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Abstract 32 

Health professional education stands to gain substantially from collective efforts toward building video databases of 33 

skill performances in both real and simulated settings. An accessible resource of videos that demonstrate an array of 34 

performances – both good and bad - provides an opportunity for interdisciplinary research collaborations that can 35 

advance our understanding of movement that reflects technical expertise, support educational tool development, and 36 

facilitate assessment practices. In this paper we raise important ethical and legal considerations when building and 37 

sharing health professions education data. Collective data sharing may produce new knowledge and tools to support 38 

healthcare professional education. We demonstrate the utility of a data-sharing culture by providing and leveraging a 39 

database of cardio-pulmonary resuscitation (CPR) performances that vary in quality. The CPR skills performance 40 

database (collected for the purpose of this research, hosted at UK Data Service's ReShare Repository) contains 41 

videos from 40 participants recorded from 6 different angles, allowing for 3D reconstruction for movement analysis. 42 

The video footage is accompanied by quality ratings from 2 experts, participants' self-reported confidence and 43 

frequency of performing CPR, and the demographics of the participants. From this data, we present an Automatic 44 

Clinical Assessment tool for Basic Life Support that uses pose estimation to determine the spatial location of the 45 

participant's movements during CPR and a deep learning network that assesses the performance quality.  46 

Keywords: Healthcare Professional Skills, Nursing Skills, Competency-Based Education, Deep Learning, 47 

Pose Estimation, Healthcare Skills Databases. 48 

  49 
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Advancing healthcare practice and education via data sharing: Demonstrating the utility of open data by 50 

training an artificial intelligence model to assess cardiopulmonary resuscitation skills 51 

Healthcare professionals, across all disciplines, must master many movement-based technical skills to 52 

ensure positive outcomes for patients and avoid injury to themselves. Improper patient lifting techniques can cause 53 

harm to both patient and practitioner; inaccurate intubation can damage vocal cords, and inefficient surgeries are 54 

linked with poor operative results. Due to the importance of quality care, training programs for healthcare 55 

professionals around the world have started to shift curricula towards an education paradigm known as competency-56 

based education (CBE), which eschews time-based schedules of learner progression in favour of systems of 57 

matriculation that depend on direct observation of learner competence across a pre-defined set of professionally 58 

relevant activities (Frank et al., 2010; Harden, 2007). 59 

The subjective nature of competency-based assessment provides a key challenge. Where some healthcare 60 

disciplines [e.g. robotic-assisted surgery (El-Sayed et al., 2024)] have devoted more research toward understanding 61 

how objective measurements of movement relate to expertise and the clinical outcomes of patients, most disciplines 62 

have lacked the technology to easily extract such information to determine how and when movement patterns matter 63 

for the patient and practitioner. Innovations in computer science that provide an opportunity to study technical skills 64 

in simulated and real environments without needing specialised recording devices provide this much-needed 65 

opportunity for healthcare skills more generally. Thus, empirically validated competency targets could be 66 

established by analysing video datasets that can be easily accumulated during training and practice across multiple 67 

healthcare disciplines.  68 

A second challenge of CBE is that it is human resource intensive. CBE requires frequent formative and 69 

summative assessments to be implemented by healthcare educators who may have contemporaneous patient care 70 

and educational commitments. With appropriate objective competency thresholds established, automated feedback 71 

and assessment systems could provide the opportunity for self-directed deliberate practice, lessening the amount of 72 

formative feedback required from a coach and allowing students who need more practice time to have that 73 

opportunity. These formative assessment techniques could also flag when someone may meet the required 74 

competency and is ready to be assessed for progression. Such tools would also represent cost savings given that they 75 
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would reduce the human resource requirements of training, which is of rising concern within the educational sector 76 

(Castillo et al., 2019).  77 

Yet, the above benefits cannot be achieved without substantial investment in accumulating and sharing 78 

relevant data. Thus, this paper represents a call for collective effort from healthcare institutions (both educational 79 

and providing) toward amassing skills performance data that can be used to determine clear competency thresholds 80 

that healthcare students, educators, and professionals can target to enhance patient and practitioner outcomes. With 81 

recent innovations, the computational barrier to processing and analysing such complex data no longer exists; 82 

instead, the barrier is access. The surgical field has a much longer history of evaluating human movement-based 83 

skills on a kinematic level and has begun to look at implementing pose estimation and artificial intelligence 84 

techniques to better understand surgical skill and enhance education (Constable, Shum, et al., 2024; Likosky et al., 85 

2021). As such, surgical tool and procedure datasets (Bouget et al., 2017; Srivastav et al., 2018) are currently being 86 

collated to accelerate the development of specialised pose estimation algorithms within the discipline. We suggest 87 

that all healthcare disciplines could benefit from such an agenda and call for a concerted effort across healthcare and 88 

science, more broadly, to develop policies and practices that provide the means to develop technologies to support 89 

healthcare trainees, professionals and patients alike.  90 

 By creating repositories of skills performance data alongside other factors of importance (e.g. 91 

demographics, educational level, patient factors), collaborative efforts from researchers in the fields of computer 92 

science, data science, human movement and healthcare education can begin to meet the first challenge of 93 

establishing objective, validated, and measurable competency-based thresholds. Furthermore, established 94 

competency thresholds and videos of skills performances will subsequently assist computer scientists in building 95 

rigorous skills assessment tools. With the two above challenges in mind, the present work aims to demonstrate how 96 

the accumulation of skills performance data sets can be combined with innovations in computer science 97 

(specifically, pose estimation and deep learning for the classification of expertise) to study technical competencies 98 

within healthcare professional education and provide automated means of assessing skills performance for the 99 

educational setting.  100 

In computer vision, pose estimation refers to tracking movement from videos or pictures. Here, we focus on 101 

deep learning techniques which involve 'training' an Artificial Neural Network (ANN) on annotated videos or stills 102 
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that indicate the relevant objects or body parts to be tracked (Ionescu et al., 2014; Lin et al., 2014). After training, 103 

the ANN can identify the relevant body parts or objects and, in turn, 'poses' within videos without human assistance. 104 

The kinematic parameters of a given movement can be calculated from body part locations and the frame rate of the 105 

video. Although these techniques require more powerful hardware than a standard computer, acquiring and setting 106 

up such tracking is more accessible than using specialised motion tracking cameras because it can be done with 107 

traditional video cameras. Further, pose estimation algorithms and toolboxes are advancing rapidly, with multi-108 

person pose estimation possible with pre-trained networks at near real-time speeds (Huang et al., 2020), meaning 109 

that real-time feedback could be provided. 110 

The kinematic data obtained from pose estimation can be used to levy an assessment of movement or to 111 

support formative development. The kinematic data could be used directly or by classifier algorithms to provide 112 

further assessment. For example, optimal posture during CPR requires the practitioner's shoulders to be directly 113 

above the patient. Deviation from this optimal posture could be relayed back to the trainee to allow them to explore 114 

and feel their approach. Pose estimation data could complement instructor observations or data from computerised 115 

manikins, allowing trainees to refine psychomotor techniques, improving compressions and protecting practitioners 116 

from injury. Such applications of kinematic feedback have been repeatedly demonstrated in high-stakes sports 117 

training environments (Giblin et al., 2016; Glazier, 2021) and surgical training environments (Judkins et al., 2008) 118 

and are consistent with fundamental teaching and learning theory (Ericsson, 2004; Platt et al., 2021). 119 

Classifier algorithms can extend on the above by making decisions along a given dimension. Here, neural 120 

networks are trained on relevant data that could be used to decide on competence (e.g., pose estimation data and 121 

evaluation data). Classifier algorithms have been demonstrated as useful and highly accurate for both assessment 122 

purposes and for highlighting aspects of the skill for improvement (e.g. suturing, (Ismail Fawaz et al., 2018)).  For 123 

example, if competency is of interest, the ANN must be trained in example performances to learn patterns 124 

representing good, adequate, or poor performance. The neural network can then identify the competency level 125 

displayed in new videos based on learned patterns. Nevertheless, it is vital to be cautious in the development of these 126 

algorithms: the decisions risk being biased if the training data does not accurately represent the to-be-assessed data 127 

or the intended purpose (Veale & Binns, 2017); decisions may be based on parameters that co-occur with the 128 
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classified groups but are not meaningful to the decision-making process. Considering the quality, depth and breadth 129 

of the training data can assist in protecting against such concerns.  130 

While such tools are more commonly applied directly to tasks that are weighted toward psychomotor ability, 131 

these tools could also be used to assess non-technical skills. For example, situational awareness is critical in many 132 

healthcare contexts but is challenging to teach and assess. Simulation-based educational interventions yield better 133 

outcomes in situational awareness training (Walshe et al., 2019). In high-fidelity clinical simulations, final-year 134 

nursing and paramedicine students perceived that using eye-tracking technology combined with video debriefing 135 

assisted in their development of situational awareness (O'Meara et al., 2015). This intervention required participants 136 

to wear eye-tracking glasses, which may be challenging to implement for many training programmes. However, recent 137 

advances in pose estimation show that human attention can be tracked and modelled within a task space with 138 

information about head pose and orientation. Of course, this is less precise than eye-tracking. Nevertheless, this 139 

technique has been demonstrated to be a viable method of assessing concentration loss, collaborative attention and 140 

stress levels more generally for industrial applications (Lagomarsino et al., 2022), suggesting that pose estimation 141 

techniques could assist in the tracking and understanding situational awareness for healthcare applications.  142 

Considerations in implementing pose estimation and classifier algorithms 143 

Such techniques have limitations, especially in real healthcare settings, which are often busy and complex 144 

environments. It is possible that occluded points will not be estimated or will be estimated with lower accuracy. Using 145 

multiple cameras (Kocabas et al., 2019) will alleviate this issue. A range of gap-filling strategies, including those 146 

employing ANNs (Kanazawa et al., 2018), can also be used to estimate missing data. If high precision is still needed, 147 

a hybrid approach could be used with specialist simulators combined with a visual approach. For example, manikins 148 

that track compression depth and rate (e.g. QPCR manikins from Laerdal) could be used simultaneously with video 149 

data, which allows posture to be tracked. With further advances in computer vision techniques, accuracy thresholds 150 

across all relevant dimensions may reach a level where a hybrid approach may not be needed for high-precision cases. 151 

Just as humans make mistakes, algorithms can too. A recent systematic review evaluating the use of 152 

machine learning for classifying surgical expertise indicated typical accuracy rates of over 80% (Lam et al., 2022). 153 

Accuracy rates are likely to rapidly improve as appropriate video data is obtained for development purposes; 154 

nevertheless, even with accuracy rates at 80%, trust and acceptance of the use of classifier algorithms for assessment 155 
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would be enhanced with a 'human-in-the-loop' approach (Enarsson et al., 2022) that provides a means of cross-156 

checking. With human oversight, classifier algorithms could be used to track progression against milestones for 157 

healthcare trainees and flag when a student is ready to be formally assessed against competency thresholds by a 158 

human assessor. Importantly, the human in the loop must be participatory; decisions should not blindly follow the 159 

classifier's recommendation and decisions should be monitored if this strategy is used (Kazim et al., 2021).  160 

Considering potential bias and how the algorithm makes decisions is ethically crucial in developing 161 

classifier algorithms. If the data used to train the algorithms is biased, then this bias will be evident in any decisions. 162 

This point highlights the importance of accessing wide and diverse data sets. Of course, it can be challenging to 163 

determine if a data set is biased for the purposes for which it is being used. Classifier algorithms that output a 164 

meaningful description of the decisional parameters [Explainable Artificial Intelligence, (Taylor & Taylor, 2020)], 165 

combined with a human-in-the-loop approach, can assist in mitigating any potential bias. Unfortunately, classifier 166 

algorithms often disadvantage underrepresented groups (Holstein et al., 2019). Thus, carefully considering the 167 

training data is essential to ensure the algorithms' fair and equitable decisions (Corbett-Davies et al., 2023; Veale & 168 

Binns, 2017).  169 

In some cases, it may be reasonable to develop algorithms that ignore protected characteristics to ensure 170 

that the algorithms cannot learn the systematic biases present in society; however, in many cases, this may eliminate 171 

important information which impacts conclusions made (Hajian & Domingo-Ferrer, 2013). For example, in the case 172 

of physical disability, movement patterns may be markedly different. Ignoring that characteristic of the performer 173 

may lead to improper classification of competence, particularly when they have found a viable movement pattern 174 

that deviates from the sample norm. If an algorithm considers such diverse information, then the outcome will likely 175 

be fairer (Veale & Binns, 2017). Fairness and equity will require careful consideration of the context. Ensuring that 176 

systematic discrimination is avoided during implementation must be a high priority (Hagendorff, 2019). For 177 

thorough reviews and strategies for anti-discrimination in machine learning, see Veale & Binns (2017) and 178 

Hagendorff (2019). 179 

Data acquisition, storage and use considerations 180 

Beyond the demonstrated application, opening doors to movement analysis in real healthcare settings 181 

provides opportunities to understand how movement patterns relate to patient outcomes in a given environment 182 
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through data mining. Such a pursuit could lead to data-driven support for change to environments and policies that 183 

support practitioners. Furthermore, it has been challenging in some healthcare professions to link competency 184 

milestones with patient outcomes (Kendrick et al., 2023). Large datasets that speak to the trajectory of expertise, 185 

patient outcomes, and practitioner injury would allow the profession to develop competency thresholds informed by 186 

empirical evidence where necessary. Yet, data availability is currently limited, and initiatives to accumulate and 187 

share such data require careful consideration.  188 

Where the potential benefit of collecting and evaluating video performance data to enhance healthcare 189 

appears substantial, there are also significant barriers. Installing cameras to monitor patient care (e.g. operating room 190 

black boxes) is becoming more commonplace; however, healthcare professionals have raised concerns over data 191 

safety and litigation. Cultural factors seem to play a role in such concerns. For example, Canadian healthcare 192 

professionals are more concerned (Gordon et al., 2022) than Danish healthcare professionals, who indicated 193 

relatively high opinions toward monitoring initiatives (Strandbygaard et al., 2022). Where it is most certainly 194 

essential to consider acceptance to maintain an environment of trust, it is also important to note that regardless of 195 

perception, video data most often supports healthcare professionals from a legal standpoint (van Dalen et al., 2019) 196 

and thus is most likely to offer protection in a litigious environment. 197 

Legal policies around recording healthcare professionals, students and patients will likely differ 198 

considerably between governing bodies. Still, there has been a considerable cultural shift toward prioritising the data 199 

privacy of individuals and ensuring that personal data is protected, with the General Data Protection Regulation 200 

(GDPR) being one of the most comprehensive examples globally. Within the (evolving) legal framework, 201 

institutions should develop strong policies to ensure that video footage and any associated data regarding outcomes 202 

is recorded, stored, and used ethically and legally.  203 

Data minimisation is one principle that may arise in both legal and ethical frameworks globally (e.g. 204 

Europe's GDPR and California's CPRA) that allows for a balance between the processing of personal data and data 205 

privacy (Goldsteen et al., 2022). This principle requires that the minimum amount of data be collected and 206 

processed. However, this practice could hinder finding important patterns between clinical practice, patient and 207 

practitioner factors, and patient outcomes without careful consideration. Identifying patterns that result in 208 

incremental gains to patient outcomes is important in healthcare situations. Where identifying patterns in such large 209 
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datasets may not have been previously possible, machine learning opens the doors to such pursuits, and the 210 

importance of a particular variable may not be known ahead of time. 211 

'Big Data' seems at odds with principles of data minimisation, and indeed, recently the UK's Information 212 

Commissioner's Office has indicated that data minimisation should be applied at both training and inference stages 213 

of machine learning (Kazim et al., 2021) with global regulatory bodies also providing guidelines for ethical use. In 214 

response, new methods are being developed to minimise the data required whilst maintaining accuracy or providing 215 

evidence that the minimum amount of data was used to achieve the aims (Goldsteen et al., 2022). As the use of 216 

artificial intelligence technology becomes more common, discussion of how to balance data privacy with scientific 217 

advancement will likely become a particularly hot topic from an ethical standpoint. Regardless, adherence to the 218 

Declaration of Helsinki (World Medical Association, 2013), also requires that consent be obtained for the use of any 219 

identifiable human data.  220 

Privacy rights can be protected by depersonalising data, which is already a commonly implemented ethical 221 

practice. It is not typical for science to be interested in the identity attached to data; therefore, depersonalisation 222 

would rarely impact the potential scientific gain. At a minimum, depersonalisation can be achieved by removing 223 

obviously identifying information such as names or faces. Artificial Intelligence (AI) tools can also assist with this, 224 

as we have used in the present paper. However, it is important to consider that richer data sets may provide 225 

information that could be combined to identify a participant. For example, rich patient data, or even kinematic data 226 

that is only spatially or temporally based, could be backward engineered to identify the source. While this is 227 

unlikely, given that the motivation to do so would be low, it does pose a risk that should be carefully assessed.   228 

Where a patient is concerned, consent, confidentiality, anonymity, and protection needs should be carefully 229 

considered from both an ethical and legal standpoint, as the data could be considered particularly sensitive. Video 230 

data of procedures need not always be added to a patient's medical record if the video is collected solely for quality 231 

improvement, and the video would not be used to inform patient care (van Dalen et al., 2019).  232 

Moving toward a culture of data sharing 233 

In sum, collective efforts toward accumulating skills performance data alongside relevant demographic or 234 

patient data have the potential to advance healthcare professional education substantially. In doing so,  empirically 235 
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validated competency targets can be established, and computer scientists can leverage the data to develop high-236 

quality, robust tools to facilitate healthcare professionals and trainees to learn and maintain healthcare skills.  237 

Establishing a culture of data sharing does face several challenges, although policies are rapidly evolving to 238 

support such initiatives. As policy is being developed globally, at a local level, healthcare and educational 239 

institutions may wish to establish their collaborative policies within current legal and ethical frameworks to advance 240 

research around healthcare professional skills education. In parallel, the educational and research community could 241 

benefit from establishing consensus on what may be considered informative data and guidelines for data 242 

organisation to facilitate access. By carefully considering the type of data required and its organisation, the field will 243 

balance the opportunity that exploratory work can bring with data minimisation principles. Established skills 244 

performance databases will then invite interdisciplinary researchers to engage with the institutions that have a stake 245 

in the outcomes (healthcare and educational institutions) to advance the field.  246 

Here, we demonstrate the process in practice with an established interdisciplinary research team of 247 

healthcare professional educators, human movement scientists, and computer scientists. We provide a database of 248 

CPR skills and performances of varied experts who have been assessed for performance quality by two experts. 249 

Then, using computer vision and machine learning, we leverage this data to demonstrate the possibility of an 250 

Automatic Clinical Assessment tool for Basic Life Support. 251 

 252 

Automatic Clinical Assessment for Basic Life Support 253 

Early recognition of a cardiac event and quick application of CPR with high-quality chest compressions is 254 

advocated internationally (Berg et al., 2023; Merchant et al., 2020; Olasveengen et al., 2021; Resuscitation Council 255 

UK, 2021). Indeed, there is consensus within the evidence that high-quality CPR improves outcomes for patients in 256 

cardiac arrest (Gates et al., 2015). Thus, basic life support (BLS) education is essential to healthcare professional 257 

education. It is also a primary feature of first aid training delivered to individuals who are not healthcare 258 

professionals or trainees. High-quality chest compressions are reflected in hand and elbow position, compression 259 

depth, rate and recoil, alongside consideration of the angle of compression force application and rescuer safety 260 

(Resuscitation Council UK, 2021). Feedback during training has been found to significantly enhance compression 261 

quality (Baldi et al., 2017). Studies using Kinect depth cameras and pose estimation techniques show promising 262 
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tracking and feedback provision capabilities (Lins et al., 2019; Xie et al., 2020). Indeed, real-time feedback from 263 

Kinect can significantly improve chest compression quality for rescuers who weigh below 71 kilograms (Wang et 264 

al., 2018). The body weight limit here may be attributed to a higher quality baseline in those with higher body 265 

weights. However, such a limit also indicates the importance of accessing diverse datasets. Other Kinect-based 266 

studies have demonstrated comparable benefits to real-time visual feedback for skills development in CPR 267 

(Semeraro et al., 2013). Although these Kinect-based studies demonstrate the utility of providing feedback for 268 

training purposes, Kinect does require specialist cameras and sensors, which may limit uptake.  269 

Pose estimation can be performed using a computer and any camera. Initial work comparing expert ratings 270 

and evaluations from such computer vision techniques has shown promising results. In a study of arm angle (and 271 

chest-to-chest distance between team members), pose estimation was thought to be more precise in estimating arm 272 

angle than experts (Weiss et al., 2023). Here, we seek to demonstrate how deep learning techniques can provide an 273 

automatic assessment of CPR technique against a comprehensive set of metrics that assess both the quality of 274 

movement concerning the CPR performance and the postural safety of the performer.   275 

Alongside this paper, we provide a CPR performance data set comprising a range of competencies for use 276 

to advance research that understands technical competency and builds tools to support the development of such 277 

competencies. The data set includes demographic information, self-ratings of confidence and frequency of 278 

performance, and two expert evaluations of the performance. The database contains video data of CPR from 279 

multiple angles with a checkerboard allowing for 3D reconstruction.  280 

 281 

Methods 282 

Participants 283 

Participants were recruited on three different days. Participants were recruited from Northumbria 284 

University's Department of Nursing and Midwifery on the first day via the researchers' networks. Recruitment 285 

resulted in 22 participants with varied expertise, ranging from complete novices who had never performed CPR 286 

before to individuals with extremely high levels of expertise in CPR (trained professionals and educators who 287 

regularly perform CPR). On the second day, 20 students who attended a skills event held by the Department were 288 

recruited on a voluntary basis as an opportunity to practice CPR and contribute to research. They were of varied skill 289 
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levels, with some having previously undergone training and others not; all were students of the Department. On the 290 

third day, the recording session was set up to coincide with a first-year training session; 10 first-year students in the 291 

Department of Nursing and Midwifery and one non-student in the Department were recruited. Thus, data from 53 292 

participants was collected. Authors [MDC, XZ, TC, DM, JR, CF, LJP, AP] participated. All participants provided 293 

informed consent and indicated how they would like their data to be used (Video or evaluative data available only to 294 

the research team/available in a safeguarded science repository for scientific use). For the present paper, we have 295 

used data from all participants; where participants consented (n = 40) videos with faces digitally obscured have been 296 

uploaded to UK Data Service Reshare (Constable, Zhang, et al., 2024). Participants who did not consent to their data 297 

being used outside the research team have not been included in the repository. Researchers or educational 298 

professionals may access the repository in a safeguarded manner subject to adhering to the terms and conditions of 299 

the repository. To gain access researchers must email the data controller (MDC) stating their status as a researcher 300 

and their intention for the data; they will then be granted access. Northumbria's Ethics System (No. 44602) approved 301 

the research, and all research was performed per the Declaration of Helsinki. 302 

The average age of participants was 33.60 years (SD = 13.00); and 14 were men, and 39 were women (self-303 

declared), see Table 1 for age by gender. Participants self-reported confidence in performing CPR, ranging the full 304 

spectrum of possible responses from Very Confident to Very Unconfident (5-point Likert scale), with the median 305 

response being 'Somewhat confident'. Self-reported frequency also ranged the full spectrum of possible responses 306 

from Very Frequently to Very Infrequently (5-point Likert scale), with the data being skewed toward infrequent 307 

performance (median response = Very Infrequently). The skew in the data reflects that both students and clinicians 308 

use CPR skills relatively infrequently and thus require regular refresher training (Oermann et al., 2011). 309 

Table 1. Average age (Standard deviation in parentheses) by self-identified gender.  310 

Gender Male Female 

Age  42.57(15.02) 30.38 (10.67) 

 311 

Data Protection 312 

We obtained informed consent from participants who were able to indicate how they would like their data 313 

to be used and stored. Further, the data has been depersonalised by digitally obscuring their faces. Access is granted 314 
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with safeguarding protections such that users must agree to the terms and conditions of the repository. Importantly, 315 

these terms and conditions require users to be registered, to only use the data for research or learning purposes, and 316 

to maintain the confidentiality of the participants. Any participants who indicated that they did not want their data to 317 

be used outside of the research team have not been included in the data set available to researchers external to the 318 

research team. Furthermore, participants could elect to have only their videos or evaluations shared should they 319 

wish.  320 

Recordings 321 

Each person was recorded using 6 Go-Pro Cameras. The first camera was set up to have a wide frontal view (see 322 

Figure 1). Cameras 2 and 3 were placed behind the participant, offset to the right and left. Camera 4 was placed in 323 

front of Camera 1 to provide a lower and closer frontal view. Cameras 5 and 6 were placed perpendicularly to the 324 

direction the participant was facing in line with the participant. A checkerboard was placed in front of a QCPR 325 

manikin and in view of all six cameras as a common landmark. The CPR space was defined for the participant with 326 

two foam mats. One for them to kneel on, the manikin was placed on the other.  327 

Participants were asked to perform 4 sets of 30 chest compressions for each recording with a short pause in 328 

between to rest. Participants were asked at the beginning and end of the task to clap. This clap was used to calibrate 329 

cameras in time.  330 
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 331 

Figure 1. The recording space. Circles depict the location of the cameras. The checkerboard was placed in front of 332 

the task space with one foam mat for the manikin and one foam mat for the participant. Approximate distances 333 

between cameras are provided, although there was some slight variation between days. 334 

Ratings 335 

 An evaluative framework (see supplementary material) was developed in consultation with the BLS experts 336 

on the team (AC, DM). Both experts have been teaching BLS for over 20 years in clinical and educational settings, 337 

and the UK Resus Council recognises both as Advanced Life Support Instructors, representing exceptional expertise 338 

in the field. Given that the present data was collected within the UK educational system, the evaluative dimensions 339 

were informed by guidelines from the Resuscitation Council UK (2021). Additional evaluative dimensions were 340 

included to reflect good posture and technique taught to maintain endurance, reduce the likelihood of injury, and 341 

prevent fatigue. Each evaluative dimension represented a factor that would be currently instructed in the educational 342 

setting; nevertheless, in practice, each factor is not equally important for patient outcomes as indicated by the 343 

International Liaison Committee on Resuscitation's recommendations, which are updated yearly based on 344 

cumulative science (Berg et al., 2023).  345 
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For each cycle (4 per participant), one point was provided for good form in the following evaluative dimensions: 346 

Hand Position (Centre of the chest, within one average hand margin), Arm Position (Straight Arms, minimal flex in 347 

elbows or minimal variability in elbow joint angle), Shoulder Position (Over patient, the line from centre of patient 348 

to shoulders should be perpendicular), Depth of Compressions (5-6cm), Rate of Compressions (100-120 per 349 

minute), Release (complete recoil of chest, hands return to neutral start point). A metronome was used to assist in 350 

evaluating the rate of compressions. Experts also coded for incorrect form (see supplementary material – evaluative 351 

checklist), such that if there were multiple ways a participant could exhibit poor form, that will be reflected in the 352 

data (e.g. Depth of compressions could be either too shallow or too deep). Overall ratings (Excellent, Good, 353 

Borderline, Poor, Unacceptable) for each cycle were also provided. 354 

The two expert raters initially rated alone and then resolved any discrepancies to provide an agreed rating. 355 

To determine rater agreement when raters were rating alone we calculated weighted Cohen's kappa for overall 356 

ratings for each cycle (rated: Unacceptable, Poor, Borderline, Good, Excellent). Overall, raters were in moderate 357 

agreement for Cycles 2, 3, and 4 when they rated alone, κs = 0.550, 0.567, 0.518, respectively. Agreement was poor 358 

for Cycle 1, κs = 0.204, potentially reflecting inconsistencies in performance during the initial cycle, which could 359 

reflect a 'practice' run. 360 

Automatic Clinical Assessment 361 

Our methodology systematically assesses CPR techniques using human motion data, mirroring expert 362 

evaluations while leveraging the advantages of automation. Our approach to assessing clinical techniques includes 363 

two main components: markerless pose estimation and a deep learning network designed specifically for Automatic 364 

Action Quality Assessment (AQA), as shown in Figure 2. The first step in our framework is to use markerless pose 365 

estimation to capture the 3D positions of a participant's joints from different angles in the video. This process is notable 366 

because it does not rely on physical sensors or markers attached to the participant. Instead, it directly analyses the 367 

video frames to identify and track the movements of the joints. Following this, the pose information that has been 368 

extracted is input into a deep learning network. This network is trained to assess the quality of CPR performance 369 

against predefined criteria as same as those used in manual expert assessments. The network produces ratings for 370 

various aspects of the CPR technique, thus providing an objective, automated evaluation of the participant's skill level. 371 

 372 
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 373 

Figure 2. Overview of the framework for our automatic AQA. The process begins with extracting joint motion 374 
information from raw video footage captured from multiple viewpoints, using pose estimation techniques. Following 375 
this, deep learning algorithms analyse the spatial-temporal features of the extracted data from each angle. The 376 
system then integrates these features across different views to accurately predict the performance ratings for each 377 
assessed skill. 378 

Markerless Pose Estimation 379 

We employed MediaPipe (Lugaresi et al., 2019), a framework that enables machine learning models to 380 

interpret and analyse human motion video data. This approach allowed us to capture the movements of various 381 

joints, outputting their positions in a three-dimensional space (𝑋 , 𝑌 , and 𝑍  coordinates) relative to a standard' 382 

world coordinate system,' which provides a consistent frame of reference for movement analysis. The results of our 383 

pose estimation are organised in a structured format, denoted as 𝑃𝑘 ∈  𝑅𝑇×𝑁×𝐶 , where 𝑘  denotes the camera 384 

viewpoint, 𝑇  denotes the total number of video frames (or the duration of the video), 𝑁  denotes the count of 385 

distinct joints tracked, and 𝐶  denotes various data features for each joint, including their spatial coordinates and the 386 

confidence level of these estimations. An illustrative example of how we visualise this pose estimation data can be 387 

seen in Figure 3.   388 
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  389 

Figure 3. An example of the estimation visualisation. Key joint landmarks relevant to the clinical technique are 390 

clearly captured. 391 

Deep Learning for Automatic Action Quality Assessment 392 

The Graph Representation of Human Skeleton 393 

After obtaining the pose estimation outputs, denoted as 𝑃𝑘, which detail the positions of various joints over 394 

time, we conceptualise the human skeleton as a graph structure. This graph-based representation, 𝐺(𝑉,  𝐸) , allows 395 

our neural network to incorporate the anatomical and biomechanical constraints inherent to human movement (Feng 396 

et al., 2022). In this graph, the set of nodes 𝑉 represents the joints, indexed from 1 to 𝑁 , where each node 𝑣𝑖  397 

corresponds to a specific joint. The edges 𝐸 , represent the connections (i.e. bones) between these joints, such as 398 

bones or ligaments, defined within a set 𝑆  that specifies which pairs of joints are connected, which promotes the 399 

network to represent the physical structure of the human body. 400 

The Multiview Spatial Temporal Graph Convolutional Network 401 

After defining the graph representation based on the pose estimation results, we developed a multiview 402 

neural network tailored for Automatic Action Quality Assessment (AQA), using the estimated human poses as its 403 

foundation. To achieve this, we adopted Spatial Temporal Graph Convolutional Networks (STGCN) (Yan et al., 404 
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2018), configuring the network with a five-layer architecture to robustly capture and model the dynamics of the pose 405 

estimation data from each camera viewpoint. This approach incorporates the skeleton graph structure dynamics of 406 

the human body to constrain our deep learning model for joint motion analysis. The detailed operation for the input 407 

pose estimation P𝑘 as follow: 408 

𝐻𝑘 = ∧−1/2 𝐴 ∧−1/2 𝑃𝑘𝑊𝑘, 409 

where  𝐻𝑘 denotes the learned hidden feature for camera viewpoint 𝑘, 𝑊𝑘 denotes the learnable parameters in our 410 

STGCN. 𝐴 and ∧ denote the adjacency matrix and its normalised form, respectively. The value of 𝐴 is defined such 411 

that 𝐴𝑖,𝑗 = 1 if 𝑣𝑖𝑣𝑗 ∈ 𝐸, which introduces the semantics of our defined human skeleton graph into deep learning. 412 

Then, the learned features 𝐻𝑘  from each view are then fused via a learnable parameter. Finally, a two-layer 413 

fully connected neural network is applied to estimate the final rating for each item score related to clinical technique 414 

quality.  415 

Optimisation 416 

In the optimisation phase, our primary aim is to enhance the accuracy of our network's predictions. To this 417 

end, we utilise the Mean Absolute Error (MAE) as our metric of choice. MAE is a straightforward yet effective 418 

measure that calculates the average of the absolute differences between the predicted values by our network and the 419 

rating values ('ground truth') after clinical experts' agreement. This metric is particularly useful for our item scores, 420 

as it clearly indicates how close our predictions are to reality, on average, without being influenced by the direction 421 

of errors. The formula for our loss function, which incorporates MAE, is given by: 422 

𝐿 =  ∑ |𝑦𝑞̂

𝑄

𝑞=1

− 𝑦𝑞| 423 

where 𝑄 denotes the different item scores related to clinical technique quality, 𝑦
𝑞̂

   and 𝑦
𝑞

  denote the predicted 424 

score and the ground truth score for each item, respectively. Our goal during training is to minimise this loss, which 425 

means reducing the average absolute error between our predictions and the expert ratings, thereby aligning our 426 

network's assessments more closely with the expert evaluations.  427 

For the optimisation process, we employ the Adam optimiser, a widely used optimisation algorithm known 428 

for its effectiveness in handling sparse gradients and automatically adjusting the learning rate. This choice promotes 429 
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a more efficient and robust training process, with an initial learning rate set at 0.01 and a weight decay of 0.1, to 430 

gradually improve our model's performance by iteratively adjusting its parameters in a direction that minimises the 431 

loss function. 432 

Evaluation 433 

We evaluate our automatic AQA framework's performance using Mean Absolute Error (MAE), employing 434 

a fivefold cross-validation approach. In each validation cycle, 80% of the data was used as the training set, while the 435 

remaining 20% was used as the test set, ensuring different train and test sets for each iteration. The training epoch is 436 

set to 100. Our evaluation not only compares our automated method's predictions to the final expert-agreed scores 437 

but also examines the alignment of initial individual expert annotations with these consensus ratings. 438 

The comparison involves calculating the MAE between our method's predictions and the expert-agreed 439 

scores and, similarly, between individual expert scores before consensus and the final agreed scores. This approach 440 

highlights our method's potential accuracy in relation to initial expert assessments.  MAE was selected as the primary 441 

metric due to its interpretability, robustness, and consistency. It is a common metric for skill assessment in the biomedical 442 

engineering domain (Anastasiou et al., 2023; Wagner et al., 2023) It allows us to directly quantify the average error in our 443 

model's predictions compared to expert ratings. Thus, we use MAE across both optimisation and evaluation phases, 444 

facilitating a clearer comparison of our model's accuracy relative to expert assessments. 445 

For a fair comparison, we align our automated assessments with expert evaluations by focusing on data from 446 

cameras 1, 4, and 5, which the experts predominantly used. This strategy ensures that our method is evaluated from 447 

the most relevant perspectives for accurate clinical technique assessment. Cycle 1 was included in the analysis to assess 448 

the performance of our system in scenarios where human raters have difficulty reaching consensus. The low agreement 449 

among experts in Cycle 1 highlights the complexity of certain CPR assessments and underscores the importance of having 450 

an automated system that can provide consistent evaluations. By including Cycle 1, we ensure that our system is tested not 451 

only on straightforward cases where human agreement is high but also on more challenging cases where human agreement 452 

is low. 453 

We implemented our method with PyTorch 1.10.1 and trained the models using one Nvidia GeForce GTX 454 

2080 Ti GPU. For further reproduction and implementation of our research, our code and step-by-step deployment 455 

instructions can be found on our GitHub page: https://github.com/FrancisXZhang/CPR. 456 
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Results and Discussion of AQA 457 

In our analysis, Table 1 illustrates the MAE comparisons between the automatic AQA framework and the 458 

initial scores given by two human evaluators. Specifically, the MAE values represent the average difference between 459 

the scores assigned by our AQA system or each evaluator and the final agreed-upon ground truth scores established 460 

through expert consensus. The full score for each evaluated item is 4. In most cases, the error margin of our framework 461 

remains below 1, underscoring our automated methods' potential accuracy and applicability. When comparing our 462 

method with manual assessments, we found that our automatic AQA consistently exhibits significantly lower error in 463 

evaluating hand, arm, and shoulder positions. This may be attributed to our framework's reliance on precise pose 464 

information, providing a more objective assessment of the participant's posture. Our AQA exhibited higher error rates 465 

in the compression depth and compression rate items. This discrepancy could be because these two items require 466 

assessing interactions between the participant and the dummy (Kılıç et al., 2018), something our framework currently 467 

does not capture. This demonstration focused solely on the pose information of the participant and did not incorporate 468 

visual interaction data between humans and objects; further work could establish the importance of considering such 469 

interactions. It is also noteworthy that the expert raters used a metronome to assist in their rate judgements, which may 470 

account for a higher than typical expert-assessed accuracy rate in this dimension. 471 

Table 1 Mean Average error (Human Experts vs. AQA framework) 472 

Item Evaluator 1 Evaluator 2 AQA 

Hand Position 1.62 1.08 0.33 

Arm Position 0.70 0.15 0.07 

Shoulder Position 0.40 0.34 0.13 

Depth 0.49 0.30 0.69 

Rate 0.89 0.11 1.67 

Compression 

Release 
1.04 0.98 1.00 

Total 3.96 2.69 2.98 

 473 
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We acknowledge that the size of our dataset, comprising 53 samples, might appear limited for training deep learning 474 

models. However, we employed a fivefold cross-validation approach, promoting robust evaluation by using 80% of 475 

the data for training and 20% for testing in each fold, which helps in assessing the model's performance 476 

comprehensively and mitigating overfitting. Our dataset size is comparable to those used in other research within the 477 

domain of healthcare training systems, such as the 10 cases used in Liao et al. (2020) demonstrating the feasibility of 478 

using similar dataset sizes. Moreover, the results indicate that the tool performs well as compared to human raters, 479 

confirming the reliability of the measure. 480 

 481 

 482 

  483 

 484 

Figure 4. Qualitative exemplars for comparing our model with human raters. Our model's performance 485 

aligns with the final rating after agreement, whether in the human raters' initial agreed score or their conflicted 486 

score. 487 

To further compare our model with the human raters, qualitative research for individuals by our model 488 

compared to the raters' evaluations is shown in Figure 4. To better demonstrate the efficiency of our work, we 489 

included both cases of conflicts and agreements in our exemplars. As the main potential advantage of our system is 490 

based on pose estimation, these exemplars are mainly focused on pose-related scores. 491 
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In Figure 4, Case 1, both human raters gave high scores for the subject's hand, arm, and shoulder positions 492 

(score from human raters = 4, maximum rating = 4). Similarly, our model also gave a score of 4 for these pose-493 

related aspects. In Figure 4, Case 2, although the reviewers gave a score of 4 for the arm and shoulder pose of the 494 

participant, one rater gave a 0 for the hand position while the other gave a 4 before they reached an agreement. The 495 

reason for the 0 was 'Too far toward the feet', but the rater who gave a 4 thought it was 'Just in the center of the 496 

chest'. After double-checking the video, they ultimately agreed to give the subject a score of 4, as the hand pose was, 497 

indeed, 'In the center of the chest (within one average hand margin)'. 498 

One major reason for this conflict is that the raters typically make their judgments based on a single camera 499 

view. However, the information from one camera can be limited due to different participants' angles towards the 500 

camera and varying initial postures, which sometimes affects their judgment. For instance, in Case 2, the ratings are 501 

highly focused on the close front view. The participant's habit of performing CPR vertically makes their hand 502 

compression position appear farther from their body for the human raters. Our method, which fuses information 503 

from multiple camera views, overcomes this limitation. Even though our pose estimation may occasionally show 504 

misdetections (pose estimation visualisation for the full video can be found in the Supplementary Material), 505 

summarising the motion information from multiple views makes our rating results more robust for pose-related 506 

scores. 507 

The present work sought to illustrate how accumulating skills performance datasets in real or simulated 508 

settings could provide a foundation for understanding healthcare skills and building educational technology to 509 

support healthcare professionals and educators. A fundamentally interdisciplinary approach (in this case, with a 510 

strong emphasis on computer science) in the study of technical skills may assist in ensuring healthcare professional 511 

competence. Specifically, we have shown how innovations in computer vision can be leveraged to provide (1) Data 512 

from real settings that can be scientifically assessed (e.g. the spatial location of each joint in cartesian coordinate 513 

space alongside estimation confidence) and (2) an assessment of performance quality based on both objective 514 

measurements and learned parameters from expert raters. This assessment technique demonstrated comparable 515 

accuracy in overall assessment relative to our expert raters, indicating the validity of the approach. Furthermore, the 516 

margin of error from this assessment technique was typically below 1, indicating that accuracy between defined 517 

thresholds of competency was excellent. However, specific to performance features, our assessment technique 518 
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sometimes outperformed or underperformed relative to the raters. Our intention with this work is to call for 519 

foundations to be put in place that allow for the collection and sharing of diverse healthcare technical skills 520 

performances that provide the opportunity for interdisciplinary collaborations to enhance the efficacy and efficiency 521 

of healthcare professional education. 522 

Manikins and simulators that provide automated feedback on a range of critical measures to facilitate the 523 

acquisition of an appropriate skill threshold exist (e.g. QCPR manikins (Laerdal)). However, they are often limited in 524 

the type of feedback they can provide, highly specific to a given skill or class of skills, or expensive. The computer 525 

vision approach demonstrated in the present work has the potential to provide automated and targeted feedback for a 526 

range of skills that can be assessed visually with low-cost video cameras and computers that would already be present 527 

within an educational setting. Furthermore, the fact that a range of skills could be assessed with the relatively low-528 

cost set-up and without the need for specialist simulators represents an economic benefit. The flexibility of the 529 

computer vision approach also makes it ideal for assessing complex skills performance in highly realistic simulations. 530 

Indeed, self-training programmes exist using items that can be found around the home for a makeshift manikin 531 

(Wanner et al., 2016), it is possible that this technology could be implemented using a webcam to provide feedback 532 

to the trainee at home. 533 

 In future research, we plan to consider human-object interaction in our model. Incorporating interactions 534 

with other humans or objects into our model necessitates a comprehensive approach. First, we would expand our 535 

dataset to include scenarios involving human-human and human-object interactions, ensuring a wide range of contexts 536 

and activities. Second, more detailed annotations would be required to label these interactions accurately, such as the 537 

actual physical contact between humans and objects to make training closer to real-world conditions (Zhou et al., 538 

2023). Third, our model architecture would need modifications to handle the additional complexity, such as integrating 539 

temporal-based pose estimation for more consistent motion information capture (Zhou et al., 2023). By addressing 540 

these steps, we aim to significantly enhance the model's utility in more realistic and dynamic environments, ultimately 541 

improving its applicability for various educational and training purposes. 542 

 543 

  544 
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