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Chapter 6
Machine Learning Algorithms
for Network Intrusion Detection

Jie Li, Yanpeng Qu, Fei Chao, Hubert P. H. Shum, Edmond S. L. Ho and
Longzhi Yang

Abstract Network intrusion is a growing threat with potentially severe impacts,1

which can be damaging in multiple ways to network infrastructures and digi-2

tal/intellectual assets in the cyberspace. The approach most commonly employed3

to combat network intrusion is the development of attack detection systems via4

machine learning and data mining techniques. These systems can identify and dis-5

connect malicious network traffic, thereby helping to protect networks. This chapter6

systematically reviews two groups of common intrusion detection systems using7

fuzzy logic and artificial neural networks, and evaluates them by utilizing the widely8

used KDD 99 benchmark dataset. Based on the findings, the key challenges and9

opportunities in addressing cyberattacks using artificial intelligence techniques are10

summarized and future work suggested.11

6.1 Introduction12

Cybersecurity can be assisted by a set of techniques that protect cyberspace and13

ensure the integrity, confidentiality, and availability of networks, applications, and14

data. Cybersecurity techniques also have the potential to defend against and recover15

from any type of attack. More devices, namely, Internet of Things (IoT) devices, are16

becoming connected to the cyberspace, and cybersecurity has become an elevated17

concern affecting governments, businesses, other organizations, and individuals. The18

scope of cybersecurity is broad, and can be grouped into five areas: critical infrastruc-19

ture, network security, cloud security, application security, and IoT security. Network20
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2 J. Li et al.

security is an important challenge in the field of cybersecurity, because networks pro-21

vide the means for the crucial access to others devices, and for connectivity between22

all the assets in cyberspace. Severe network attacks can lead to system damage, net-23

work paralysis, and data loss or leakage. Network intrusion detection systems (NIDS)24

attempt to identify unauthorized, illicit, and anomalous behavior based solely on net-25

work traffic to support decision making in network preventative actions by network26

administrators.27

Traditional network intrusion detection systems are mainly developed using avail-28

able knowledge bases, which are comprised of the specific patterns or strings that29

correspond to already known network behaviors, i.e., normal traffic and abnormal30

traffic [1]. Those patterns are used to check monitored network traffic to recognize31

possible threats. Typically, the knowledge bases of such systems are defined based32

on expert knowledge, and the patterns must be updated to ensure the coverage of33

new threats [2]. Therefore, the detection performance of traditional network intru-34

sion detection systems depends highly on the quality of the knowledge base. From35

a theoretical point of view, network intrusion detection systems mainly aim to clas-36

sify the monitored traffic as either “legitimate” or “malicious.” Therefore, machine37

learning approaches are appropriate to solve such problems; and they have recently38

been widely applied to help better manage network intrusion detection issues.39

Machine learning (ML) is a field of artificial intelligence, which refers to a set40

of techniques that give computer systems the ability to “learn.” Typically, machine41

learning algorithms, such as artificial neural networks, learn from data samples to cat-42

egorize or find patterns in the data, and enable computer systems to make predictions43

on new or unseen data instances based on the discovered patterns [3]. Depending44

on the way of learning, machine learning can be further grouped into two main45

categories: supervised learning and unsupervised learning. Supervised learning dis-46

covers the patterns to map an input to an output based on the labeled input-output47

pairs of data samples [4]. The classification problem is a typical supervised learning48

problem, which has been commonly used for solving NIDS problems, such as those49

reported in [5–8]. The goal of unsupervised learning is to find a mapping that is50

able to describe a hidden structure from unlabeled data samples. It is a powerful51

tool for identifying structures when unlabeled data samples are given [4]. Thanks52

to the relaxation of the requirement for labels of training data in the unsupervised53

learning, various unsupervised learning approaches have also been widely applied54

for NIDS problems, such as the clustering-based NIDS [9] and self-organizing map55

based NIDS [10].56

This chapter focuses primarily on network intrusion detection systems, and par-57

ticularly how the machine learning and data mining techniques can help in develop-58

ing network intrusion detection systems. The chapter firstly systematically reviews59

intrusion detection techniques from the perspective of both hardware deployment and60

software implementation. The two most commonly used NIDS development methods61

and the three most commonly used detection methodologies are reviewed first; these62

are followed by the investigation of applying machine learning and data mining63

techniques in the implementation of intrusion detection systems. Two representa-64

tive machine learning approaches, including fuzzy inference systems and artificial65
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6 Machine Learning Algorithms for Network … 3

neural networks, are of particular interest in this chapter, because they are the machine66

learning and data mining techniques most suitable for supporting intrusion detection67

systems. Traditionally, fuzzy inference systems are not classified as machine learning68

algorithms, however, the rule base generation mechanism follows the data mining69

principle; therefore, fuzzy inference systems with automatic rule base generation70

can also be considered as machine learning. Finally, the intrusion detection systems71

developed upon these machine learning approaches are evaluated using the widely72

used KDD 99 benchmark dataset.73

The remainder of this chapter is organized as follows. Section 6.2 introduces the74

hardware deployment methods of network intrusion detection systems and detection75

methodologies. Section 6.3 reviews the existing machine learning-based network76

intrusion detection systems using fuzzy inference systems and artificial neural net-77

works. The limitations and potential solutions of both techniques are also discussed78

in this section. Section 6.4 evaluates the studied systems using a well-known bench-79

mark dataset KDD 99. Section 6.5 concludes the chapter and sets directions for future80

work.81

6.2 Network Intrusion Detection Systems82

Network intrusion detection systems are software-based or hardware-based devices83

that are used to monitor network traffic, i.e., to analyze them for signs of possible84

attacks or suspicious activities. There are usually one or more network traffic sensors85

used to monitor network activity on one or more network segments. The system86

constantly performs analysis and watches for certain patterns of passing traffic in a87

monitored network environment. If the detected traffic patterns match the defined88

signatures or policies in the knowledge base (e.g., based on a fuzzy rule base or a89

trained neural network), a security alert is generated.90

6.2.1 Deployment Methods91

There are multiple methods that can be adopted to deploy a NIDS in order to capture92

and monitor traffic in a network environment, with passive deployment and in-line93

deployment being the most commonly used, as shown in Fig. 6.1a and b.94

In the passive deployment method, the NIDS device is connected to a network95

switch, which is deployed between the main firewall and the internal network. The96

switch is usually configured with a port mirroring technology, such as the Mirror97

Port supported by HP and the Switched Port Analyzer (SPAN) supported by Cisco.98

These port mirroring technologies are able to copy all network traffic, including99

incoming and outgoing traffic, to a particular interface of the NIDS for the purpose100

of traffic monitoring and analysis. This method usually requires a high-end network101

switch in order to enable the port mirroring technologies. There is a special case of102
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4 J. Li et al.

Fig. 6.1 Deployment methods for intrusion detection systems

passive deployment, which is the passive network TAP (Terminal Access Point) [11].103

In particular, a network TAP uses pairs of cables included in the original Ethernet104

cable, as illustrated in Fig. 6.1c, to send a copy of the original network traffic to the105

NIDS.106
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6 Machine Learning Algorithms for Network … 5

The in-line deployment method deploys NIDS devices the same way as firewalls,107

which allows all traffic to pass directly through the NIDS. Therefore, this deployment108

method does not require any particularly high-end network device, which is an ideal109

solution for those environments in which port mirroring technologies are unavailable,110

such as a small branch office with low-end networking equipment.111

It is important to note that the deployment methods should be carefully selected112

while taking into account the network topology for optimal performance. For113

instance, in the example shown in Fig. 6.1a, the port mirroring method is not only114

able to monitor the outgoing traffic between the internal network and the Internet,115

but also the internal traffic between Hosts A, B, and C. However, the network TAP116

and in-line deployment method are only able to monitor the outgoing traffic that117

is generated between the internal network and the Internet. Therefore, the NIDS,118

which is deployed by either the network TAP or the in-line method, will not notice if119

there is suspicious traffic between two client machines. In addition, because the port120

mirroring method uses a signal network interface to monitor the entire switch traffic,121

traffic congestion may occur if the switch backbone traffic is beyond the capacity122

of the bandwidth of the monitored port. Therefore, it is a good strategy to deploy123

multiple NIDSes in complex network environments so that these blind spots can be124

eliminated.125

6.2.2 Detection Methodologies126

Generally speaking, intrusion detection methodologies can be grouped into127

three major categories: signature-based detection, anomaly-based detection, and128

specification-based detection [12].129

The signature-based NIDS, also called knowledge-based detection or misuse130

detection, refers to the detection of attacks or threats by looking for specific pat-131

terns or strings that correspond to already known attacks or threats. These specific132

patterns or strings are saved in a knowledge base, such as the byte sequences of the133

network traffic, known malicious instruction sequences exploited by malware, the134

specific ports a host tries to access, etc. Signature-based detection is a process that135

compares known patterns against monitored network traffic to recognize possible136

intrusions. Therefore, signature-based detection is able to effectively detect known137

threats in a network environment, and its knowledge bases are usually generated by138

experts. A good example for this type of detection is a large amount of failed login139

attempts that have been detected in a Telnet session.140

Anomaly-based detection primarily focuses on normal traffic behaviors rather141

than specific attack behaviors, which overcomes the limitation of signature-based142

detection that is only able to detect known attacks. This method is usually143

comprised of two processes: a training process and a detection process. In the train-144

ing phase, machine learning algorithms are usually adopted to develop a model of145

trustworthy activity based on the behavior of the network traffic without attacks. In146

the detection phase, the developed trustworthy activity model is compared to the147
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6 J. Li et al.

currently monitored traffic behavior, and any deviations indicate a potential threat.148

The anomaly-based detection method is usually adopted to detect unknown attacks149

[13–18]. However, the effectiveness of anomaly-based detection is greatly affected150

by the selected features the machine learning algorithms use. Unfortunately, the151

selection of the appropriate set of features has proven to be a big challenge. Also, the152

observed system behaviors constantly change, which causes anomaly-based detec-153

tion to produce a weak profile accuracy.154

Specification-based detection is similar to the anomaly-based detection method as155

in it also detects attacks as deviations from normal behavior. However, specification-156

based approaches are based on manually developed specifications that characterize157

legitimate behaviors rather than relying on machine learning algorithms. Although158

this method is not characterized by the high rate of false alarms typical to anomaly-159

based detection methods, the development of detailed specifications can be time-160

consuming. Because it detects attacks as deviations from legitimate behaviors,161

specification-based approaches are commonly used for unknown attacks detection162

[19, 20]. In addition, multiple detection methodologies could be adopted jointly to163

provide more extensive and accurate detection [21].164

6.3 Machine Learning in Network Intrusion Detection165

Machine learning and data mining techniques work by establishing an explicit or166

implicit model that enables the analyzed patterns to be categorized. In general,167

machine learning techniques are able to deal with three common problems: clas-168

sification, regression, and clustering. Network intrusion detection can be considered169

as a typical classification problem. Therefore, a labeled training dataset is usually170

required for system modeling. A number of machine learning approaches have been171

used to solve network intrusion detection problems, and all of them consist of three172

general phases (as illustrated in Fig. 6.2):173

• Preprocessing: the data instances that are collected from the network environment174

are structured, which can then be directly fed into the machine learning algorithm.175

The processes of feature extraction and feature selection are also applied in this176

phase.177

• Training: a machine learning algorithm is adopted to characterize the patterns of178

various types of data, and build a corresponding system model.179

• Detection: once the system model is built, the monitored traffic data will be used180

as system input to be compared to the generated system model. If the pattern of181

the observation is matched with an existing threat, an alarm will be triggered.182

Both supervised and unsupervised machine learning approaches have already183

been utilized to solve network intrusion detection problems. For instance, supervised184

learning-based classifiers have been successfully employed to detect unauthorized185

access, such as k-nearest neighbor (k-NN) [6], support vector machine (SVM) [22],186

decision tree [23], naïve Bayes network [7], random forests [5], and artificial neu-187
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6 Machine Learning Algorithms for Network … 7

Fig. 6.2 ML-NIDS architecture

ral networks (ANN) [24]. In addition, unsupervised learning algorithms, including188

k-means clustering [25] and self-organized maps (SOM) [10], have also been applied189

to deal with network intrusion detection problems, with good results. For vari-190

ous reasons, such as the imbalance of training datasets and the high cost of com-191

putational requirement, it is currently very difficult to design a single machine192

learning approach that outperforms the existing ones. Therefore, hybrid machine193

learning approaches, such as clustering with classifier [16, 26] and hierarchical clas-194

sifiers [27], have attracted a lot of attention in recent years. In addition, some data195

mining approaches have also been successfully utilized to solve intrusion detection196

problems. For instance, data mining approaches are employed to generate a fuzzy197

rule base, and a fuzzy inference approach is then applied for threat detection in [14].198

This section examines the existing NIDSes utilizing two approaches, namely, fuzzy199

inference systems and artificial neural networks.200

6.3.1 Fuzzy Inference Systems201

Due to their great ability to deal with uncertainty, fuzzy inference systems (FIS)202

have been widely used for detecting potential network threats. Generally speaking,203

fuzzy inference systems are built upon fuzzy logic to map system inputs and outputs.204

A typical fuzzy inference system consists of two main parts: a rule base (or knowledge205

base) and an inference engine. A number of inference engines are well established,206

with the Mamdani inference [28] and the TSK inference [29] being the most widely207

used. Although fuzzy sets are used in both rule antecedents and rule consequences by208

the Mamdani fuzzy model, which is more intuitive and suitable for handling linguistic209
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8 J. Li et al.

variables, a defuzzification progress is required to transfer the fuzzy outputs to crisp210

outputs. In contrast, the TSK inference approach produces crisp outputs directly, as211

crisp polynomials are used as rule consequences.212

For a fuzzy inference-based NIDS (FIS-NIDS), the important features, which are213

extracted from the network packets, are used in the pre-detector component to analyze214

events with the set of rules to determine whether any incoming events have intrusive215

patterns or not. The set of rules is called a fuzzy rule base, which can be either216

predefined by expert knowledge (knowledge-driven), or extracted from labeled data217

instances (data-driven) [30, 31]. In contrast to knowledge-driven rule base generation218

approaches, which essentially limit the system’s applicability as expert knowledge219

is not always available in some areas, data-driven rule base generation methods are220

most commonly used for intelligent NIDSes. Several data-driven approaches have221

been proposed to generate a rule base for FIS-NIDS use, which are usually derived222

from complete and dense datasets, such as [32, 33]. The generated rule bases are223

often optimized using a general optimization technique, such as genetic algorithms224

(GA), for optimal system performance. As the used datasets are dense and complete,225

the resulted rule bases are generally dense and complete, each of which covers226

the entire input domain, and accordingly the resulted fuzzy models often yield to227

great reasoning performance. However, these systems will suffer if only incomplete,228

imbalanced, and sparse datasets are available. In addition, these systems are usually229

signature-based NIDSes, which are only able to detect known network threats for230

which the intrusive patterns have been covered in the rule base.231

In order to address the previous limitations, fuzzy interpolation has been used to232

develop NIDSes [18, 34]. Briefly, fuzzy interpolation enhances conventional fuzzy233

inference systems to work with sparse fuzzy rule bases, by which some inputs or234

observations are not covered [35]. Using fuzzy interpolation techniques, even if the235

traffic patterns of the incoming event do not match with any of the patterns stored in236

the rule base, an approximated result can still be obtained by considering the similar237

patters expressed as rules in the current rule base. A number of fuzzy interpolation238

approaches have been proposed in literature [36–47], many of which have already239

been applied to solve real-world problems [48–51].240

A data-driven fuzzy interpolation-based NIDS can be developed in four steps: (1)241

training dataset generation and preprocessing, (2) rule base initialization, (3) rule242

base optimization, and (4) intrusion detection by fuzzy interpolation [14, 52], as243

illustrated in Fig. 6.3. These key steps are detailed in the following sections.244

6.3.1.1 Dataset Generation and Preprocessing245

The training dataset can either be collected from a real-world network environment,246

or it can be developed from an existing dataset. Whichever method is selected, the247

important features, which are selected for system modeling, have to be identified.248

In general, a number of features can be monitored by networking tools for network249

analysis during data packet transmission over the network, but some of these features250

are redundant or noisy. Therefore, a well-thought manual feature selection process251
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Dataset generation and
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dataset

Rule base
initialization

Initialized
rule base

Optimization

Optimized
rule baseInput

network traffic Fuzzy interpolation
reasoning

Decision

Fig. 6.3 The framework of TSK+ based NIDS

is often required for network attack detection [53]. This common practice is also252

applied here. In particular, four important features identified by experts are selected253

as NIDS signature for the proposed FIS-NIDS, which are listed in Table 6.1.254

The establishment of the optimal number of features that should be retained in255

datasets by feature selection methods is always an argued point, because feature256

selection usually causes information loss from the original dataset. Several pieces of257

work in the area of feature selection have claimed that more attributes generally lead258

to better approximations [54–57]. This can be the case for perfect, entirely consistent,259

and noise-free data, with all features being independent. Generally speaking, feature260

relevancy and redundancy have to be considered by feature selection methods before261

the application of machine learning approaches [58, 59]. The selected features should262

be highly relevant to the problem and non-redundant if they are to be useful in263

an efficient manner [60]. In fact, a large volume of published results in relevant264

Table 6.1 Features used in the NIDS

Feature Description

Source bytes The number of data bytes sent by the source IP host

Destination bytes The number of data bytes sent by the destination IP host

Count The number of connections to the same host as the current connection
in the past 2 seconds

Dst_Host_Diff_Rate % of connections whose ports are different, among the past 100
connections with the same destination IP
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10 J. Li et al.

literature has demonstrated that smaller number of selected features can lead to265

much-improved modeling accuracy, including [61–66]. In addition, more attributes266

retained in datasets will also increase the computational complexity [60]. Therefore,267

it is necessary to consider as many features as possible under certain circumstances268

especially for noise-free and fully consistent datasets, but in others, a minimal subset269

of features satisfying some predefined criteria is more appealing.270

Once the features are determined for machine learning, datasets for a given net-271

work of a particular environment need to be collected for model training. This is272

typically implemented in stages based first on an attack-free network, and then273

different types of attacks that need to be identified. In other words, data regard-274

ing normal network traffic is collected first from a threat-free network environment.275

Then, a number of attacks simulating the first type of attack are artificially launched so276

that this type of attack is sufficiently covered by the dataset. This process is repeated277

for every other type of attacks until all the classes that need to be considered are278

fully covered by the dataset. The final dataset covers all attack types and attack-free279

situations. In most cases, if an existing dataset is adopted for model training, the280

process of data collection may be skipped. However, ideally, the structure of the281

existing dataset should follow the structure explained above.282

6.3.1.2 Rule Base Initialization283

Suppose that the training dataset (T ) contains l (l ≥ 1, l ∈ N) labeled classes, which284

covers l − 1 types of attacks and the normal situation. As illustrated in Fig. 6.4, the285

system first divides the training dataset T into l sub-datasets T1, T2, . . . , Tl , each286

representing a type of attack or the normal traffic (i.e., T = ∪l
s=1Ts).287

Then, the K-means, one of the most widely used clustering algorithms, is288

employed to each sub-dataset to group its data points into k clusters based on their289

feature values. Note that the value of k in the K-means algorithm has to be predefined290

to enable the application of the algorithm. The Elbow method [67], which determines291

the number of clusters based on the criteria that adding another cluster is not much292

better for modeling the dataset, has been employed for determining the value of k.293

Based on this, each determined cluster is expressed as a fuzzy rule that contributes294

to the TSK rule base.295

In this work, a 0-order TSK fuzzy model is adopted. All data instances in each296

class share the class label (an integer number), which is utilized as the consequent of297

the corresponding TSK rule. The triangular membership function is utilized in the298

rule antecedents. The support of the triangular fuzzy set is expressed as the span of299

the cluster along this input dimension, and the core of the corresponding fuzzy set300

is set as the cluster center. The final TSK fuzzy rule base is generated by combining301

all the extracted rules from all l sub-datasets, which is illustrated as follows:302

Rs
ts : IF x1 is Asts

1 and x2 is Asts
2 and x3 is Asts

3 and and x4 is Asts
4 ,

THEN z = s,
(6.1)303
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6 Machine Learning Algorithms for Network … 11

Fig. 6.4 Rule base generation

where s = {1, . . . , l} represents the sth sub dataset that indicates the sth type of304

network traffic, ts = {1, . . . , ks} denotes the tth cluster in the sth sub dataset. The305

number of rules in this rule base is equal to the sum of the numbers of clusters for306

all the sub-datasets (i.e., k1 + k2 + · · · + kl).307

6.3.1.3 Rule Base Optimization308

The generated initial rule base can be employed for intrusion detection, but with rel-309

atively poor performance. In order to increase the detection performance, a genetic310

algorithm (GA) is adopted here to fine-tune the membership functions involved in311

the initial rule base. Assume that a given initial TSK rule base is comprised of n fuzzy312

rules of the form shown in Eq. 6.1. Suppose a chromosome, denoted as I , is used to313

represent a potential solution in the GA, which is coded to represent the parameters314

of all rules in the rule base, as shown in Fig. 6.5. Based on this, the initial population315

P = {I1, I2, . . . , I|P|} can be formed by taking the parameters of the initial rule base316

and its random variations. During the optimization process, the number of chro-317

mosomes is selected for offspring reproduction by applying the genetic operators of318

crossover and mutation. Specifically, the fitness proportionate selection method, also319

known as the roulette wheel selection, is implemented in this work for chromosome320

selection, and the signal point crossover and mutation operators are employed for321
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12 J. Li et al.

Fig. 6.5 Chromosome encoding

reproduction. In addition, in order to make sure that the resultant fuzzy sets are valid322

and convex, the constraint a1
ir < a2

ir < a3
ir, i = {1, 2, 3, 4} is enforced to the genes323

during optimization. The selection and reproduction processes are iterated until the324

predefined maximum number of iterations is reached, or until the system perfor-325

mance reaches a predefined threshold. Optimized parameters and thus an optimized326

rule base can be obtained when the termination condition is satisfied.327

6.3.1.4 Intrusion Detection by TSK-Interpolation:328

Once the rule base is generated, the TSK+ fuzzy inference approach can be deployed329

to perform inferences for attack detection. In order to generate network intrusion330

alerts in real time, the system is deployed by one of the deployment methods intro-331

duced in Sect. 6.2.1, which keeps capturing network traffic data for analysis. For332

each captured network packet, four important features, detailed in Table 6.1, are333

extracted and fed into the proposed system. From this input, the TSK+ fuzzy infer-334

ence approach will classify the types of network traffic using the generated rule base.335

Assume that an optimized TSK fuzzy rule base is comprised of n rules as follows:336

R1 : IF x1 is A1
1 and x2 is A1

2 and x3 is A1
3 and x4 is A1

4 THEN z = Z1,

. . .

Rn : IF x1 is An
1 and x2 is An

2 and x3 is An
3 and x4 is An

4 THEN z = Zn,

(6.2)337

where Ai
k(k ∈ {1, 2, 3, 4} and i ∈ {1, . . . , n}) represents a normal and convex trian-338

gular fuzzy set in the rule antecedent denoted accordingly as (ai
k1
, ai

k2
, ai

k3
), and Zi339

is an integer number that indicates the type of network traffic, whether it is normal340

traffic or a particular type of attack. By taking a captured network packet as an exam-341

ple, the working procedure of the TSK+ fuzzy inference for intrusion detection can342

be summarized as the following steps:343

1. Extract the four feature values from the network packet, and express them in the344

form I = {x∗
1, x∗

2, x∗
3, x∗

4}, which will be used as the system input. Note that the345
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6 Machine Learning Algorithms for Network … 13

extracted feature values are normally crisp values. They have to be represented346

as fuzzy sets of the form A∗
k = (x∗

k , x∗
k , x∗

k ), where k = {1, 2, 3, 4}, for future use.347

348

2. Determine the matching degree S(A∗
k , Ai

k) between the inputs I = {A∗
1, A∗

2, A∗
3,349

A∗
4} and rule antecedents (Ai

1, Ai
2, Ai

3, Ai
4) for each rule Ri, i = {1, . . . , n} using:350

S(A∗
k , Ai

k) =
(

1 −

3∑
j=1

|x∗
k − ai

kj|

3

)
· DF , (6.3)351

where DF , termed as distance factor, is a function of the distance between the352

two fuzzy sets of interest, which is defined as follows:353

DF = 1 − 1

1 + e−sd+5
, (6.4)354

where s (s > 0) is a sensitivity factor, and d represents the Euclidean distance355

between the two fuzzy sets. A smaller s value results in a similarity degree more356

sensitive to the distance of the two fuzzy sets.357

3. Obtain the firing degree of each rule by integrating the matching degrees of its358

antecedents and the given input values as follows:359

αi = S(A∗
1, Ai

1) ∧ S(A∗
2, Ai

2) ∧ S(A∗
3, Ai

3) ∧ S(A∗
4, Ai

4) , (6.5)360

where ∧ is a t-norm usually implemented as a minimum operator.361

362

4. Integrate the sub-consequences from all rules to get the final output using the363

following formula:364

z =
∑n

i=1 αi · Zi∑n
i=1 αi

. (6.6)365

5. Apply the round function on the final output to obtain the integer number that366

indicates the network traffic type for the given network packet.367

As discussed above, if an unknown network’s threat behavior or traffic pattern has368

been captured, a result of “network security alert” can still be expected by considering369

all fuzzy rules in the rule base.370

6.3.2 Artificial Neural Networks371

An artificial neural network (ANN) is an information processing system inspired by372

biological nervous systems that constitute animal brains, which is one of the most373

widely used machine learning algorithms [68]. Typically, an ANN is composed of374
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Fig. 6.6 Multilayer perception-based NIDS architecture

two main parts: a set of simple processing units, also known as nodes or artificial375

neurons, and the connections between these. These simple units or nodes are orga-376

nized in layers, which usually consist of the input, output, and hidden layers. The377

hidden layers are those between the input and the output layers. Once the set of pro-378

cessing units and their connections are determined, or an ANN is built, the training379

process adjusts the connection weights between the connected units to determine to380

what extent one unit will affect the others. ANNs are successfully employed in NID-381

Ses, which usually fall into two categories: supervised training-based NIDSes and382

unsupervised training-based NIDSes [69]. As demonstrated in Fig. 6.2, both types383

of NIDSes essentially follow the architecture and three general steps of ML-NIDS384

as specified in the beginning of this section.385

If the supervised learning approach is applied, the desired output or pattern for386

a given input is learned from a set of labeled data. A well-known supervised neural387

network architecture is the multilayer perception (MLP), which is based on the feed-388

forward and backpropagation algorithms with one or more layers between the input389

and the output layer [1]. In this type of ANN-NIDS, the number of nodes in the390

input layer is set to the number of features selected from the original traffic flow, and391

the number of nodes in the output layer is configured to be the number of desired392

output classes [16, 70–73]. The number of hidden layers and the number of nodes393

for each hidden layer vary, and are usually configured according to the situation. A394

feed-forward-based MLP with a signal hidden layer ANN NIDS model is illustrated395

in Fig. 6.6.396

Obviously, the entire data flow in the ANN is in one direction only: from the397

input layer, though the hidden layer, to the output layer (see Fig. 6.6). Therefore,398

given a network traffic package as the input, the corresponding network behavior399

can be predicted. The advantages of this model are its ability to represent both linear400
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6 Machine Learning Algorithms for Network … 15

and non-linear relationships, and directly learn these relationships from the data by401

means of training. However, a number of research projects have reported that the402

training process of this type of ANN can be very time-consuming, which may pose403

a significant adverse impact for NIDS system updating [1, 24].404

Another group of ANN NIDSes is based on unsupervised training, in which the405

network adapts to different clusters without having a desired output. One of the most406

popular algorithms in this group is the self-organizing map (SOM), which transforms407

the input of arbitrary dimension into a low-dimensional (usually 1- or 2-dimensional)408

discrete map by using Kohonen’s unsupervised learning method [74]. The structure409

of a conventional self-organizing map is shown in Fig. 6.7a. A conventional SOM410

network model usually has two layers: an input layer and an output layer (also known411

as a competitive layer). Similar to the supervised training-based NIDS, the number412

of nodes in the input layer are usually set to the number of selected features of the413

training dataset. The output layer consists of neurons organized in a lattice, usually414

a finite two-dimensional space. Each neuron has a specific topological position and415

is associated with a weight vector of the same dimension as the input vectors [75].416

The training process adjusts the weight vectors of the neurons, thereby describing417

a mapping from a higher-dimensional input space to a lower-dimensional map space.418

As a result, the SOM eventually settles into a map of stable zones as a type of feature419

map of the input space. Based on these mappings, various traffic behaviors can be420

identified. Figure 6.7b illustrates an example of a SOM output, which clearly shows421

the four classes that have eventually been predicted.422

When comparing the performance (speed and conversion rate) between SOM and423

supervised learning-based NIDS systems, it becomes clear that SOM is more suitable424

for real-time intrusion detection [76–80].425

Although both types of ANN-network intrusion detection systems are success-426

fully employed in detecting intrusions in real-world network environments with427

promising results, existing ANN-network intrusion detection systems have two main428

drawbacks: (1) lower detection precision for low-frequency attacks, and (2) weaker429

detection stability, which limits the applicability of such systems [16]. The reason430

behind these is the uneven distribution of different attack types. For example, the431

number of training data instances for low-frequency attacks are very limited com-432

pared to common attacks. As a consequence, it is not easy for the ANN to learn the433

characteristics of such low-frequency attacks [81].434

To address these issues, a number of solutions have been proposed (e.g., [16, 82,435

83]). Among these systems, a fuzzy clustering-based neural network NIDS approach436

(FC-ANN-NIDS) [16] can be a potential solution. Comparing to conventional ANN-437

NIDSes, in which data clustering techniques are typically not involved during the438

training process, FC-ANN-NIDSes adopt a fuzzy clustering technique to generate439

different training sub-datasets. This is followed by the application of multiple ANNs440

in the training stage based on the divided sub-datasets. Finally, a fuzzy aggregation441

module is applied to combine the results of the ANNs, in an effort to eliminate their442

errors. The framework of FC-ANN-NIDS is illustrated in Fig. 6.8, which basically443

contains three major stages: clustering, ANN modeling, and fuzzy aggregation. The444

details of this method (or FC-ANN-NIDS) are presented in the rest of this section.445
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Fig. 6.7 Self-organizing map-based NIDS architecture

6.3.2.1 Clustering446

Given a training dataset that contains l network behaviors, the fuzzy C-means clus-447

tering technique [84] is employed to group the data instances in clusters, which448

essentially divides the entire training dataset into n sub-datasets. Note that only the449
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Fig. 6.8 FC-ANN-NIDS
framework

size and complexity of the original training dataset is reduced after data clustering,450

and the data instances in each divided sub-dataset may still cover all the l network451

behaviors. Each divided training dataset will be forwarded to the next stage for ANN452

training. Unfortunately, the value of n (the number of clusters) in the proposed system453

is determined under a practice theory. Therefore, more intelligent methods, such as454

Elbow method [67] may be considered for determining the value of n.455

6.3.2.2 ANN Training456

A multi-layer perceptron model, illustrated in Fig. 6.6, is used in this study for mod-457

eling each sub-training dataset. As mentioned previously, the number of input nodes458

is set to match the number of selected features of the training dataset; and the number459

of nodes in the output layer is set to the number of network traffic behaviors covered460

by the training dataset. The number of hidden nodes is then obtained by adopting the461

empirical formula:
√

I + O + α, (α = {1, . . . , 10}), where I denotes the number of462

input nodes, O represents the number of nodes in the output layer, and α is a random463

number [81]. During the training process, the signals, which combine both the input464

values and the weight values between the corresponding input node and the hidden465

node, are received by each node in the hidden layer. These signals are processed466

by a sigmoid activation function, and broadcasted to all the neurons in the output467

layer with a special weight value. In this study, the most widely used first-order468

optimization algorithm, gradient descent, is employed for weight-updating during469

the backpropagation process. Once the entire training process is completed, multiple470

ANN models can be generated based on the different training sub-datasets. Note that471
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18 J. Li et al.

each ANN model can be applied individually for network intrusion detection in real-472

world network environments. In order to reduce the detection errors, an aggregation473

module is applied to aggregate the results from different ANNs.474

6.3.2.3 Aggregation475

Although each ANN generated in the last stage can be deployed individually as an476

NIDS, some of them may have an unacceptably poor detection performance. In this477

study, another multi-layer perceptron model is applied for sub-results aggregation.478

In this stage, the number of nodes in both the input and the output layer is set to479

the number of network behaviors. Given the entire training dataset and the multiple480

trained ANN models with the corresponding training sub-datasets generated in the481

last stage, the modeling process in the aggregation stage can be summarized as482

follows:483

Step 1: Feed each data instance j in the original training dataset to every trained484

ANN model (ANN1, ANN2, . . . , ANNn). Denote the output of model ANNi, (i =485

{1, . . . , n}) from data instance j as oj
i, then the outputs from all ANNs collectively486

as Oj and Oj = [oj
1, . . . , oj

n].487

Step 2: Form the new input for the new ANN model based on the previous outputs.488

The new input I j
new generated from data instance j is489

I j
New = [oj

1 · μ1, . . . , oj
n · μn] , (6.7)490

where μi represents the degree of membership of data instance j belonging to491

cluster i. Note that the degree of membership for each data instance regarding each492

cluster has been determined in the clustering using the fuzzy C-means clustering493

algorithm.494

Step 3: Generate a new ANN model and train it using the newly formed inputs495

generated in Step 2.496

Once the entire model is built, the system can be deployed in real-world network497

environments for intrusion detection. Given an incoming network traffic package, the498

system first calculates the membership of the incoming data using the cluster centers499

obtained in the first stage. Next, the ANN models and the aggregation model will500

be applied to predict the final result, which indicates whether the incoming traffic501

poses a threat. Such hybrid ANN network intrusion detection solutions can increase502

detection performance, especially for low-frequency attacks. However, it may be503

costly in time because of the training processes for the large number of feed-forward504

neural networks.505
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Fig. 6.9 The framework of ML-NIDS deployment

6.3.3 Deployment of ML-Based NIDSes506

Although the developed ML-based network intrusion detection systems are able to507

take the network package (input) to predict whether it is a normal network behavior,508

these systems still cannot be directly implemented in real-world network environ-509

ments for real time detection. The reason behind this is that the generated ML-based510

models do not have packet sniffers, which are used to capture the network traffic in511

real time. In order to achieve real-time detection, the developed ML-based network512

intrusion detection systems have to work with packet sniffers, such as Snort, Bro,513

or Spark. A packet sniffer (or network sniffer) is a network traffic monitoring and514

analyzing tool that can sniff out the network data traversing the monitored network515

in real time. A number of ML-based network intrusion detection systems have been516

successfully integrated with packet sniffers and achieved good real-time detection517

(e.g., [34, 85]). The general framework of these systems is illustrated in Fig. 6.9. A518

packet sniffer, which can be implemented by either a passive or an in-line deploy-519

ment method as introduced in Sect. 6.2.1, continuously captures the network traffic,520

and extracts the required information from the captured network packets to feed into521

the system model developed by machine learning techniques, thereby generating the522

final decisions.523

6.4 Experiment524

A number of network intrusion detection systems developed by different machine525

learning approaches are evaluated in this section by applying them to the KDD 99526

benchmark dataset.527
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6.4.1 Evaluation Environment528

A well-known benchmark dataset, KDD 99, which has been utilized in a number529

pieces of recent research [14, 16, 18, 86], is used in this work to evaluate multiple530

machine learning-based network intrusion detection systems. The KDD 99 dataset531

is a popular benchmark for intrusion detection; it includes legitimate connections532

and a wide variety of intrusions simulated in a military network environment [87].533

This dataset contains almost 5 million data instances with 42 attributes, including the534

“class” attribute, which indicates whether a given instance is a normal connection535

instance or one of the four types of attacks to be identified (i.e., normal, denial of536

service attacks, user-to-root attacks, remote-to-user attacks, and probes). An impor-537

tant feature of this dataset is that it is an imbalanced dataset, with most data instances538

belonging to the normal, denial of service attack, and probe categories. As with the539

type of low-frequency attacks, the classes of user-to-root attacks and remote-to-user540

attacks, are only covered by a small number of data samples. Knowing the inherent541

issues associated with the dataset, such as the high duplication rate of 78% [87], data542

instance selection methods, such as the random selection method, are used to reduce543

the size of the dataset for machine learning. It is worth mentioning that the KDD544

99 dataset has been succeeded by the NSL-KDD-99 dataset [87], which reduces the545

size to 125,937 data samples, while keeping all the features of the original dataset.546

Table 6.2 details the information about the number of data instances in the training547

and testing datasets that were used by different network intrusion detection systems,548

as discussed in Sect. 6.3.549

Table 6.2 Details of datasets for machine learning-based NIDSes

Machine
learning
approach

Training Testing Dataset

Normal Abnormal Normal Abnormal

TSK+ [14] 67,343 58,630 9,711 9,083 Entire
NSL-KDD-99

Conventional
fuzzy
inference [33]

67,343 58,630 9,711 9,083 Entire
NSL-KDD-99

FC-ANN [16] 3,000 15,285 60,593 250,496 Random part

MLP [24] 5,922 6,237 3,608 3,388 Random part

SOM [10] 97,277 396,744 60,593 250,436 Random part

Hierarchical
SOM [10]

97,277 396,744 60,593 250,436 Random part
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6.4.2 Model Construction550

This section details the model construction of the aforementioned six ML-based551

network intrusion detection approaches.552

6.4.2.1 TSK+ Fuzzy Inference553

As discussed in Sect. 6.3.1, this system brings four important features to the system554

model. During rule base initialization, the training dataset was divided into five sub-555

datasets based on the five symbolic labels, which are represented by five integer556

numbers. The fuzzy model takes four inputs, and predicts a crisp number. According557

to the Elbow method, 46 TSK fuzzy rules have been generated, which constructed558

the initial rule base. The final rule base has then been optimized using the GA. The559

objective function in this work is defined as the root mean square error (RMSE),560

while the GA parameters are listed in Table 6.3.561

6.4.2.2 Conventional Mamdani Fuzzy Inference562

The conventional Mamdani fuzzy inference model is investigated in this work. The563

system uses 34 features for system modeling, which results in 34 inputs and one564

output Mamdani fuzzy model. Each input domain has been equally partitioned into565

four regions, described by four linguistic terms, namely, “very low,” “low,” “medium,”566

and “high;” and two fuzzy sets, “low” and “high,” are used to indicate normal and567

abnormal network traffic, respectively. The fuzzy rules are obtained by a mapping568

mechanism based on the given training dataset. Given the input, which is a network569

traffic package, the system first fuzzifies the crisp value of the required features based570

on the mapping mechanism, then generates a fuzzy output based on the generated571

rule base. Finally, the center of gravity method is employed to defuzzify the fuzzy572

output to a crisp one, which indicates whether the traffic is normal or attack traffic.573

Table 6.3 GA parameters Parameters Values

Population size 100.00

Crossover rate 0.85

Mutation rate 0.05

Maximum iteration 10,000.00

Termination threshold 0.01
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6.4.2.3 Fuzzy Clustering-Based ANN574

Fuzzy clustering-based ANN uses all the 41 features to predict the five network575

behaviors. Note that the symbolic values contained in the dataset have been converted576

to continuous values. In the beginning, six training sub-datasets are obtained by using577

fuzzy C-means clustering. From there, six signal-hidden-layered neural network578

models are trained, each of which is referred to as [41;18;5] structure. This means that579

each network takes 41 inputs, goes through 18 hidden nodes, and finally produces580

5 outputs. In the aggregation progress, a new signal hidden-layered ANN model581

with the structure [5;13;5] is designed to aggregate all results from upper-level ANN582

models. The mean square error (MSE) is used as the fitness function during system583

modeling, and the threshold of MSE is set to 0.001. Also, the learning rate and the584

momentum factor at both ANN model levels are set to 0.01 and 0.2, respectively.585

6.4.2.4 Multilayer Perceptron586

Expert knowledge has been used in this work to help select the most important587

features. In particular, 35 features, including five symbolic features and 30 numerical588

features, have been selected. Similar to the FC-ANN approach introduced above,589

the symbolic values were converted to numerical values. Because of the lack of590

data samples in U2R and R2U attacks, only three categories, namely, “normal,”591

“DoS,” and “probes,” were considered. As a result, 35 input nodes and three output592

nodes were used. In this experiment, a two hidden-layered MLP network model593

was implemented, constituting a four-layer MLP, whose structure is referred to as594

[35;35;35;3].595

6.4.2.5 Hierarchical Self-organizing Maps596

A hierarchical self-organizing map architecture, which consists of two levels of597

SOM networks, each comprised of three layers, was used in this experiment. The598

first layer was an input layer, with 20 input nodes (corresponding to 20 selected599

features). At the first level of SOM, six SOM networks were deployed, each of600

which represented one of the basic TCP features, including “duration,” “protocol601

type,” “service,” “flag,” “destination bytes,” and “source bytes.” During the training602

process, each training data sample was fed into each SOM network, thereby creating603

a number of mappings between inputs and six 6 × 6 grids on the second layer, which604

resulted in 36 × 6 = 216 neurons. After this, potential function clustering [84] was605

employed on each output layer of the first SOM level to reduce the total neurons606

from 36 to 6. As a consequence, the total number of neurons in the second layer was607

reduced to 36. These 36 neurons were used as inputs for the second SOM level to608

train a new SOM network that consists of a 20 × 20 grid of neurons, which indicates609

the mapping from the input space to the different network behaviors. The learning610
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rate was set to 0.05, and the neighborhood function was configured as a Gaussian611

function.612

6.4.2.6 Conventional Self-organizing Maps613

In this experiment, all the 41 features have been used for the intrusion detection614

system. During the training process, the learning rate was set to 0.05, and the Gaussian615

function was used as the neighborhood function. The developed system took 41 inputs616

to create a mapping between five categories of network behaviors into a 6 × 6 grid617

of neurons.618

6.4.3 Result Comparisons619

In order to enable a direct comparison between the different ML-NIDS approaches,620

a common measurement, the detection rate, is employed in this work. In particular,621

the detection rate can be defined as follows:622

Detection rate = Number of instances correctly detected

Total number of instances
· 100 (6.8)623

The detection rates of the classification results for each network traffic category are624

summarized in Table 6.4.625

The results show that all the approaches achieved a high detection performance626

in the normal, DoS, and probes category, which contain sufficient data samples for627

training. Note that conventional ANN-based network intrusion detection systems,628

such as the MLP-based approach and the SOM-based approach, led to an extremely629

poor detection performance in the case of U2R and R2U. As discussed in Sect. 6.3.2,630

this issue is caused by the lack of training data samples for both U2R and R2U. In this631

case, a future investigation may be required to identify how the detection threshold632

affects the detection performance. Obviously, similar to the modified version of the633

ANN approaches, the FC-ANN-based approach and the hierarchical SOM-based634

Table 6.4 Performance comparison

Approach Normal DoS U2R R2U Probes

TSK+ [14] 93.10 97.84 65.38 84.65 85.69

Conventional fuzzy inference [33] 82.93 90.42 19.05 15.58 37.08

FC-ANN [16] 91.32 96.70 76.92 58.57 80.00

MLP [24] 89.20 90.90 N/A N/A 90.30

SOM [10] 98.50 96.80 0.00 0.15 63.40

Hierarchical SOM [10] 92.40 96.50 22.90 11.30 72.80
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approach increased the detection rate. It is worth mentioning that the TSK+ based635

intrusion detection system not only achieved the best detection performance in the636

normal, DoS, and probes classes, but also had an outstanding performance in the637

other two classes.638

6.5 Conclusion639

This chapter investigated how machine learning algorithms can be used to develop640

NIDSes. In particular, the chapter first reviewed the existing intrusion detection641

techniques, including hardware deployment and software implementations. They642

are followed by the discussion of a number of machine learning algorithms and their643

applications in network intrusion detection. Finally, a well-known network secu-644

rity benchmark dataset, KDD 99, was employed for the evaluation of the reviewed645

machine learning-based network intrusion detection systems, with a critical anal-646

ysis of the results. Although the benchmark dataset, KDD 99, is still popular in647

recent research, it is relatively outdated and many of today’s network threats are648

not covered by the KDD 99 dataset. Therefore, future research may consider using649

alternate datasets (e.g., [88, 89]). In addition, as IoT continues to expand, the data650

being generated will continue to grow in volume and velocity. How conventional651

machine learning and artificial intelligence techniques can be expanded to deal with652

the continuously growing data is an interesting research direction.653
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