of the GA searching process by generating a new population of solution P”. The
entire process of selection and reproduction is shown in Fig. 3.7.
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Fig. 3.7 Selection and reproduction process

3.44 Termination

The reproduction procedure is repeated until the pre-specified maximum number of iterations
is reached or the objective value of an individual is less than a predefined threshold. When
the GA terminates, the fittest individual in the current population is the optimal solution.
Following this, a number of the best individuals in the next generation are selected and used
to replace the worst-ranked individuals in the initial population. In this way, one iteration
of the GA process is completed. This process is iterated until the pre-specified maximum
number of iterations is reached or the objective value of an individual is less than a predefined
threshold. When the GA terminates, the fittest individual in the current population is the
optimal solution.

Notice that GA has been used to optimise fuzzy rule bases to support FRI in [252].
Specifically, in the current work, GA was used for clustering, which is the process of
grouping similar interpolated rules to form clusters. These clusters were further used to
form new, aggregated rules to update the existing rule base. Therefore, GA was used in the
rule base updating stage after a number of inference iterations. In contrast, in this proposed
approach, GA is used to optimise the raw rule base before it is used for inference. The
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introduction of GA to rule base generation indeed provokes high computational complexity,
but this is acceptable, as the rule base generation is a one-time process that is carried out

offline.

3.5 Summary

This work presents a novel data-driven rule base generation approach for FRI, which is able
to directly generate a sparse rule base from data. In particular, the approach firstly divides
complex problem into small problems, each with the basic case of 2 4 1 dimensions. Then
in each basic case the sub-problem is fuzzy-partitioned into a number of sub-regions and
each sub-region can be represented as a fuzzy rule. Following this, the curvature of each
sub-region is calculated. As detailed in Section 3.2.2, curvature values of regions (instances)
in the training data to some extent represent their importance for solving the given problem.
By artificially viewing the pattern to be modelled hidden in the training data set as a geometry
object, the curvature values can be used to represent the linearity of the surface of the hidden
pattern, as they reveal the extent to which a geometric object deviates from being ‘flat” or
‘straight’. Given that most of the existing FRI approaches are essentially fuzzy extensions of
crisp linear interpolation, the ‘flat” or ‘straight’ parts of a pattern can be easily approximated
by its surroundings, thus they can be omitted. In contrast, the regions (instances) with
higher curvature values can make prominent effects to the conclusion and are necessary to be
selected to construct the sparse rule base. Those sub-regions which have higher curvature
values are then identified, and the corresponding rules will be selected to initialise the rule
base. In the complex problem or model, the performances of all rule bases in the basic
cases are collected to identify the important features, thus the most important instances (or
hypercubes) with their important features will be selected to generate the final rule base. The
initial rule base can be optionally optimised by fine-tuning the membership functions of the
fuzzy sets involved in the rules by using a genetic algorithm (GA) optimisation method. The

proposed method will be evaluated in the next chapter.






Chapter 4

Applications of Curvature-based Sparse
Rule Base Generation

The proposed method was evaluated using a simulated experiment and three real-world
applications, i.e., an indoor environment localisation problem, a student knowledge level eval-
uation problem, and the zero-shot learning image classification problem. The experiments
demonstrate the working procedure of the proposed approach, while the applications show
the power of the proposed approach in solving real-world problems. The proposed method
provides a flexible and effective framework to generate a sparse rule base. It efficiently and
accurately utilises the available data to generate a sparse rule base for FRI and then inference
results which outperforms the state-of-the-art methods. Although there are curvature calcula-
tion methods existing in the literature, no work has so far been done to apply the curvature
idea into sparse rule base generation for fuzzy rule interpolation, and no work has applied
the curvature to solve the problems in the fields of the above three real-world applications.
For example, it is the first time to introduce curvature-based sparse rule base generation and
fuzzy rule interpolation into Zero-Shot learning image classification (computer vision field).
The program was developed using MATLAB (R2017b) and was run on a laptop with the
Intel i7-4810MQ CPU 2.8 GHz and 16 GB of RAM, in windows 7.

4.1 Experimentation Design

Firstly, for better understanding, a simulation experimentation as basic case is explained,
with only 2 input features and 1 output feature, to help readers easily understood the key idea
of the curvature based sparse rule base generation. This can easily explain the mechanism

and the power of the curvature utilisation.
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Secondly, a complex application for indoor environment localisation is used, with 7
multiple input features and 1 out feature (4 classes), and with totally 2000 instances but
evenly distributed with four output classes (each class 500 instances). This experiment shows
the proposed method works well in general case with multiple inputs.

Thirdly, a more complex application with student knowledge level evaluation is used,
with 5 input features and 1 output feature (4 classes). Note that both the training and testing
instances are not evenly distributed with four output classes, and the output are even in
linguistic expert knowledge (Very Low: 50, Low: 129, Middle: 122, High 130). This
experiment shows the proposed work can also work for linguistic environment and can
provide an objective way to distinguish what is important thus somehow ease the subjective
expert knowledge.

Finally, some much more complex ZSL (zero-shot learning) applications are used, to
validate the proposed method in state-of-the-art hot fields. For example, the AWA (Animal
with Attributes) dataset with 4096 input features and 1 output feature (50 classes), and with
totally 37322 instances. This experiment shows that the proposed method introduce the
curvature based sparse rule base generation into the computer vision field at the first time,
and it can infer full associations between seen and unseen classes using only a few similes.
The number of required labelling is reduced from 50x85 to only 10x2 that is only 0.47% of

the original annotation work.

4.2 Simulated Experiment

4.2.1 Problem Partition

The problem presented in [4, 58, 244] is reconsidered here for a comparative study, which

models the non-linear function as defined as:
f— 1 — 1 X)
f(x,y) =sin ( ) sin ( ,

where the domains of the two inputs are x € [—10, 10] and y € [—10, 10], and the domain of
the outputis z € [—1,1].

In order to reveal such a mathematical model, the approach first uniformly partitions the
problem space into 20 x 20 grid areas, resulting in a total of 400 sub-regions, as illustrated in
Fig. 4.1. The input domain of the variable x has been divided into 20 equal intervals, with

each represented as a fuzzy set, as shown in Fig. 4.2. This is also the case for the variable y.
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4.2.2 Curvature Calculation and Rule Selection

The degree of flatness or sharpness of each such sub-region can be represented by its curvature
value. The curvature values of all sub-regions are calculated using the profile curvature from
the directional derivative method, with the results listed in Table 4.1. For better revealing
the hidden model, the sub-regions with different curvature values are also marked with
different colours as summarised in Fig. 4.5. For example, in the first sub-region (where x
is around —9.5 and y is around —9.5), the curvature value is 0.099. This figure is relatively
high, which means that the sub-region is relatively sharp and cannot be easily approximated
by neighbouring sub-regions. This selected sub-region is represented as a fuzzy rule for
initialising the rule base, which is optimised using the GA.

The sub-regions with higher curvature values are more important in summarising and
generalising the pattern entailed by the dataset. Therefore, they can be used to construct a
initial sparse rule base. The important regions can be selected according to the curvature
values. Each selected region is expressed as a fuzzy rule.

4.2.3 Rule Base Optimisation

The initialised rule base includes all the most important rules that cannot be accurately
represented by their neighbouring ones, but these rules are not optimal in terms of their
membership functions. After generating the raw rule base, the optimisation algorithm GA is
employed to fine-tune the membership functions involved in the rules. In this experiment,
the population size was set as 100, with the first individual in the population configured to
represent exactly the generated raw rule base. All other individuals were randomly generated
using the approach introduced in Section 3.4. The max value parameter of the fitness function
(Equation 3.9) was set to 2, the maximum number of generations was set to 1000, and the
probabilities of crossover and mutation were set to 0.8 and 0.01, respectively. The optimised
rules of a rule base with 23 rules are summarised in Table 4.3.

The optimisation generally leads to a decrease of the average error by 5% to 20%
compared to the error resulting from the employment of the raw rule base. When the rule
base contains a relatively large number of rules, a significant improvement in accuracy was
recorded, as shown in Fig. 4.4, where the rule base with 12 rules has the smallest error;
conversely, when the rule base consists of fewer rules, only a very small improvement was
recorded, as demonstrated in Fig. 4.3, where rule bases with 8 and 4 rules have smaller errors.



4.2 Simulated Experiment 63
Table 4.1 Curvature values of the sub-regions
x/y Interval 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20

1/1-10 | 0.0985 | 0.0385 | 0.0100 | -0.0043 | -0.0109 | -0.0113 | -0.0055 | 0.0076 | 0.0333 | 0.0930
1/11-20 | -0.0930 | -0.0333 | -0.0076 | 0.0055 | 0.0113 | 0.0109 | 0.0043 | -0.0100 | -0.0385 | -0.0985
2/1-10 | 0.0385 | 0.0652 | 0.0240 | -0.0167 | -0.0393 | -0.0407 | -0.0208 | 0.0180 | 0.0615 | 0.0491
2/11-20 | -0.0491 | -0.0615 | -0.0180 | 0.0208 | 0.0407 | 0.0393 | 0.0167 | -0.0240 | -0.0652 | -0.0385
3/1-10 | 0.0100 | 0.0240 | 0.0063 | -0.0323 | -0.0639 | -0.0661 | -0.0375 | 0.0019 | 0.0235 | 0.0132
3/11-20 | -0.0132 | -0.0235 | -0.0019 | 0.0375 | 0.0661 | 0.0639 | 0.0323 | -0.0063 | -0.0240 | -0.0100
4/1-10 | -0.0043 | -0.0167 | -0.0323 | -0.0550 | -0.0824 | -0.0849 | -0.0586 | -0.0348 | -0.0185 | -0.0058
4/11-20 | 0.0058 | 0.0185 | 0.0348 | 0.0586 | 0.0849 | 0.0824 | 0.0550 | 0.0323 | 0.0167 | 0.0043
5/1-10 | -0.0109 | -0.0393 | -0.0639 | -0.0824 | -0.0948 | -0.0963 | -0.0843 | -0.0667 | -0.0428 | -0.0148
5/11-20 | 0.0148 | 0.0428 | 0.0667 | 0.0843 | 0.0963 | 0.0948 | 0.0824 | 0.0639 | 0.0393 | 0.0109
6/1-10 | -0.0113 | -0.0407 | -0.0661 | -0.0849 | -0.0963 | -0.0975 | -0.0868 | -0.0690 | -0.0443 | -0.0153
6/11-20 | 0.0153 | 0.0443 | 0.0690 | 0.0868 | 0.0975 | 0.0963 | 0.0849 | 0.0661 | 0.0407 | 0.0113
7/1-10 | -0.0055 | -0.0208 | -0.0375 | -0.0586 | -0.0843 | -0.0868 | -0.0619 | -0.0399 | -0.0228 | -0.0075
7/11-20 | 0.0075 | 0.0228 | 0.0399 | 0.0619 | 0.0868 | 0.0843 | 0.0586 | 0.0375 | 0.0208 | 0.0055
8/1-10 | 0.0076 | 0.0180 | 0.0019 | -0.0348 | -0.0667 | -0.0690 | -0.0399 | -0.0021 | 0.0175 | 0.0100
8/11-20 | -0.0100 | -0.0175 | 0.0021 | 0.0399 | 0.0690 | 0.0667 | 0.0348 | -0.0019 | -0.0180 | -0.0076
9/1-10 | 0.0333 | 0.0615 | 0.0235 | -0.0185 | -0.0428 | -0.0443 | -0.0228 | 0.0175 | 0.0585 | 0.0429
9/11-20 | -0.0429 | -0.0585 | -0.0175 | 0.0228 | 0.0443 | 0.0428 | 0.0185 | -0.0235 | -0.0615 | -0.0333
10/1-10 | 0.0930 | 0.0491 | 0.0132 | -0.0058 | -0.0148 | -0.0153 | -0.0075 | 0.0100 | 0.0429 | 0.0962
10/11-20 | -0.0962 | -0.0429 | -0.0100 | 0.0075 | 0.0153 | 0.0148 | 0.0058 | -0.0132 | -0.0491 | -0.0930
11/1-10 | -0.0930 | -0.0491 | -0.0132 | 0.0058 | 0.0148 | 0.0153 | 0.0075 | -0.0100 | -0.0429 | -0.0962
11/11-20 | 0.0962 | 0.0429 | 0.0100 | -0.0075 | -0.0153 | -0.0148 | -0.0058 | 0.0132 | 0.0491 | 0.0930
12/1-10 | -0.0333 | -0.0615 | -0.0235 | 0.0185 | 0.0428 | 0.0443 | 0.0228 | -0.0175 | -0.0585 | -0.0429
12/11-20 | 0.0429 | 0.0585 | 0.0175 | -0.0228 | -0.0443 | -0.0428 | -0.0185 | 0.0235 | 0.0615 | 0.0333
13/1-10 | -0.0076 | -0.0180 | -0.0019 | 0.0348 | 0.0667 | 0.0690 | 0.0399 | 0.0021 | -0.0175 | -0.0100
13/11-20 | 0.0100 | 0.0175 | -0.0021 | -0.0399 | -0.0690 | -0.0667 | -0.0348 | 0.0019 | 0.0180 | 0.0076
14/1-10 | 0.0055 | 0.0208 | 0.0375 | 0.0586 | 0.0843 | 0.0868 | 0.0619 | 0.0399 | 0.0228 | 0.0075
14/11-20 | -0.0075 | -0.0228 | -0.0399 | -0.0619 | -0.0868 | -0.0843 | -0.0586 | -0.0375 | -0.0208 | -0.0055
15/1-10 | 0.0113 | 0.0407 | 0.0661 | 0.0849 | 0.0963 | 0.0975 | 0.0868 | 0.0690 | 0.0443 | 0.0153
15/11-20 | -0.0153 | -0.0443 | -0.0690 | -0.0868 | -0.0975 | -0.0963 | -0.0849 | -0.0661 | -0.0407 | -0.0113
16/1-10 | 0.0109 | 0.0393 | 0.0639 | 0.0824 | 0.0948 | 0.0963 | 0.0843 | 0.0667 | 0.0428 | 0.0148
16/11-20 | -0.0148 | -0.0428 | -0.0667 | -0.0843 | -0.0963 | -0.0948 | -0.0824 | -0.0639 | -0.0393 | -0.0109
17/1-10 | 0.0043 | 0.0167 | 0.0323 | 0.0550 | 0.0824 | 0.0849 | 0.0586 | 0.0348 | 0.0185 | 0.0058
17/11-20 | -0.0058 | -0.0185 | -0.0348 | -0.0586 | -0.0849 | -0.0824 | -0.0550 | -0.0323 | -0.0167 | -0.0043
18/1-10 | -0.0100 | -0.0240 | -0.0063 | 0.0323 | 0.0639 | 0.0661 | 0.0375 | -0.0019 | -0.0235 | -0.0132
18/11-20 | 0.0132 | 0.0235 | 0.0019 | -0.0375 | -0.0661 | -0.0639 | -0.0323 | 0.0063 | 0.0240 | 0.0100
19/1-10 | -0.0385 | -0.0652 | -0.0240 | 0.0167 | 0.0393 | 0.0407 | 0.0208 | -0.0180 | -0.0615 | -0.0491
19/11-20 | 0.0491 | 0.0615 | 0.0180 | -0.0208 | -0.0407 | -0.0393 | -0.0167 | 0.0240 | 0.0652 | 0.0385
20/1-10 | -0.0985 | -0.0385 | -0.0100 | 0.0043 | 0.0109 | 0.0113 | 0.0055 | -0.0076 | -0.0333 | -0.0930
20/11-20 | 0.0930 | 0.0333 | 0.0076 | -0.0055 | -0.0113 | -0.0109 | -0.0043 | 0.0100 | 0.0385 | 0.0985
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Fig. 4.3 The average error values decrease over time during membership function optimisation
for rule bases with 3 to 9 rules

4.2.4 Inference Results and Analysis

By employing the traditional similarity-based method in [58], if the number of rules is
smaller than 23, then the sum error of testing results is too high to be discussed. However,
the proposed curvature-based method can still generate acceptable results, ie., it can achieve
the same or even better performance with the sparse rule base using fewer rules than 23
rules. The important regions can be selected according to the curvature values. The first
23 important rules are listed in Table 4.2. After selecting the most significant m rules, the
optimisation algorithm GA is employed to fine-tune the membership functions involved in
the rules. In this experiment, the population size was set to 100, the maximum number of

generations was set to 1,000, and the probabilities of crossover and mutation were set to 0.8
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Fig. 4.4 The average error values decrease over time during membership function optimisation
for rule bases with 10 to 23 rules

and 0.01, respectively. The optimised rules of a rule base with 23 rules are summarised in
Table 4.3.

To enable a comparative study, the sum error from 36 random testing points produced by
the proposed method based on different sizes of rule bases is given in Table 4.4. Compared
to Fig. 15 of [58], error measure using reduction and different interpolation methods were
shown. From this table, it is clear that rule bases with fewer rules generally lead to larger sum
error and poorer system performance, while rule bases with more rules generally result in
smaller sum error and better performance. However, it should be noted that this is not always
the case. For instance, the sum error produced by the rule base with 12 rules is smaller than
that produced by 17 rules. In fact, as shown in the table, the rule bases with 12, 10, 8, and 4
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rules in this experiment have demonstrated better performance. This is partly because these

numbers of rules more efficiently represent the intrinsic characteristics of the data.

Table 4.2 The initialised rule base

IF THEN IF THEN
i X y z i X y z
1 | (=5,-45,-4) (=5,-4.5,—4) || (0.881,0.981,1.081) 13 | (0,0.5,1) (~1,-0.5,0) (=0.125,-0.025,0.075)
2 | (=5,-4.5,—4) (4,45,5) (—1.081,-0.981,-0.881) || 14 | (=1,-0.5,0)  (0,0.5,1) (—0.125,-0.025,0.075)
3 | (4,45,5) (=5,—4.5,—4) || (—1.081,—0.981,—0.881) || 15 | (0,0.5,1) (0,0.5,1) (—0.075,0.025,0.125)
4 | (4,455) (4,45,5) (0.881,0.981,1.081) 16 | (-1,-0.5,0)  (—1,-0.5,0) (—0.075,0.025,0.125)
5 | (4,45,5) (5,5.5,6) (0.874,0.974,1.074) 17| (5,5.5,6) (—6,—5.5,—5) || (—1.068,—0.968, —0.868)
6 | (4,45,5) (=6,—5.5,=5) || (—1.074,—0.974,—0.874) || 18 | (=6,—5.5,—5) (—6,—5.5,—5) || (0.868,0.968,1.068)
7 | (—6,-5.5,—5) (4,4.5,5) (—1.074,—0.974,—0.874) | 19 | (—6,—5.5,—5) (5,5.5,6) (—1.068,—0.968, —0.868)
8 | (=5,—4.5,—4) (4,455) (0.874,0.974,1.074) 20 | (5,5.5,6) (5,5.5,6) (0.868,0.968,1.068)
9 |(5,55,6) (4,4.5,5) (0.874,0.974,1.074) 21 | (=5,-4.5,—4) (—4,-3.5,-3) || (0.789,0.889,0.989)
10 | (=5,-4.5,—4) (5,5.5,6) (—1.074,—-0.974,—0.874) || 22 | (4,4.5,5) (—4,-3.5,-3) || (—0.989,—0.889,—0.789)
11| (5,5.5,6) (=5,—4.5,—4) || (—1.074,—0.974,—0.874) || 23 | (—4,—3.5,—3) (4,4.5,5) (—0.989,—0.889,—0.789)
12 | (=6,-5.5,=5) (=5,—-4.5,—4) || (0.874,0.974,1.074)
Table 4.3 The optimised rule base

IF THEN IF THEN
i X y 3 i X y z
1| (—4.999,—4.5,-4.001) (—4.999,—4.5,—4.001) || (0.962,0.981,1) 13| (=2.192,0.5,3.192) (—2.456,—0.5,1.456) (=0.303,-0.025,0.253)
2 | (—4.999,-4.5,—4.001) (3.998,4.5,5.002) (—1,-0.981,-0.962) 14 | (~2.149,-0.5,1.149)  (—2.275,0.5,3.275) (—0.273,0.025,0.323)
3 | (4.483,4.5,4.517) (—4.504,—4.5,-4.496) || (—1,-0.981,-0.962) 15 | (~1.22,0.5,2.22) (~2.352,0.5,3.352) (0.003,0.025,0.047)
4 | (3.992,4.5,5.008) (4.002,4.5,4.998) (0.962,0.981,1) 16 | (—2.475,-0.5,1.475)  (—2.191,-0.5,1.191) (—0.075,0.025,0.125)
5 | (2.006,4.5,6.994) (2.986,5.5,8.014) (0.948,0.974,1) 17 | (5.433,5.5,5.567) (~5.628,-5.5,—5.372) || (—0.969,—0.968,—0.967)
6 | (4.005,4.5,4.995) (—6.999,—5.5,—4.001) || (—1,—0.974,—0.948) 18 | (—5.998,-5.5,-5.002) (—6.002,—5.5,—4.998) || (0.936,0.968,1)
7 | (—6.008,—5.5,—4.992) (4.003,4.5,4.997) (—0.983,-0.974,—0.965) || 19 | (—5.528,—5.5,—5.472) (5.475,5.5,5.525) (—1,-0.968,—-0.936)
8 (—4.964,—4.5,-4.036) (—5.998,—5.5,—5.002) (0.971,0.974,0.977) 20 | (4.989,5.5,6.011) (4.991,5.5,6.009) (0.936,0.968, 1)
9 | (3.004,5.5,7.996) (4.001,4.5,4.999) (0.948,0.974,1) 21 | (=7.002,—4.5,—1.998) (—3.997,—3.5,—3.003) || (0.886,0.889,0.892)
10 | (—4.997,—4.5,—4.003) (4.997,5.5,6.003) (—1,-0.974,—-0.948) 22| (3.001,4.5,5.999) (—4.001,-3.5,-2.999) || (—1,-0.889,—0.778)
11 | (5.004,5.5,5.996) (—4.995,—4.5,—4.005) || (0.948,0.974,1) 23 | (=3.999,-3.5,-3.001) (2.997,4.5,6.003) (—1,-0.889,—0.778)
12 | (—5.514,-5.5,-5.486) (—4.593,—4.5,—4.407) (—0.243,-0.025,0.193)
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Fig. 4.5 Curvature values of the sub-regions

Table 4.4 The sum error from 36 random testing points based on different sizes of rule bases

Number of rules 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3

Sum error 6.1080 | 6.1275 | 6.2183 | 5.9880 | 6.4906 | 6.4186 | 6.8214 | 6.3904 | 6.2331 | 6.0030 | 5.9036 | 5.6788 | 6.4905 | 5.7084 | 6.2782 | 5.8516 | 7.5389 | 7.0080 | 7.9842 | 5.8159 | 13.3417

4.3 Indoor Environment Localisation

4.3.1 Application Description

Detecting users in an indoor environment based on the strength of Wi-Fi signals has a wide
application domain. Deployable models have been developed in monitoring and tracking
users based on the Wi-Fi signal strength of their personal devices. The applications of such
models include locating users in smart-home systems, locating criminals in bounded regions,
and obtaining the count of users on an access point etc. An indoor environment localisation
dataset was employed in this application to validate and evaluate the proposed approach [253].
The dataset was collected in an indoor space by observing the signal strengths of seven Wi-Fi
signals visible on a smart-phone. The dataset includes 2,000 instances, each with seven
inputs and one output. Each input attribute is a Wi-Fi signal strength observed on the smart-
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phone, while the output decision class is one of the four locations. The sample data for user

localisation using wireless are listed in Table 4.5.

Table 4.5 Sample Data for user localisation using wireless signal strength

input 1 input 2 input 3 input 4 input 5 input 6 input 7 output
64 56 61 66 71 82 81 1
68 57 61 65 71 85 85 1
17 66 61 37 68 75 77 2
16 70 58 14 73 71 80 2
52 48 56 53 62 78 81 3
49 55 51 49 63 81 73 3
58 52 58 60 51 87 88 4
62 59 52 69 46 91 98 4

4.3.2 Curvature Calculation

In comparison to the synthetic dataset (where the required data can be obtained from anywhere
in the space, thus resulting in a very dense dataset), the collected small dataset is irregular and
contains discrete data. In this case, due to the sparseness of the dataset, each data instance in
the dataset is regarded as a high-dimensional hypercube and is represented as a fuzzy rule if
it is selected. In order to distinguish the data instances and to select the important instances,
all high-dimensional hypercubes are broken down into C% = ﬁ = 21 cubes. Following
this, the curvature values of all these 21 cubes from each hypercube are calculated, using
the mean curvature from the moving least-squares (MLS) surface method as introduced in
Section 3.1. The Gaussian scale parameter / in Eq. 2.38 (which determines the width of the
Gaussian kernel) is set to 0.35, and the number-of-neighbours parameter is set to 38. For
simplicity, only the curvature values of the decomposed 21 cubes from the first instance are
listed in Table 4.6, while all the other 1999 instances are omitted here due to the space limit.
Following this, the accumulated virtual ‘curvature value’ of each hypercube was calculated,
being as the summation of all its corresponding decomposed 21 cubes.

4.3.3 Rule Base Generation

Note that in the rule base generation process for classification problems, each output class

should be covered in order to avoid misclassification. Therefore, when selecting instances or
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hypercubes, the instances should be considered in tandem with the local higher curvature
values, instead of the global higher ones. Otherwise, the instances with higher curvature
values may just belong to one or two output classes in this particular application. This dataset
has 500 instances in each output class, with a total of 2,000 instances in all four output
classes. Thus, in each class, m important instances are chosen to guarantee that all the output
classes are covered. In other situations that involve an uneven distribution, the number of
selected instances in each class can be adjusted accordingly. Based on their accumulated
curvature values, for each output class, the most significant m instances or hypercubes within
the output class were selected, simply by taking the first m hypercubes with the highest
accumulated curvature values. Finally, the most important 4 x m hypercubes or instances were
selected to form the final raw rule base. The raw rule base is optimised by GA to fine-tune

the membership functions involved in the rules.

4.3.4 Inference Results and Analysis

Empirical study shows that, in this example, m = 7 produces the best performance. The
result shows that although there are 2,000 instances, only 4 * 7 = 28 important instances
were needed to construct a sparse rule base, as summarised in Table 4.7. The initial rule base
was optimised by applying the GA over the training dataset in fine-tuning the membership
functions of the fuzzy sets which are involved in the 28 rules. The results produced by
the proposed method using two to seven features and other approaches using all seven
features were compared, as shown in Table 4.8. The classification rate of the proposed
method is 99.25%, which outperforms all the existing methods. Furthermore, using the FRI
performance of the constructed intermediate rule bases, the important features can also be
identified; these appear in descending order as [5, 1, 4, 7, 6, 3, 2]. If all the seven input
features are used, the accuracy is 99.25%. Instead, if only the most important two to six input
features are used, the accuracy still remains 96.75%, 98.15%, 98.6%, 98.8%, and 99.15%,
respectively. This clearly demonstrates the superior advantage of the proposed approach.

Table 4.6 Curvature values of the decomposed cubes from the first instance

Cube Index 1 2 3 4 5 6 7 8 9 10 11

Curvature value | 0.0494 | 0.0149 | 0.1472 | 0.0069 | 0.1189 | 0.0204 | 0.0496 | 0.0568 | 0.2812 | 0.2004 | 0.0558

Cube Index 12 13 14 15 16 17 18 19 20 21

Curvature value | 0.0145 | 0.0305 | 0.0247 | 0.0732 | 0.0734 | 0.1314 | 0.0046 | 0.049 | 0.0264 | 0.0211
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Table 4.7 Data of the selected 28 instances

input 1 input 2 input 3 input 4 input 5 input 6 input 7 output index of instance
63 59 60 65 69 81 84 1 384
59 57 59 64 73 79 84 1 261
60 53 60 62 73 81 82 1 162
63 59 57 65 69 80 86 1 361
60 59 61 62 68 81 85 1 300
60 56 56 63 65 80 83 1 334
63 57 63 64 67 81 83 1 377
48 58 58 44 71 71 79 2 644
43 56 59 37 64 74 77 2 885
44 57 53 46 67 78 79 2 678
41 55 53 37 64 79 76 2 827
50 55 58 43 73 75 80 2 645
42 54 56 39 63 76 78 2 904
38 55 54 42 63 78 71 2 547
45 56 55 46 68 79 78 3 446
48 54 54 49 67 77 89 3 1187
48 57 49 53 62 79 87 3 1203
45 54 54 48 63 78 82 3 1028
51 57 54 55 62 87 81 3 1462
51 52 49 50 63 79 79 3 1090
51 52 52 56 68 79 87 3 1175
58 57 55 66 51 88 87 4 1734
56 53 51 59 50 84 84 4 1964
57 56 49 58 50 87 85 4 1810
64 54 52 58 52 89 88 4 1694
59 51 57 59 52 87 86 4 1545
58 51 56 58 50 88 88 4 1542
66 56 56 66 49 89 87 4 1635

Table 4.8 Results for comparison in application 1

Previous Methods | PSO-NN | GSA-NN | PSOGSA-NN | FPSOGSA-NN | SVM | NAIVE BAYES | Proposed Approach

Accuracy (%) 64.66 77.53 83.28 95.16 92.68 90.47 99.2
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Table 4.9 Results for comparison in application 1

Proposed Approach | 7 features | 6 features | 5 features | 4 features | 3 features | 2 features

Accuracy (%) 99.2 99.15 98.8 98.6 98.15 96.75

4.4 Student Knowledge Level Evaluation

4.4.1 Application Description

This application is illustrated by adopting the problem considered in [254]. The behaviours
or dynamic data of students are obtained from their interactions with web-environment by
the user modeling system. Such obtained data are used as input data to create and to update
user knowledge model, thus to customise subjects according to their knowledge. One key
difficulty in user modeling system design is to efficiently and accurately utilise the stored
data then classify the students’ knowledge level. A random subset with 258 observations
of the available data set was selected to generate the training set. A random subset with
145 observations of the available data set was selected to generate the validation set, each
observation or instance has the 5 inputs (crisp values) and 1 output (linguistic term) below.

Inputs:

STG (The degree of study time for goal object materials)

SCG (The degree of repetition number of user for goal object materials)

STR (The degree of study time of user for related objects with goal object)

LPR (The exam performance of user for related objects with goal object)

PEG (The exam performance of user for goal objects)

Output:

UNS (The knowledge level of user)

The proposed method is applied to test the testing data then classify the students’ knowl-
edge level. As the output results are four linguistic terms of the knowledge level classes,
which are ‘very_low’, ‘low’, ‘middle’, ‘high’, firstly some data pre-processing need to be
done to translate the linguistic terms into some crisp values, such as 1,2,3,4 respectively. The
first 10 instances of the 258 training observations are listed in Table 4.10 and 4.11. Then the
proposed methods can be used to calculate the curvature values and help select features and
instances.
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Table 4.10 Linguistic Sample data for student knowledge level evaluation

input 1 (STG) input 2 (SCG) input 3 (STR) input 4 (LPR) input 5 (PEG) output (UNS) index of instance
0 0 0 0 0 VeryLow 1
0.08 0.08 0.1 0.24 0.9 High 2
0.06 0.06 0.05 0.25 0.33 Low 3
0.1 0.1 0.15 0.65 0.3 Middle 4
0.08 0.08 0.08 0.98 0.24 Low 5
0.09 0.15 0.4 0.1 0.66 Middle 6
0.1 0.1 0.43 0.29 0.56 Middle 7
0.15 0.02 0.34 0.72 0.25 VeryLow 8
0.2 0.14 0.35 0.72 0.25 Low 9
0 0 0.5 0.2 0.85 High 10

Table 4.11 Digital Sample data for student knowledge level evaluation

input 1 (STG) input 2 (SCG) input 3 (STR) input 4 (LPR) input 5 (PEG) output (UNS) index of instance
0 0 0 0 0 1 1
0.08 0.08 0.1 0.24 0.9 4 2
0.06 0.06 0.05 0.25 0.33 2 3
0.1 0.1 0.15 0.65 0.3 3 4
0.08 0.08 0.08 0.98 0.24 2 5
0.09 0.15 0.4 0.1 0.66 3 6
0.1 0.1 0.43 0.29 0.56 3 7
0.15 0.02 0.34 0.72 0.25 1 8
0.2 0.14 0.35 0.72 0.25 9
0 0 0.5 0.2 0.85 4 10

4.4.2 Curvature Calculation

As elaborated in the 3.3.2, the whole domain space now is easily broken down into C2 =
ﬁ = 10 Basic-3D-Spaces, with the total number as the combination of any 2 input
variables out from 5 input variables. The moving least-squares (MLS) surface method is
used to calculate the curvature values. The Gaussian scale parameter 4 which determines the
width of the Gaussian kernel in the Eq. 2.38 is set to 0.382, and the number of neighbours
parameter is set to 28, which is about 1/10 of the total number of training samples. The mean

curvature in the Eq. 2.42 is calculated, and the curvatures values for all instances in all the
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Table 4.12 The performance in each basic case

Index of basic case 1 2 3 4 5 6 7 8 9 |10
Misclassified in total 258 | 156 | 157 | 132 | 88 | 160 | 151 | 63 | 135 | 85 | 23

Basic-3D-Spaces form the below matrix with 258 rows and 10 columns:

0.173 0.304 0.188 0.136 0.208 0.171 0.087 0.266 0.143 0.092
C=10.078 0.147 0.114 0.073 0.149 0.112 0.073 0.198 0.138 0.096 |,
0.069 0.130 0.078 0.073 0.088 0.124 0.074 0.139 0.156 0.095
4.1)
where 258 is the total number of training instances and 10 is the total number of divided Basic-
3D-Spaces. Each row of the matrix represents the curvatures values of the indexed training

instance in all the divided Basic-3D-Space, and reveals the importance of that instance (with
its two corresponding input features of the indexed basic case) for the conclusion.

4.4.3 Rule Base Generation

According to the curvature values above, in each basic case, the instances with high curvature
values are selected and a sparse rule base for FRI can be generated, using the two correspond-
ing input features and one output conclusion of the initial instances to construct the fuzzy
rules. Then each generated sparse rule base in the divided basic case is applied to calculate
results of total 258 instances in the training data, using their corresponding two input features
only. By comparing all the produced results with the original output conclusion, the best
performance can be found. As shown in the Table 4.12, the misclassified numbers of total
258 instances in all divided basic cases are list below, and the performance in the 10th basic
case is the best one. With the index of basic case which has the best performance, which is 10,
its corresponding two features can be easily found as the most important pairwise features,
which are 4th input and 5th input (LPR and PEG). Then with these two important pairwise
features and the initial instances, a sparse rule base for FRI is generated. The empirical study
shows that although there are 258 instances, only 4 x 6 = 24 important instances were needed
to construct a sparse rule base, as summarised in Table 4.13. It is applied to calculate results
of instances in the testing data, using their corresponding 4th and 5th input features only.
Finally using this sparse rule base for FRI, there are 6 misclassified results by Stabilised-KH

method in total 145 testing observations, that is, 95.9% accuracy.
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Table 4.13 Data of the selected 24 instances

input 1 (STG) input 2 (SCG) input 3 (STR) input 4 (LPR) input 5 (PEG) output (UNS) index of instance
0 0 0 0 0 1 1
0.05 0.07 0.7 0.01 0.05 1 17
0.265 0.6 0.28 0.66 0.07 1 117
0.25 0.1 0.03 0.09 0.15 1 66
0.6 0.19 0.55 0.08 0.1 1 203
0.32 0.2 0.06 0.26 0.24 1 67
0.06 0.06 0.05 0.25 0.33 2 3
0.08 0.08 0.08 0.98 0.24 2 5
0.06 0.06 0.51 0.41 0.3 2 12
0.2 0.14 0.35 0.72 0.25 2 9
0.15 0.32 0.05 0.27 0.29 2 19
0.12 0.28 0.2 0.78 0.2 2 21
0.1 0.1 0.43 0.29 0.56 3 7
0.1 0.1 0.15 0.65 0.3 3 4
0.09 0.15 0.4 0.1 0.66 3 6
0.2 0.29 0.25 0.49 0.56 3 20
0.2 0.2 0.7 0.3 0.6 3 15
0.1 0.27 0.31 0.29 0.65 3 23
0.08 0.08 0.1 0.24 0.9 4 2
0.18 0.18 0.55 0.3 0.81 4 11
0.12 0.12 0.75 0.35 0.8 4 16
0.1 0.1 0.7 0.15 0.9 4 14
0 0 0.5 0.2 0.85 4 10
0.15 0.275 0.8 0.21 0.81 4 30

4.4.4 Inference Results and Analysis

The results led by proposed method and by other approaches in the reference list are as shown
in the Table 4.14. The abbreviations of the algorithms are Decision Tree (J48), Random
Forest (RF), Support Vector Machine (SVM), Simple Logistic (SL), Multi Layer Perception
Neural Network (MLP), K-Nearest-Neighbour (KNN). The EU, MA and MI represent the
Euclidian Distance, Manhattan Distance, Minkowski Distance respectively. The results
shows the proposed method can only use several important instances with their important

few features to achieve competitive performance (accuracy 95.9%). Here both the training

Table 4.14 Results for Comparison in Application 2

SVM, SL, KNN Approach in [254]
Items Proposed Approach Bayes J48 RF
MLP EU MA MI EU MA MI
Misclassified 6 38 12.2 5.66 2 262 21.7 30.5 3 3 5
Error Rates 4.1% 26.2% 8.4% 3.9% 1.4% 18.1% 15% 21% 2.1% 2.1% 3.5%
Accuracy 95.9% 73.8% 91.6% 96.1% 98.6% 81.9% 85% 79% 97.9% 97.9% 96.5%
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and testing instances are not evenly distributed with four output classes, and the output are
even in linguistic expert knowledge (Very Low: 50, Low: 129, Middle: 122, High 130).
This experiment shows the proposed work can also work for linguistic environment and can

provide an objective way to distinguish what is important.

4.5 Zero-Shot Learning Image Classification

4.5.1 Application Description

Existing image classification techniques highly rely on supervised models that are trained on
large-scale datasets. Despite improved ontology engineering, such as ImageNet that includes
20k+ daily categories, the scale is far behind the requirement of generic image recognition.
First of all, semantic concepts are complex and structured whereas the label space for most
of current supervised learning consists of discrete and disjoint one-hot category vectors.
The associations between classes are imposed to be neglected. Secondly, the dimension
of label space is ever-growing. For example, on average, 1,000 new entries are added to
Oxford Dictionaries Online every year. Consequently, for the scalability of conventional
supervised learning is limited due to expensive acquisition of high-quality training images
with annotations.

In the past decade, Zero-shot learning (ZSL) was proposed as a potential solution which
aims to transfer a learnt supervised model to unseen classes without acquiring new training
data at the test time. The essential problem is how to teach the machine what visual features
will present in the test class using prior human knowledge. Therefore, the representation of
human knowledge is required to maximally bridge the visual-semantic gap. Most of existing
approaches adopt visual attributes [255] so that a discrete class label can be embedded by
a boolean representation, each dimension of which denotes whether an attribute present or
absent. In this way, visual-attribute model from seen classes can be shared to unseen ones
with using pre-defined attribute embeddings.

Although the generalisation to new classes can circumvent training image collection,
constructing an attribute-based ontology is even more costly. As shown in Fig.4.7 (B), both
seen and unseen classes need to be annotated by tens or hundreds of attributes. For example,
the most popular benchmark, AwA, requires the annotator to give 85 attributes for each of 50
classes, let alone instance-level datasets, such as aPY and SUN which contain hundreds of
thousands of manual annotations. Such restrictions severely prevent ZSL from being widely

applied to many non-attribute scenarios. Furthermore, designing attributes is an ambiguous
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work since most of visual features are intangible. Constructing a large-scale ontology with
attributes is thus time-consuming and error-prone.

An efficient simile-based ZSL (zero-shot learning) framework was proposed and it can
recognise unseen classes with light-weight simile annotations. It has been elaborated in [31],
with the key idea of curvature based FRI as below. Using the simile vectors from light-weight
annotations, ZSL problems can be described as:

If a Leopard is ‘to A extent like a Bobcat’ and ‘to A, extent like a Tiger’, then it is ‘to B
extent like a Lion’,

the task is to infer ‘7o what B extent a Leopard is like a Lion’, as shown as in Fig. 4.6. Note
that A, Ay, B are known as the representative values of the fuzzy sets. The above form is
just as same as the Eq. 3.1, therefore it can be easily solved by the proposed curvature-based
sparse rule base generation method. By regarding both input and output as fuzzy variables,
the proposed method significantly boosted the ZSL performance by accurately predicting the

similarity value of each seen class in the simile vector using only discrete simile annotations.

ol

Unseen Class Othef )een Class

Fig. 4.6 The key idea of curvature-based FRI in application 4.

In this work, investigation on how to spend the minimal annotation cost while still retain
the high performance of that using attributes are implemented. The key idea is inspired by an
intuitive fact. To describe an unseen instance, the most straightforward way is to relate it
to previously seen classes. Such expressions are called Similes e.g. facial similarity[256]
or Classemes [257] which explicitly compare two things by connecting words, like, as, as,.
Simile refers to a part of speech which is proposed to describe complex visual features,
and Classemes can describe either objects similar to, or objects seen in conjunction with
an unseen class, 1.e. class-to-class-similarities. However, existing methods often involve
expensive class-to-class annotations [258], which is no difference to that of using attributes
in terms of annotation cost. And the annotation cost, as shown in Fig.4.7 (C), is not less than

that using attributes. Fuzzy Interpolative Reasoning leverages a few similes to infer the full
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Fig. 4.7 Zero-shot Learning framework comparison.

associations of an unseen class to all of seen classes. Solid lines and arrows denote required
annotations or associations. Furthermore, most of existing approaches fail to quantify the
simile between each pair of seen and unseen classes.

Therefore, despite a large-scale simile-based ontology [259], such a stream of approaches
have not gain much attention until some recent work [260]. Contrary to these methods,
the proposed work utilise word embeddings as clues to find some initial similes to further
minimise the human intervention. Due to the non-visual similarities of word embeddings,
the human intervention is required to adjust the rank based on visual similarities and se-
lect a number of top similes. Despite light-weight annotations, the inferred representation

through FIR can significantly boost existing ZSL methods by substituting their used attributes.

4.5.2 Simile Construction

Kernelised Image Representation Kernel techniques are widely adopted to increase the
generalisation ability of a classifier so as to cope with various conditional changing. Kernel-
based learning algorithms, such as SVM (Support Vector Machine), Kernel PCA (Principal
Component Analysis), or Gaussian Processes, have been successfully employed on many
fundamental problems, such as classification, regression, density estimation and clustering
[261]. The methods can be roughly divided into using Mercer and none-Mercer kernels
(whether positive-definite or not), which mainly concerns the convergence when being ap-
plied to classifiers, such as SVM. The spirit of image-to-class kernel [262] is shared in this
work. However, the aim of this work is based on an embedding aspect so as to bridge the
visual-simile gap for ZSL rather than purely dealing with outliers or noise from the same
classes of training samples. Our representation is also similar to VLAD related approach
[263]. But, each dimension of the proposed SMS has an explicit class name instead of
implicit anchor points.

Knowledge Representation
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Similes provides an effective way to qualitatively describe visual similarities between
images. Compared to attributes or texts, similes are more visual-related and do not involve
extra concepts, thus lead to less information loss. To represent an image x using similarities,
the most straightforward approach is to estimate the likelihood p(x.|x,) between this image
x and each image in a seen class in the visual space, x. € Z.. In this work, the Parzen

likelihood estimation is simply adopted to compare a pair of images:

Plxche) = K (xe —x) = exp(—5 o5 e — ¥/, @2
where K(.) is the Parzen match kernel function under a typical Gaussian distribution leading
to a non-negative integrated value; ||.||> represents the ¢,-norm distance between two vectors.
Using the above equation, a similarity match score (SMS) p(Z¢|x) can be concluded by
averaging the likelihoods to all images in class c. However, most of the likelihood values
are negligible as the visual space is high-dimensional and the likelihood values are K
exponentially decreasing with the distance. Moreover, the training set might be noisy, and
thus a conclusion based on all of the samples may not lead to the best result. Therefore,
the top k nearest points of x,, ie. {x}VNc, ...,xf‘\,NC} € Z., can be used to make an improved

estimation:

1 1
P(Zeln) = 7 Y exp(— 55 llxin, —xall2)- (43)
i=1 c

From this, each image can be represented as a vector of SMS (vSMYS) in reference to
the known classes, or referred to as a SV (Simile Vector). This simple yet effective vSMS
generation approach is referred to as match kernel embedding (MKE). Each dimension of
the generated vSMS stands for the likelihood value or similarity to the corresponding class.
Since the sum of vSMS is normalised to one, different values of o do not make significant

difference. For simplicity, we set o = 1. Formally, the MKE approach is defined as follows:

f1(xn) = [p(Z21|x0)s ooy p(ZlXn)] = v € V. (4.4)

The vSMS not only quantitatively expresses similes representing the visual-semantic
relationship, but also effectively discriminates the embedding space to better support ZSL, as
illustrated in Fig. 4.8. FIR is performed to infer the centroid of each class as the prototype.

Simile Quantification For each unseen class, we have [cy, ..., ¢] similes. As argued earlier
that it is difficult to give a specific value of the similarity and simile annotations which suffer
from subjective variances. In this work, we propose a novel empirical alternative that use the

values in the rule base for initial quantification of discrete similes. Specifically, an unseen
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") T

Fig. 4.8 (A) Raw visual feature distribution of the 10 unseen classes in AwA. (B) After MKE,
non-discriminative points (red circle in (A)) are separated.

class has a simile of seen class ¢; € [c1, ..., k), which can use the averaged self similarities of
instances in ¢; to make an approximation:

VC,' =1 Z Vi, (45)

where |.| is the cardinality of a class ¢;; ¢, denotes self-similarity values of all instances in

class ¢i: ¢, (x). In this way, we can in turn calculate the initial similarity values of the give

/ /

similes [cy,...,ck] = [Ve, s Ve, |- Next, we elaborate how to select proper observations in
/

the rule base to complete the FIR algorithm: f5_ (v’c1 s+ Ve, ) = Ve for C times to achieve a
full simile vector v = [vy, ..., v, ...vc]. Note that the initialised V's are also updated so as to
further mitigate the annotation bias.

As shown in Fig. 4.9, we initialise v| and v} by averaging the SMS in the simile classes
sl and s®):

1 1
Vl] - W Z an17 VIZ - @ Z Vn6‘27 (46)

Yn=C1 Yn=¢C2

where ¢; = s() and ¢, = s(?; .| is the cardinality of a class. The remaining task is to infer
a prototype v* of the unseen class: fo(s1),s?)) 1 [vi,v3, .., Vg =v* € V. Note that the
initialised v} and v/, are also updated. The f5 is achieved by sequentially inferring the SMS
to each seen class using the following procedures. The similarity-based histogram is used as
a new image representation. The SMS on the training set is computed solely based on visual
similarities. Such representations are intuitive and discriminative so that we do not rely on

attributes anymore for ZSL. Fuzzy inferences are repeated on every seen class to obtain the
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Fig. 4.9 The framework of fuzzy inference.

overall vSMS representation as a prototype.

Similarity Measure
A fuzzy membership function is defined as a measurable map:

fri=M()—[0,1] “.7)

For example, given leopard is 0.9 similar to bobcat, the function can infer how much it is
similar to tiger based on a rule base of observed membership, i.e. shared similarity between
bobcat and tiger. Different from the probability theory that model predictions exclusively at
a time, fuzzy process focus more on how much information in common at the same time.
In this way, sparse values can likely get shared members to smooth the variance. In this
case, we hope to maximise the tolerance to annotation errors, such as bad ranks or missing
important similes due to the visual-semantic discrepancy.

In this work, the simplest Gaussian kernel is used as the membership function. Given a X,

K nearest neighbours [x!, ..., xX] in class c are selected to estimated the similarity between x
and class c:
0.%) = = Y expl— Ly 1x. - x[2) @8)
X)=— ) exp(—=—||x. —x||5). .
c K = p 2 GZ c 2
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Fig. 4.10 An demonstration of sparse fuzzy rule selection.

where ¢ = 1 without loss of generality. The similarity value is normalised to [0,1] using a
sigmoid function. In this way, we can convert the whole training set 2" into the simile space
¥ as the fuzzy rule base using ¥ = (¢ (Z),..., 0c(Z)].

4.5.3 Rule Base Generation

Fuzzy Rule Selection

Like the membership estimation, it is not necessary to use all of the training instances as
fuzzy rules. Only rules that can make prominent effects to the conclusion are required. In
this work, we adopt a sparse manner to refine the fuzzy rule base. Firstly, the local regions

surrounding the observation instead of the global ones are used. The process is implemented

/
c1r

by searching Q nearest neighbours of [v v’ck] in the ¢; dimensional rule base. Afterwards,
the profile curvature of the local region is constructed to represent the extent to which the
local region deviates from being ‘flat’ or ‘straight’. By viewing the pattern to be modelled
as a geometry object, as shown in Fig.4.10. The ideal value is computed by averaging the
Leopard-Lion SMSs using real visual data. Using high-curvature points, the inferred value is

more accurate than that using nearest neighbours.
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The proposed method which firstly discussed in [264] is employed to select the points
with the steepest downward gradient for a given direction. Let the surface of the local
region be denoted as f(vi,v;), the gradient can be expressed as a 2-D vector field V f =
(for, [0,,0) = fv(li) + /i v(zj ), where i and j are steps. The slope is defined as a scalar field just

like Eq. 2.35:
S(i,v2) = VSl =/ f2+ 12 (4.9)

Using the S, the corresponding unit vector u is u = (—V f/S). For a given scalar field
F(vi,v2) the directional derivative D, on the direction u and the overall profile curvature
value K, can be calculated:

D,(F)=VF -u (4.10)
Kv = _572( \;zlfvl\}z +2fV1fV2fV1vZ +fv22fvzvz)7 (411)

where D,, compute the changing rate at ' given a movement &; and K,, can be either positive
or negative which corresponds to the convexity and the concavity respectively. For simplicity,
we use longitudinal profile curvature that is a streamline passing through F(x,y). Firstly, we
calculate eight directional derivatives for each point (clockwise from North to Northwest)
which corresponds to the cardinal and inter-cardinal directions: {D,,,,...,D,,}. The point
on each direction is interpolated using the v4 function of Matlab toolbox griddata with
parameter u as the density unit. The longitudinal profile curvature K,, can be calculated by

comparing the pair of directional derivatives D, and D/, on the opposite directions (D, > D)):

D,—D,

Ky (4.12)
Now the overall rule base ¥ is refined into only top R points [vy, ..., vg] with the highest
K, values. In this work, we propose a novel multi-dimensional Gaussian membership
function that can simultaneously accounts the R points, as shown in Fig.4.11 (R=5 here).
For each of the r selected high-curvature points v,, the fuzzy set is constructed using its T
nearest neighbours [vy, ..., vr| from the overall rule base. The membership function for each
r point is:
(v, —mu,)?

M("r) = eXp(_ 222

), (4.13)

where mu, and X, are the mean and covariance of [vy,...,vr]. Hereby, the representative
value is updated from v, to Rep(v,) = mu, for further smoothing the data. Note that the mem-
bership value denotes the degree that a point belonging to the fuzzy set, where M (mu,) = 1.
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Fuzzy Rule Interpolation Let fuzzy variables sim;, simj and simy (k € {1,...,c}) represent
the similarity values between a labelled image in the training set and classes c;,c¢; and ¢y,
respectively, where ¢; and c; are the two given similes in respect to an unseen class. Each

rule of the rule base is in the following form:
If sim; = v¢; and sim; = Ve then simy, = v, 4.14)

For example, given a pair of symbolic similes of an unseen class Leopard between class
1 Bobcat and class j Tiger, the similarity value of Leopard and class k lion is as shown in

Fig. 4.6 with the corresponding rule as:

If it is ‘to V,, extent like a Bobcat' and ‘to V. extent like a Tiger,
. . . ! (4.15)
then it is ‘to V., extent like a Lion'.

Then with the help of the proposed curvature-based method to selected important features
and instances to construct rules, given two similes in the seen classes for an unseen class, the
similarities of the unseen class regarding all seen classes can be inferred using FRI, which
can then be utilised for unseen class classification.

As shown in Fig.4.11, the refined rule base is composed by R fuzzy rules. Given the

/

initialised observation v/ = [v.. ¥ ...,v’ck], we can construct its corresponding fuzzy set using
eq.4.13. The new representative value is Rep(v) = mean(v') instead of v'. Our final step is

to interpolate the real conclusion v, using v:

1

R
ve=—Y AV, (4.16)
Rr:I

where A; is the interpolative ratio of the j'" fuzzy rule, which can be estimated by:
1 _
A, = o-exp (—E(Rep(v’) —Rep(v,) " Z  (Rep(V)) —Rep(vr))> ) 4.17)

where o = ————, j € {1,...,r}. Finally, we can repeat the process from Eq.4.5 to
J (2”)2”2/_” J { } y p p q
Eq.4.17 for each seen class i to infer an SV class-level prototype: v* = [Rep(V["),...,Rep(V{)].

Using FIR, the light-weight sparse simile annotations are converted into a full simile
vector for each unseen class u v, = [vy,..., Ve, ...vc]. During the test, an unseen image £ is

also converted into a simile vector f}(X) = ¥ using Eq.4.9. Without loss of generality, the
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Fig. 4.11 Fuzzy Rule Interpolation. Vj : Vs are refined high-curvature rules. Vi, : V5., are
corresponding output fuzzy sets. V. is the final interpolation result.

simplest nearest neighbour classifier is simply adopted to predict the label:

f3 := argmin ||V — v, ||3 (4.18)
u

4.5.4 Inference Results and Analysis

4.4.4.1 Study with AwA and aPY

The proposed approach is firstly compared to state-of-the-art results. Since simile-based
ZSL has only a few previous work, the comparison involves published results under various
settings, frameworks, and visual/semantic data. The characteristics of the proposed method is
detailed and try to illustrate how does each component contributes to the overall performance.

The proposed method was evaluated on AwA [265], and aPY [266] benchmarks. The
standard 40/10 and 20/12 seen/unseen splits as in [267] are followed for the sake of fair
comparison. The VGG-19 deep visual features released by [268] are adopted. Although
the whole approach is non-parametric, there are four NN parameters: [K,Q,R,T|. The seen
classes are divided into four folds. The leave-one-fold-out cross-validation is used to choose

the best parameters and fix them for all of the test.
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Table 4.15 Comparison to state-of-the-art methods.

Annotation Type Method AwA abY
WE SV WE SV

DeViSE [269] 445 475 255 274
ConSE [270] 46.1 482 220 278
Text2Visual [271] 553 - 302 -
SynC [272] 575 589 - -

Unsupervised ALE [273] 58.8 60.1 333 36.2
LatEm [274] 629 632 - -
CAAP [275] 67.5 - 370 -
Attri2Classname [267] 69.9 - 382 -
The proposed method - 785 - 48.8

Attri SV Attri SV

DAP[265] 54.0 585 285 36.6
ENS [276] 57.4 31.7
HAT [277] 63.1 38.3
ALE-attr [273] 66.7 70.1 - -

Supervised SSE-INT [268] 715 - 442 -
SSE-ReL.U [268] 76.3 - 46.2 489
SynC-attr [272] 76.3 785 - -
SDL [278] 79.1 822 504 525
The proposed method  80.5 83.2 512 56.7

WE: Word Embedding; SV: Simile Vector; Attri: Attribute Embedding.

One of the main concerns is how to achieve similes of unseen classes. In this work, three

protocols are defined :

1) Unsupervised Similes: class similarities are purely estimated by their word embeddings

and top ¢ similes are fed to FIR;

2) Attribute-based Similes: using conventional attributes as class embeddings, top ¢ simi-

les are computed for FIR inputs;

3) Supervised Similes: human intervention to the rank from protocol 1) to correct unsatisfied

similes. The annotations use the judgements of a colleague who was unfamiliar with the

details of this work.

Baselines



Applications of Curvature-based Sparse Rule Base Generation

Performance w.r.t. training size 0 Tolerance to simile error Performance w.r.t. simile number
100

o

%)

oo W

S o
w
S

Accuracy (%)
oD a‘ (o=

§70 /

o

3

260

0] 6]
g / &/ ~N

50 50 50
+AwA +AwA

10 40 40
#aPY #3PY
30 - T 30 ‘ 30 ° T T \
020 5 100 Al §1452 1453 52493 S1+54 52454 #Simile=1 23 4 5

Fig. 4.12 Investigation of the characteristic of using similes.
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Fig. 4.13 Performance nearest neighbour max-pooling parameters.



4.5 Zero-Shot Learning Image Classification 87

Table 4.16 Upper bound increase using SV as representation.

AwWA aPY
Feature Deep Low-level Deep Low-level
Raw 92.33 80.64 94.82 84.73
SV 96.83 91.88 97.42 95.62

The main comparison is summarised in Table 4.15. It can be seen that most of the results
of attribute-based approaches are better. The results can be categories by two dimensions.
Firstly, the proposed method is compared to pure unsupervised approaches using word
embedding-led similes. Then it is compared to conventional ZSL approaches using attributes
to compute the similes. Furthermore, it provides light-weight human intervention to correct
some simile errors due to semantic dominance from the above two embeddings. It focus
on how much improvements can gain from the light-weight annotations. The averaged
performance improvement is over 3.5%. Such a promising result indicate that the proposed
method can provide an interesting interface for human-computer interaction to actively learn
the parameters.

The other dimension is the comparison between conventional semantic models, i.e. WE
and Attri, and the proposed SV. Also also implement some existing approaches with their
released codes. Again, significant performance gains can be observed if substituting WE and
Attri by the proposed inferred SV representation.

The proposed method steadily outperforms all of the above baselines. The success is
ascribed to that encoding semantic similes by visual similarities between classes leads to
little information loss comparing to attribute or word representations. Also, in contrast, the
transductive setting is purely based on visual data distribution which may not be consistent
with semantic distributions, whereas the proposed similes are directly related to class labels.

To understand the promising results, the proposed approach is discussed from following

aspects that are supported by extensive studies.

Deep feature effect

To understand the contribution of the SV representation, it is separately studied using
a supervised setting on seen classes. It can be seen that the supervised classification rates
are remarkably increased, indicating the SV not only bridges the visual-semantic gap, but
is a better visual representation as well. The proposed method is verified on conventional
low-level features, e.g. a concatenation of PCA, PHOG, etc. to show its independence to
deep features.
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NN parameters

There are totally four NN processes in the proposed approach. NN is a simple way for
max-pooling on the feature level that can suppress noise and reduce redundancy. In Fig. 4.13,
the effects of each parameter on the overall performance by fixing the other three are shown.
Generally, for MKE and high-curvature points, smaller k and r is better so as to pick out
high-quality observations. In contrast, higher ¢ and ¢ are better so that the rule base can

contain sufficient fuzzy rules.

4.4.4.2 Study with Caltech 101 Dataset

The first reason of revisiting Caltech 101 is to show the flexibility of the proposed method
that can make ZSL readily applied on conventional datasets without providing attributes.
Secondly, many related kernelised methods have published results on Caltech 101. The

proposed ZSL method is compared with supervised results to show the improvement.

Setup

The work follows the conventional settings that use 15 or 30 images in each class for
training. However, a supervised scenario is to use all classes for both training and testing,
whereas the results are achieved under ZSL scenario where the seen/unseen split is 50/51,
i.e. the first 50 classes are used for training and the other 51 for testing. We then swap
the seen/unseen classes and use the averaged accuracy to evaluate the overall performance.
Similes are used in the same way as for AWA and aPY in Section 4.5.4. The work experiment
extracts SIFT, PHOG, LBP, and colour histogram and aggregates each type of local features
using 500-D VLAD [263] and concatenates all of them into a rich representation.

Comparison with supervised results

Our comparison is summarised in Table 4.17. The compared previous methods use vari-
ous kernel techniques. The proposed method under ZSL scenario exceeds the performances
of most of the previous kernel methods under supervised scenarios. Although these results
may not be the state-of-the-art now, it is still a fair comparison, in terms of the low-level
features, match kernel techniques, which can verify the effectiveness of the proposed ZSL
approach. Moreover, such results indicate ZSL can be applied to many other problems as

Caltech 101 without providing extra attributes or other side information.

Generalised zero-shot learning
Generalised ZSL (GZSL) [279] is recently proposed to investigate how to break the

restriction of ZSL by testing images from both seen and unseen classes. For seen classes, 15
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Table 4.17 Revisit Caltech 101: comparison with supervised results.

15 images/ 30 images/

Method

seen Class  seen class
Grauman& Darrell [280] 49.5 58.2
Tuytelaars [262] 61.3 69.6
Boiman [281] 65.0 70.4
Vedaldi [282] 66.3 -
The proposed method 65.8 70.8

GZSL performance on Caltech 101

70
gGO -
> =~51/50 split
£ 50 -=-41/50 split
(8]
Q .
< 10 31/50 split
30 | | [ [ |

1 11 21 31 41 51
Added # candidates of seen classes

Fig. 4.14 Performance for Generalise ZSL evaluation.

images are used for training and the remaining for testing. 50 smaller-sized classes are used
as unseen. GZSL is implemented by using the mean vSMS of each seen class as a prototype
and gradually add seen classes as candidates into the unseen candidates. Besides, we also
test GZSL using smaller numbers of training classes. The test classes are still 51+50. But we
use only 41 and 31 seen classes for FIR, for which we have to change the similes of unseen
class from the narrower range of training classes. It is shown in Fig. 4.14 that the proposed
method can effectively differentiate unseen from seen classes. This is because the proposed
vSMS is a representation of similarities. Unseen classes often have several similes with high
SMS, whereas seen classes often have very high self-SMS. Using 41 seen classes for training
can achieve comparable results as using 51. But for 31 training classes, we have to change
many original similes that were from the other 20 classes, which degrades the performance

to some extent.
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Table 4.18 Results for comparison in application 3

Unsupervised | Proposed Approach | DeViSE [85] | ConSE [167] | SynC [37] ALE [5] LatEm [218]

Accuracy (%) 78.5 44.5/47.5 46.1/48.2 | 57.5/58.9 | 58.8/60.1 | 62.9/63.2

Table 4.19 Results 2 for comparison in application 3

Supervised Proposed Approach | DAP[134] | ALE-attr [5] | SynC-attr [37] | SDL [255]

Accuracy (%) 83.2 54.0/58.5 | 66.7/70.1 76.3/78.5 79.1/82.2

4.4.4.3 Analysis

The proposed method can infer full associations between seen and unseen classes using only
a few similes. It is the first time to introduce curvature-based sparse rule base generation and
fuzzy rule interpolation into Zero-Shot learning image classification (computer vision field).
The proposed method makes the image representation more interpretable and discriminative.
Also, such linguistic representations could benefit the performance for GZSL. By regarding
both input and output as fuzzy terms, the proposed method significantly boosted the ZSL
performance by accurately predicting the SMS value of each seen class using only qualitative
simile clues. The proposed method achieved state-of-the-art results on both AwA and
aPY. Also, the application demonstrated how to simply apply the proposed approach to
non-attribute problems, such as the Caltech 101 dataset.

The proposed method significantly reduces the required annotation cost compared to
conventional supervised learning, with performance exceeds the performances of previous
supervised approaches. The empirical study shows only two similes are enough to outperform
existing ZSL approaches using attributes. According to the common 40/10 seen/unseen
split of AwA (which has more than 20000 instances and each instance has more than 4000
features), the number of required labelling is reduced from 50 x 85 to only 10 x 2 that is only
0.47% of the original annotation work. The proposed method can effectively quantify similes
and infer a reliable simile vector that can be used as improved semantic auxiliary information
over conventional visual attributes. Despite low annotation cost, the proposed approach

outperforms state-of-art approaches including those using heavy-annotated attributes.
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4.6 Summary

This chapter has further illustrated the operational curvature-based sparse rule base generation
method by applying the current research work into several applications. Firstly a simulated
experiment (which considering a basic model with two inputs and one output) demonstrates
the basic working procedure of the proposed approach, then the proposed method was
evaluated using three real-world applications. The three applications (which considering
more general situations with multiple inputs and one output) are: an indoor environment
localisation problem, a student knowledge level evaluation problem, and the zero-shot
learning image classification problem. In particular, it is the first time to introduce curvature-
based sparse rule base generation and fuzzy rule interpolation into Zero-Shot learning
image classification (computer vision field). The three benchmark datasets (including AwA,
aPY and Caltech 101) have been used to do evaluation. The results have shown that the
proposed method can infer full associations between seen and unseen classes using only a few
similes. It makes the image representation more interpretable and discriminative (averaged
performance improvement is over 3.5%). The promising results of all these applications have
shown the power of the proposed approach in solving real-world problems.

However, the current applications are the first and initial attempts towards the use of
curvature based sparse rule base generation. It is therefore necessary to carry out more
extensive and complex applications to make the proposed approach improved to be a more

generalised sparse rule base generation method for fuzzy rule interpolation.






Chapter 5
Conclusion

This chapter concludes the thesis and gives some suggestions for possible future develop-
ments. It presents a summary of the research as detailed in the previous chapters and discusses
on some findings and contributions. The thesis has proposed a novel curvature-based sparse
rule base generation method to support fuzzy rule interpolation, in an effort to make fuzzy
reasoning systems more efficient and accurate. The proposed method works in this way:
for problems with dense datasets, the approach first fuzzy partitions the problem domain
into a number of hypercubes; or in the circumstance when only a small dataset is available,
the approach represents each data instance as a hypercube. Then the hypercubes and their
features are distinguished by effectively using their curvature values; thus each important
hypercube with its important features is represented as a fuzzy rule and the most important
hypercubes with their important features are selected to generate the final rule base. The
capabilities and potential of the proposed method have been validated with experiment and
real-world applications, and compared with conventional work it leads to very compara-
tive results. However, further research is needed to enhance the proposed system. Some

preliminary suggestions and future works have also been discussed in this chapter.

5.1 Discussion of the Proposed Work

There are generally two methods of fuzzy rule base generation, which are the data-driven
method and the knowledge-driven method. The former one is implemented based on numeri-
cal data, which may suffer from the ‘curse of dimensionality’ as redundancy often exists in
such rule bases. In order to address this, various rule base simplification approaches have
been developed, and most of the existing data-driven rule base generation and reduction
approaches are based on certain similarity measures; therefore, they are likely to cause perfor-

mance deterioration along with size reduction. For the latter rule base generation approach,



94 Conclusion

expert knowledge may be subjective, as different experts may have different opinions. These
indicate that existing methods lack a more objective and efficient way to generate an effective
sparse rule base, which distinguishes important rules by identifying important features and
instances from the training data sets. In order to address this research gap, this project
focused on how to keep a good balance between model accuracy, efficiency and transparency
by proposing a subjective sparse rule base generation approach, i.e., how to generate a sparse
rule base which is very accurate, computationally efficient, and linguistically tractable.

Compared to traditional fuzzy rule base generation methods in the literature, this work
proposes a novel curvature-based sparse fuzzy rule base generation approach to support FRI.
Firstly it presents the proposed approach in the basic case with two inputs and the general
case with multiple inputs. As the curvature values are only workable with three-dimensional
spaces, the basic inference (with two inputs and one output) is considered then followed
by the general case with multiple inputs. Because a complex higher-dimensional problem
can be regarded as a collection of smaller scale problems with two inputs and one output
(i.e., multiple basic cases), any high-dimensional problems can be addressed by applying the
basic case solutions multiple times. Therefore, the proposed approach first represents each
data instance as a hypercube when handling a small dataset, or fuzzy partitions the problem
domain into a number of hypercubes for problems with dense datasets. From this, the
instances or hypercubes are discriminated by effectively using the curvature values and each
important hypercube is represented as a fuzzy rule. In the complex problem, the performances
of all rule bases in the basic cases are collected to identify the important features, thus the
most important features of each instance (or hypercube) will also be discriminated. Then
the most important instances (or hypercubes) with their important features will be selected
to initialise the rule base. The initial rule base can be optionally optimised by fine-tuning
the membership functions of the fuzzy sets involved in the rules by using an optimisation
method, such as genetic algorithm (GA).

The experiments for system demonstration and validation show promising results. After
a synthetic dataset to illustrate the working procedure, this work uses three real-world
applications to demonstrate the power of the proposed approach in solving real-world
problems. Firstly, in the indoor environment localisation problem, the accuracy of the
classification result by the proposed method is 99.25%, which outperforms all the existing
methods. Furthermore, if only the most important 2 to 6 input features are used (parts of the
totally 7 features), the accuracy still remains 96.75%, 98.15%, 98.6%, 98.8%, and 99.15%,
respectively. This clearly demonstrates the superior advantage of the proposed approach.
Secondly, in the student knowledge level evaluation problem, the results also prove the

proposed method can achieve competitive performance (accuracy 95.9%) by only using



5.1 Discussion of the Proposed Work 95

several important instances with several important features. Finally, in the zero-shot learning
image classification problem, the proposed method makes the image representation more
interpretable and discriminative. The performance significantly exceeds those of previous
supervised approaches (with an average performance improvement of around 3.5%).

There are two breakthroughs or improvements during this piece of PhD work. One
breakthrough is to apply curvature values into fuzzy rule base generation and to extend
the three-dimensional curvature idea into high-dimensional problems. However, given that
traditional curvature values only work with three-dimensional data, the most challenging part
is to develop an approach to calculate the artificial ‘curvature’ values in a high-dimensional
space. In this work, by regarding a higher-dimensional complex problem as a collection of
three dimensional problems with basic case solution, any high-dimensional problems can
thus be addressed by applying the proposed basic case solutions multiple times. The second
breakthrough is the design of an efficient framework to innovatively apply curvature based
sparse rule base generation method into real-world problems, including real-world image
classification problem. The key idea is inspired by an intuitive fact that to describe an unseen
instance the most straightforward way is to relate it to previously seen classes. Therefore,
an efficient framework was proposed and it can recognise unseen classes with light-weight
simile annotations, as explained as in Fig. 4.6. Semantic concepts are complex and structured
whereas the label space for most of current supervised learning consists of discrete and
disjoint one-hot category vectors. Therefore, in traditional machine-learning methods the
associations between classes are imposed to be neglected and the labelling work is always
inefficient. Compared to attributes or texts, similes are more visual-related and do not involve
extra concepts, thus lead to less information loss. Assigning only two similes for each seen
class and using curvature values to select important rules, the proposed method makes the
image representation more interpretable and discriminative, with results significantly boost
the ZSL performance.

In summary, significant contributions have been made during the development of this PhD
research project. A novel rule base generation approach has been proposed which applies
curvature values to select important instances and features to construct rules. The proposed
approach provides an objective tool to distinguish important instances and features, and thus
to ease the subjectiveness of expert knowledge. The proposed approach also alleviates the
‘curse of dimensionality’ by efficiently generating sparse rule bases with a smaller number
of important rules. This project has also extended the basic curvature-based feature and
instance selection idea into high-dimensional situations. The extended approach has been
innovatively applied to several real-world problems, including an efficient framework for

light-weight simile annotations, with competitive results generated.
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5.2 Future Works

Although the experimental results demonstrated the promise of the proposed method, much
can be done to further improve the work presented in this thesis. The following points address
a number of interesting issues and the successful solutions for them will help to establish the
current research on a more robust foundation. Also, it is important to apply this proposed
approach to more real-life applications in order to test the practical usability of the approach.

One possible future direction is to extend the traditional curvature value calculation in
a more effective way (given that the current approach is combinational and thus requires
high computational power), to support curvature-based rule base generation. In this thesis, a
higher-dimensional complex problem is regarded as a collection of simpler problems with
two inputs and one output (i.e., multiple basic cases). With the curvature-based approach
discussed in Section 3.2, any high-dimensional problems are addressed by applying the
basic case solutions multiple times. If a mathematical equation can be directly designed to
calculate a high-dimensional ‘curvature’ value then it is much more efficient to evaluate the
importance of a high-dimensional instance.

The proposed approach creates new rules by applying many operations such as partition-
ing and aggregation, to the interpolated results. This is implemented with the use of the given
weighted aggregation method. It would be useful to test the application of other aggregation
operators such as ordered weighted average (OWA), generalised ordered weighted average
(GOWA), and induced ordered weighted average (IOWA) as discussed in Section 3.2.3. If
better rules can be obtained using such alternative aggregation operators then this will help
improve the accuracy of the created rules and therefore improve the accuracy of the proposed
method.

In this research work, for the purpose of preliminary investigation and experimentation,
only the KH and HS approaches are employed. It is interesting to investigate the application
of other FRI techniques. A comparative study may be helpful to investigate the most effective
and accurate curvature-based sparse rule base using a certain FRI method. This work could
be extended using the approaches reviewed in Section 1.2. This is certainly a systematic
work that requires a lot of additional experiments.

The proposed work divides high dimensional problem into sub-problem in three dimen-
sions and uses a one-time process to carry out curvature calculation off-line, thus helps to
reduce the computational cost for sparse rule base generation. For example, in benchmark
dataset AWA, the number of required labelling is reduced from 50 x 85 to only 10 x 2 that is
only 0.47% of the original annotation work. However, more investigation on computational

cost should be considered in future work.
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Theoretically, the curvature-based approaches can be readily generalised as a generic
feature selection approach to work collectively with other decision making algorithms, such
as classifiers. This will greatly widen the applicability of the proposed approach. It will be
very interesting to develop a general curvature-based framework to include all the existing
curvature approaches, and their extensions for multiple dimensional real-world problems,
given that many curvature calculations approaches have been proposed in the literature. From
this, it also worthwhile to conduct a comparative study to further investigate the pros and
cons of each approach working along with different classifiers and datasets.

Although three real-world applications have been included in this project, the proposed
approach can be readily applied to more real-world applications for the development of
concise rule bases and thus more efficient fuzzy inference systems. In addition, fuzzy
inference has been used along with other machine learning approaches for better performance,
such as [283, 284], it is therefore worthwhile to investigate the potential of the proposed

approach in such situations.
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Appendix B

Acronyms

AA
CNF
COR
CRI
CSA
DFRI
FCM
FL
FIS
FRBS
FRI
GA
GOWA
FWA
GPS
GZSL

IOWA
KH
KNN

LBP
LDA
LFM

Arithmetic Averaging
Convex and Normal Fuzzy (Sets)
Cooperative Rules
Compositional Rule of Inference
Clonal Selection Algorithm
Dynamic Fuzzy Rule Interpolation
Fuzzy C-means
Fuzzy Logic
Fuzzy Inference System
Fuzzy Rule-Based System
Fuzzy Rule Interpolation
Genetic Algorithm
Generalised Ordered Weighted Average
Fuzzy Weighted Averaging
Global Positioning System
Generalised Zero-Shot Learning
High
Induced Ordered Weighted Averaging
Koczy-Hirota
K-Nearest-Neighbour
Large
Low
Local Binary Patterns
Linear Discriminant Analysis
Linguistic Fuzzy Modeling
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M Medium

MISO  Multiple Input Single Output

MIMO Multiple Input Multiple Output

MLP Multiple Layer Perception (Neural Network)
MLS Moving Least Square

MKE  Match Kernel Embedding

OAA  Ordered Weighted Averaging

PCA Principal Component Analysis

PFM Precise Fuzzy Modelling

PHOG Pyramid Histogram of Oriented Gradients
PSR Prototype Selection by Relevance

RF Random Forest

RMSE Root Mean Squire Error

SIFT  Scale Invariant Feature Transform

SISO  Single Input Single Output

SL Simple Logistic
SMS Similarity Match Scores
SR Selection Reduction

SV Simile Vector

SVM  Support Vector Machine

TS Tabu Search

TSK  Takagi-Sugeno-Kang

VH Very High

VL Very Low

VLAD Vector of Locally Aggregated Descriptors
VSMS Vector of Similarity Match Scores
WAA  Weighted Arithmetic Averaging

WE Word Embedding

WGA  Weighted Geometric Averaging
WOSA Weighted Ordered Statistic Averaging
WOWA Weighted Ordered weighted Averaging
ZSL Zero-Shot Learning



Appendix C

Algorithms

Algorithm 1 Hierarchical partition & region selection

Inputs: 7, the training dataset
ny, the partition number for input variable x;
ny, the partition number for input variable x;
0, the curvature threshold
p, a threshold increasing ratio
RR = 0, a set hosts the selected region but initialised as empty
Outputs: RR, the selected regions
1: procedure Selection(T,ny,ny,0,p)
2: RR’=GridPartition (T, ny,n,)
for each R’ in RR' do
if 6 <cp < 0x(1+ p) then
RR =RRUR'
end if
if cg > 0% (1+ p) then
Selection(R',ny,ny,0 % (1+p),p)
end if
10: end for
11: return RR
12: end procedure

e AEW
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Algorithm 2 Hypercube Selection
Inputs: H: the given set of hypercubes.
m: the required number of rules in the to-be-generated rule base, ie., the number of
selected data instances.
Outputs: H': the selected important hypercubes.

1: procedure HypercubeSelection(H, m)
2 for each H; € H do
3 H;.weight =0
4 for each C,'j € H;do
5: H;.weight <— H;.weight + v;;
6 end for
7 end for
8 H" = Sortdescending (H)
9: H' = first m instances in H”
10: end procedure

Algorithm 3 Feature Discrimination

Inputs: H': the selected set of hypercubes.
b: the number of selected input features.
T': the training dataset.

Outputs: X': a set of the significant features.

1: procedure FeatureDiscrimination(H',b,T)
2 R=0
3 for j=1—cdo
4: Generate an artificial rule base R; using all cubes C;;
5: R=RU Rj
6 p;j=FRI(T,R;)
7 end for
8 R = SortAscending (R7pj)
9: for R; €« R' do
10: Rj.weight < CalculateWeight(R',R})
11: end for
12: for each input dimension x; € X do
13: xi.weight <0
14: for each Rj € R’ do
15: if x; is used by R; then
16: Xi.weight < xi.weight + R j.weight
17: end if
18: end for
19: end for
20: SortAscending (X)
21: X' = first b features in X

22: end procedure
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