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A B S T R A C T

Automatic evaluation of sports skills has been an active research area. However,
most of the existing research focuses on low-level features such as movement speed
and strength. In this work, we propose a framework for automatic motion analysis
and visualization, which allows us to evaluate high-level skills such as the richness of
actions, the flexibility of transitions and the unpredictability of action patterns. The core
of our framework is the construction and visualization of the posture-based graph that
focuses on the standard postures for launching and ending actions, as well as the action-
based graph that focuses on the preference of actions and their transition probability. We
further propose two numerical indices, the Connectivity Index and the Action Strategy
Index, to assess skill level according to the graph. We demonstrate our framework
with motions captured from different boxers. Experimental results demonstrate that our
system can effectively visualize the strengths and weaknesses of the boxers.

c© 2017 Elsevier B.V. All rights reserved.

1. Introduction1

Computer technologies have taken on a crucial role in mod-2

ern sports and health sciences, in revolutionizing the way to ob-3

serve, analyze, and improve the performance of both amateur4

and professional athletes. Computer-managed weight lifting5

machines, treadmills and many other training equipment pro-6

vide energy consumption or repetition and weight management7

in many sport clubs. Virtual reality technology has been ap-8

plied in various training systems in baseball [1], handball [2]9

and tennis [3] to assist more professional sport activities. Nev-10

ertheless, these technologies are only able to analyze motions11

at a low level, i.e. recording the timing or repetitions of ba-12

sic motions and comparing movement trajectories with those13

∗email: yi.shen@northumbria.ac.uk
∗∗e-mail: h.e.wang@leeds.ac.uk

email: e.ho@northumbria.ac.uk
email: longzhi.yangnorthumbria.ac.uk
email: hubert.shum@northumbria.ac.uk, the corresponding author

performed by better players. More advanced technologies are 14

needed for personalized and higher-level analysis comparable 15

to that from human experts. 16

In addition to the instantaneous movement features of the 17

sports players, Experienced sport coaches consider high-level 18

features such as the variety of actions and quality of transitions 19

from one action to another. Taking boxing as an example, pro- 20

fessional boxers have in basic actions such as defence, stepping 21

and attack, threading through which the transitions are carried 22

out based on the strategy and the opponent’s reactions. The ac- 23

tion transitions of a good boxer need to be flexible and contain 24

great variety to achieve the optimal outcome. Such information 25

often serves as an important indicator in assessing the skill level 26

of a player, and the same principle applies to many other sports 27

such as basketball [4] and fencing [5]. Unfortunately, automatic 28

systems for analyzing and evaluating sports motions at such a 29

high level is very limited. 30

In this paper, we propose a robust visualization system to 31

address the above limitations, by represent motions as an in- 32

teractive graph of high-level features, including the flexibility 33
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and richness of the actions as well as the transitions of actions.1

Although we use boxing as a demonstration in this paper, our2

method is generic and can be applied to different sports. Our ap-3

proach starts with capturing the shadow boxing training motion4

of a boxer, in which the boxer performs boxing with an imagi-5

nary opponent. An experienced coach can effectively assess the6

boxer’s skill by watching the shadowing boxing motions. As a7

positive side effect, this method of motion analysis greatly re-8

duces the complexity of motion capture due to occlusion and9

collision and has shown to be very effective in our system. The10

motion data is then processed and visualized in two different11

graphs: the posture-based graph and the action-based graph,12

for performance analysis.13

In the posture-based graph, the semantic actions segmented14

from the captured motion are grouped into clusters based on a15

customized distance function that considers action specific fea-16

tures. Our system then automatically generates a motion graph17

structure known as Fat Graph [6], which uses nodes to represent18

groups of similar postures to start and end actions, and edges to19

represent groups of action. By applying dimensional reduction20

techniques, this graph can be visualized in a 3D space for per-21

formance analysis and evaluation. The transition capability of22

the boxer are visualized by the connectivity of the nodes, where23

the richness and preference of the actions are visualized by the24

edges in the graph. We further propose a skill evaluation metric25

known as the Connectivity Index which evaluates the richness of26

actions and the flexibility of transitions according to the graph.27

Whilst the posture-based graph focuses on the variety of ba-28

sic postures and the transition flexibility between actions, the29

action-based graph mainly considers the richness of actions and30

the transition probability among them. The action-based graph31

is constructed as a customized Hidden Markov Model (HMM)32

[7], in which similar actions are grouped into clusters that for-33

mulate the nodes. The transition probability among actions is34

calculated and is expressed as edges between nodes. The graph35

is visualized in a 3D space, and the positions of the nodes and36

edges are optimized for better visualization. With such a graph,37

the pattern of action launching can be easily identified in order38

to assess the boxing strategy of the boxer. We further propose39

the Action Strategy Index to evaluate the unpredictability of ac-40

tion patterns according to the graph.41

We conducted experiments on the motions captured from42

multiple boxers and evaluate their skills. The corresponding43

posture-based and action-based graphs were generated. As44

shown in Fig. 10, we can easily evaluate the skills of differ-45

ent boxers with our visualization system.46

There are three main contributions of this work:47

• We propose a framework for high-level skill analy-48

sis through automatic motion analysis and visualization.49

Given a captured motion from a sports player, our system50

automatically segments the motion into semantic action51

units and constructs two graph structures.52

• We propose the posture-based graph, which is a variant of53

the Fat Graph, to visualize the skills according to differ-54

ent standard postures for launching and ending actions. It55

allows the user to identify the correctness of standard pos-56

tures and the diversity of actions. We further propose the 57

Connectivity Index that evaluates the richness of actions 58

and the flexibility of transitions. 59

• We propose the action-based graph, which is a variant of 60

the Hidden Markov Model (HMM), to visualize the skill 61

according to different groups of action. It allows the user 62

to identify the preference of actions and their transition 63

probability. We further propose the Action Strategy Index 64

to evaluate the unpredictability of action patterns. 65

The preliminary results of this work were published in a 66

conference paper [8], which proposed only the posture-based 67

graph. In this paper, we extend the work by introducing the 68

new action-based graph. We perform analysis and experimental 69

evaluation of such a graph, and compare its performance with 70

the posture-based graph. We have also updated the paper thor- 71

oughly such that the two graphs are presented in an organized 72

and effective manner. 73

The rest of this paper is organized as follows. Related works 74

are reviewed in Section 2. The details of motion capture and 75

organization are given in Section 3. In Section 4 and 5, we ex- 76

plain the design and implementation of the posture-based graph 77

and the action-based graph respectively. Related experiments 78

can be found in Section 6. The paper is concluded in Section 7 79

with future research directions discussed. 80

2. Related Work 81

2.1. Sports Visualization 82

Helping athletes on skill improving via the visualization of 83

sport motions is a field that has not been fully explored in the 84

field of sports science. Existing research [9, 10] mainly focuses 85

on the appearance changes of motions when body and motion 86

parameters are changed. For example, Yeadon [9, 10] has done 87

research on how diving and somersault motions change when 88

the motions are launched at different timings by using physical 89

simulation. Although such tools are useful for the athletes to 90

interactively visualize possible results under different parame- 91

ters, they can only evaluate the performance of sports that do 92

not require complex maneuvers and strategies, such as jump- 93

ing, high jumping, sky jumping, or somersaults. In many sports 94

games, the performance depends not only on physical factors 95

such as velocity, power and strength, but also on flexibility to 96

switch from one motion to another and richness of the player’s 97

motions. This high-level information has not been used to vi- 98

sualize the skills of the athlete in previous research and it is 99

the major difference between our work and the afore-mentioned 100

ones. In this research, we combine the approaches of motion 101

graph [11, 12, 13] and dimensionality reduction [14, 15] to vi- 102

sualize high-level skills information of the athletes for the skill 103

assessments. 104

2.2. Motion Graphs for Motion Modeling 105

The Motion Graph approach [11, 12, 13, 16, 17, 18, 19] is 106

a method to interactively reproduce continuous motions based 107

on a graph generated from captured motion data. Reitsma and 108
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Pollard [20] compared different motion graph techniques com-1

prehensively. Heck et al. [21] further parametrized the mo-2

tion space to control how the motions are generated by blend-3

ing samples in the motion graph. Such an approach can be used4

for interactive character control such as that in computer games.5

When it comes to graph construction, [16, 17] are the ones most6

similar to our method. Min et al. [16] grouped similar pos-7

tures and transitions into nodes and edges. Their focus was the8

motion variety of synthesized motions so they used generative9

models to fit the posture and motion data. Our focus is on skill10

visualization through the analysis of postures and motions so11

we can afford simpler and faster methods of analysis. Beau-12

doin et al. [17] cluster postures first then find motion motifs13

by converting the motion matching task into a string matching14

problem. Their priority was to find motifs that were represen-15

tative while our focus is to visualize motion details and statis-16

tics to help people assess the skills. Xia et al.[22] constructed17

a series of local mixtures of autoregressive models (MAR) for18

modeling the style variations among different motions for real-19

time style transfer. They demonstrated style-rich motions can20

be generated by combining their method and motion graph.21

Since the Motion Graph produces a lot of edges and nodes22

without any context, it becomes difficult to control generated23

motion as the user wishes. Safonova and Hodgins [23] opti-24

mized the graph structure by combining motion graph and in-25

terpolation techniques to improve performance. On the other26

hand, works to resolve this problem by introducing a hierarchi-27

cal structure were proposed [6]. These approaches add topo-28

logical structures into the continuous unstructured data so that29

the motion synthesis can be done at a higher level. In a sport30

like boxing, it is possible to create a motion graph of seman-31

tic actions such as attack and defence, which is known as the32

action-level motion graph [24, 25]. A recent work by Hyun33

et al. [4] proposed Motion Grammars to specify how charac-34

ter animations are generated by high-level symbolic descrip-35

tion. Such an approach can be used with existing animation36

systems which are built based on motion graphs. Ho and Ko-37

mura [26] built a finite state machine (FSM) based on Topology38

Coordinates [27] for synthesizing two-character close interac-39

tions. The sparse graph structure can be used for controlling40

the movement of virtual wrestlers in computer games. The pur-41

pose of these approaches, however, is motion generation rather42

than the visualization of the player’s skill.43

In our research, we adapted a hierarchical motion graph44

structure called the Fat Graph [6] on the action level to analyze45

the connectivity and the variety of a captured motion set. In a46

fat graph, similar nodes are grouped together as fat nodes, and47

similar edges are grouped as fat edges, allowing better organi-48

zation of motion data. The filtered motion graph is a variation49

of the Fat Graph, in which the temporal relationship between50

poses are considered [28]. Such a structure, however, is targeted51

for motion reconstruction and analysis rather than visualization52

[29].53

2.3. Statistical Motion Modeling54

Dimensionality reduction methods have been proposed to vi-55

sualize the overall structure of captured motions. Grochow56

et al [14] proposed a method to project the 3D motions of a 57

human onto a 2D plane, and further reconstruct 3D motions 58

by mapping arbitrary points from the 2D plane back onto 3D 59

joint space. PCA [15] and ISOMAP [30] are proposed to map 60

the motions onto 2D planes. Due to the high variation of hu- 61

man motion, local PCA that considers only a relevant subset of 62

the whole motion database in order to generate a locally linear 63

space is proposed [31, 32]. One can generate motions from ar- 64

bitrary points on the plane by interpolating the postures of the 65

original motion. Meanwhile, non-linear methods [33, 34] and 66

Deep Learning [35] have also been used to reduce the dimen- 67

sionality of motions. The Gaussian Process [36] and the mix- 68

ture of Gaussian Processes [36] can be used to represent a set of 69

human postures with a small number of Gaussian parameters. 70

However, such methodologies do not take into the account the 71

connectivity structure of the motions. We apply dimensional- 72

ity reduction to our graph structure to visualize the connectivity 73

structure of captured motions on a 2D plane. 74

Other researchers have focused on the connectivities of mo- 75

tion/actions by methods such as Markov models. Hidden 76

Markov Model (HMM) [7] has been widely used in analyzing 77

and synthesizing human motion. Typically, the hidden states 78

of the HMM are the distribution of body poses and the dynam- 79

ics of the motions are represented by the transitions between 80

the hidden states. The parameters of the HMM can then be 81

learned from training data using the Expectation-Maximization 82

(EM) algorithm. Hara et al.[37] proposed to model daily ac- 83

tivities using HMM in intelligent house. Françoise et al.[38] 84

proposed to use HMM models for analyzing Tai Chi motion se- 85

quences. An early work proposed by Brand and Hertzmann[39] 86

proposed to learn the dynamics of human motion using HMM 87

in their motion style synthesis model. Tango and Hilton[40] 88

proposed to learn a HMM model from captured human motion 89

for synthesizing in-between frames in keyframe animation. Ren 90

et al.[41] presented a data-driven approach for quantifying natu- 91

ralness of human motion including those synthesized by HMM. 92

While existing work focuses on finding statistical distributions 93

of motions, our focus is on visualizing the motion richness and 94

the transition dynamics for skill assessments. 95

3. Motion Capture and Organization 96

We first capture the motion required for analysis using mo- 97

tion capture systems. Then, we propose an automatic system 98

to segment long sequences of captured motion into meaningful 99

actions, which are used as building blocks of our posture-based 100

and action-based graphs. 101

Here, we follow the definition from [25], in which a motion is 102

considered to be a raw sequence of captured human movement, 103

and an action is considered to be a short, meaningful segment 104

of movement within a motion. In the field of boxing, an ac- 105

tion can be an attack (such as a “left straight”, “jab” or a “right 106

kick”), a defense (such as “parries”, “blocking” or ”ducking”) , 107

a transition (such as “stepping to the left”, “stepping forward” 108

or “back step”), or any combination of them. 109

Postures and actions are good entities for skill visualization, 110

as sports players typically plan their strategies and evaluate their 111
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performances with such terms. For example, a boxer typically1

thinks about what sort of attack/defense/transition should be2

launched during a match. A coach typically evaluates the over-3

all strategy in the action level, as well as how well individual4

postures and actions are performed.5

3.1. Motion Capture6

Although it would be best to capture the motions of all play-7

ers in multi-player sports because the data would reflect the fea-8

tures of the motions, capturing multiple players remains diffi-9

cult due to the occlusions and collisions among players. Fortu-10

nately, it is possible to only capture individual motions for our11

purposes without compromising the true motion characteristics.12

In boxing or any other martial arts, there is a training practice13

called “shadow boxing”. The boxer imagines a boxing session14

with another boxer, and launches boxing actions to interact with15

such an imaginary opponent. The boxer launches not only of-16

fensive actions such as punching, but also defence, stepping,17

and the consecutive combination of all such actions. There are18

similar practice methods in basketball and soccer as well, in19

which players use the ball to conduct various techniques in the20

court, imagining that their opponents are trying to take the ball21

away from them. The players thus perform various actions to22

keep the ball and trick an imaginary opponent. This technique23

has also been used by coaches for skill assessment hence is suit-24

able for our analysis. We employed an optical motion capture25

system to acquire the performed motion as shown in Figure 126

as it was less intrusive and highly accurate. Also, we preferred27

to capture long and continuous clips of motion, such that the28

player could perform the motion in a natural manner.29

Fig. 1. The shadow boxing motions of several boxers were captured using
an optical motion capture system.

3.2. Motion Analysis30

After data capture, the system automatically segments mean-31

ingful actions from the raw captured motion, and identifies the32

effective joints that contribute the most to the semantic meaning33

of the actions.34

For boxing motions, we observed that actions normally start35

and end in a double supporting state (i.e. both feet touching the36

floor), as the state is usually dynamically stable. We detect such37

a state by monitoring the feet height and velocity and setting38

corresponding thresholds. This allows us to segment the raw39

Fig. 2. Upper: The movement segment is defined as the period between two
double support supporting phases. Middle: The activity segment is defined
as the period with high acceleration. Lower: The action is the combination
of movement segment and activity segment.

captured motion into a set of movement segments, which are the 40

periods between every two successive double supporting states, 41

as visualized in Figure 2 Upper. 42

We also observed that actions normally require a relatively 43

larger force to be performed, such as a punch or a step. We 44

define periods with a high-level of force exertion as the activ- 45

ity segments. Since force is proportional to acceleration, these 46

segments can be found when the sum of squares of acceleration 47

of all joints is above a threshold, as visualized in Figure 2 Mid- 48

dle. The threshold is statistically obtained from the acceleration 49

profile of the motion. 50

Finally, the actions are composed by using the movement 51

segments as the building blocks. The timing and the duration 52

of the activity segments are used to determine if the movement 53

segments should be merged together to form longer segments. 54

Regarding the relationship of the movement segments and the 55

activity segments, there could be three possible cases: (1) There 56

is no activity segment inside a movement segment. In this case, 57

the movement segment becomes a single action of pure body 58

transition. (2) There is one activity segment inside a movement 59

segment. In this case, this movement segment becomes an ac- 60

tion with a special activity. (3) There are one or more activity 61

segments lying across successive movement segments. In this 62

case, the movement segments containing activity segments at 63

the border are merged to form an action as visualized in Figure 64

2 Lower. Note that due to this merging process, the resulting 65

action may contain multiple activity segments. In our system, 66

we implement an optional step to filter very short actions that 67

are likely to be generated due to the noise of the supporting feet. 68

We define the effective joints to be the set of joints to repre- 69

sent an activity segment. In case (1) above, since the actions 70

contain no special activities, the pelvis is considered to be the 71

effective joint. In case (2) and (3), the effective joint is the joint 72

that contributes the most to the sum of squares of the accelera- 73

tion in the activity segment. In more complicated actions such 74

as left-right combo punches, there may be multiple effective 75

joints as there are multiple activity segments. Such joints are 76

used in later processes to evaluate the similarity of actions. 77
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4. Posture-based Graph1

The posture-based graph focuses on evaluating the common2

postures that are used to start and end actions. In such a graph,3

the nodes represent similar postures and the edges represent4

similar actions. It allows us to evaluate the consistency of com-5

mon postures and the diversity of actions.6

4.1. Graph Construction7

We adopt a Fat Graph structure [6] in the action level [25]8

to generate the posture-based graph, as it can effectively sim-9

plify the graph representation by grouping similar postures and10

actions together. The Fat Graph was originally proposed for11

motion synthesis, and thus it is not optimized for skill visual-12

ization. We redesign the algorithms to generate nodes and edges13

in the Fat Graph for our purpose.14

4.1.1. Fat Nodes15

In our system, the nodes of the Fat Graph, known as Fat16

Nodes, are the common starting or ending postures of the17

actions. We design an unsupervised clustering scheme for18

grouping all starting/ending postures into a finite set of posture19

groups, which avoids additional labour for posture labelling and20

grouping. Specifically, we used k-means to cluster postures.21

The distance between two postures P0 and P1 is defined as:22

D(P0,P1) =
i=itotal

∑
i=0
|θ0(i)−θ1(i)| (1)23

where θ0(i) and θ1(i) represent the 3D joint angle of the joint i24

in posture P0 and P1 respectively, and itotal is the total number25

of joints. Regarding the cluster number k, a large k would result26

in many clusters (Fat Nodes), which unnecessarily increases the27

complexity of the graph. A small k will cluster very different28

postures into the same node, defeating the purpose of the graph.29

Therefore, we set up a posture difference threshold empirically30

based on experts’ suggestions. Then, we iteratively search for31

a proper k by initially setting k = 1 and incrementing k by 132

until we find the first value of k that does not violate the dis-33

tance threshold. After clustering, we use the mean posture of34

a group to represent the corresponding Fat Node. The nodes in35

the graph represent the set of standard postures which the player36

starts various action from. In the case of boxing, they are usu-37

ally the fighting postures that the boxer uses to guard his/her38

face against the opponent, with both feet landing on the ground39

and keeping shoulder width apart.40

By evaluating the Fat Nodes alone, we can already tell if41

a boxer has multiple unnecessary standard postures, or if any42

standard postures contain potential weakness. In general, ex-43

perience players have fewer Fat Nodes, such that they can start44

actions in a standard posture effectively without the needs of45

shifting to other ones. Novice players sometimes may have a46

particular Fat Node for some particular actions. This is discour-47

aged in boxing training as such postures hint the opponent as to48

what actions are going to be launched.49

Fig. 3. The Fat Node represents the standard fighting pose. The three
outgoing Fat Edges represent different action groups.

4.1.2. Fat Edges 50

We design the edges of a Fat Graph, known as Fat Edges, as 51

directional edges that represent groups of similar actions. Each 52

edge points from the Fat Node representing the starting posture 53

to that representing the ending posture. 54

Similar to the Fat Nodes, we implement an unsupervised 55

clustering algorithm to group similar actions into Fat Edges. We 56

use k-means to cluster the actions and search for the smallest 57

acceptable k for a given distance threshold. We define the ac- 58

tions distance according to the trajectory of the effective joints 59

as explained in Section 3.2. This allows accurate clustering of 60

actions and ensures that the effects of the effective joints are not 61

smoothed out by other joints. 62

Formally, the distance between two actions A0 and A1 is de- 63

fined as: 64

D(A0,A1) =



∞

if A0 and A1have different sequences
of effective joints

jtotal

∑
j=0

fend

∑
f= fstart

[A0( j)( f )−A1( j)( f )]

otherwise

(2) 65

where A0( j)( f ) and A1( j)( f ) represent the 3D positions of ef- 66

fective joint j in frame f in the action A−0 and A1 respectively, 67

jtotal is the total number of effective joints in the actions, fstart 68

and fend are the starting frame and ending frame of the consid- 69

ering effective joint. In case two effective joints with different 70

duration are to be compared, the shorter one is linearly scaled 71

to the duration of the longer one. 72

In the field of boxing, a Fat Edge typically contains a set of 73

actions with basic attacks or defences such as “straight punch”, 74

“hook punch”, “parry”, or a set of complex actions combining 75

several attacks and defences. Since member actions in a Fat 76

Edges have to share the same starting and ending Fat Nodes, if 77

an action group contains multiple starting or ending poses, it is 78

sub-divided into multiple Fat Edges. 79

Again, by only looking at Fat Edges, one can tell the dif- 80

ferences between experienced and novice players. Experienced 81

players normally have Fat Edges with similar numbers of ac- 82

tions, as they have mastered a large variety of boxing actions 83

and can switch between them effectively using a small number 84
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of stable transition maneuvers. Novice boxers tend to have a1

larger number of Fat Edges but each with a small number of2

actions, due to the inability to reproduce boxing actions con-3

sistently. Figure 3 shows the relationship of Fat Nodes and Fat4

Edges.5

4.2. The Connectivity Index6

It requires deep knowledge and years of experience to assess7

one’s skills in sports. Here, we make use of the posture-based8

graph and define an index representing the skill level, allowing9

more objective and efficient skill assessment.10

In many types of sports, there are two important skill indica-11

tors. The first one is the richness of the actions that indicates12

the resourcefulness of a player. The other is the flexibility of13

transitions between states so that the player can switch between14

different states at will. Our posture-based graph captures both15

of the indicators. The richness can be represented by the num-16

ber of Fat Edges, indicating how many kinds of maneuvers the17

player has. The flexibility is indicated by the connectivity of18

the graph, which is inversely proportional to the number of Fat19

Nodes. A fully connected graph shows great flexibility because20

there are transitions between any two nodes.21

Notice that these two factors are somehow contradicting. In22

general, the richer the actions are, the greater the number of23

different starting and ending poses is hence the poorer the con-24

nectivity of actions is. Independently considering either of them25

would not suffice. We therefore define a Connectivity Index that26

evaluates both the action richness and the action flexibility of a27

player:28

CI =
Number of Fat Edges
Number of Fat Nodes

(3)29

To accurately reflect the skill level of a player, in our im-30

plementation, we do not consider Fat Nodes that are not inten-31

tionally created. For example, one of our boxers tripped over32

during a session. While it is good that our system can objec-33

tively pick up the posture generated by the accident, we do not34

include the corresponding Fat Nodes when calculating the Skill35

Index. Also, we only consider Fat Edges that are consistently36

performed, as those having only a small number of member ac-37

tions could be randomly performed actions. Empirically, we38

consider edges having more than 2 member actions.39

4.3. Visualization System40

Here, we describe the design of our visualization system to41

visualize the posture-based graph in an effective manner. We42

also introduce interactive features for the user to view the graph43

with different levels of details.44

The posture-based graph consists of high dimensional Fat45

Nodes (groups of similar postures of many degrees of freedom)46

and Fat Edges (groups of similar actions in the spatial-temporal47

domain), which presents a challenge for visualization. To re-48

duce the dimensionality for better visualization, we propose two49

different schemes for nodes and edges due to their different na-50

ture in this graph. Specifically, we project the Fat Nodes on a51

2D space using Principal Component Analysis (PCA) as it cre-52

ates a more consistent low dimensional space compared with53

other methods. We represent Fat Edges with 2D curves and 54

augment the curves with a combination of geometric primitives 55

to visualize the action features. 56

4.3.1. Visualizing Fat Nodes 57

Although the degree of freedom (DOF) of human postures 58

are in high dimensionality (45 DOF in our system), they are in- 59

trinsically dependent on each other [14]. In fact, the Fat Nodes 60

can be represented effectively in a 2D space where nodes of 61

similar postures are located together while those of different 62

postures are located far apart. This allows viewers to easily un- 63

derstand the relationship between postures. 64

For each Fat Node, we obtain the mean posture as its rep- 65

resentation. Given a set of postures, we apply principal com- 66

ponent analysis (PCA) to reduce the dimensionality to 2. Es- 67

sentially, we calculate the covariance matrix to evaluate the in- 68

trinsic dependency of the dimensions. We then calculate the 69

eigenvectors from such a covariance matrix, and use the two 70

eigenvectors with largest eigenvalues to form a feature vector. 71

PCA is used as it has shown to be effective on human pos- 72

tures [14]. However, since we only have a small number of 73

postures, we believe other dimensionality reduction techniques 74

would also work. 75

Fig. 4. From left to right, the character becomes larger as the size of the
nodes increases.

We render the mean posture of each Fat Node onto a 2D X-Z 76

plan. This allows the user to identify inappropriately performed 77

postures. In boxing, novice boxers sometimes lose track of their 78

boxing rhythm, and hence start or end an action with an inap- 79

propriate posture. We use the fatness of the character to repre- 80

sent the number of member postures in the node, as shown in 81

Figure 4. This allows the user to easily observe the postures 82

that the player usually uses to start actions. 83

4.3.2. Visualizing Fat Edges 84

Here, we explain how to visualize the Fat Edges, which con- 85

tain information of groups of similar actions. 86

We do not apply dimensionality reduction techniques directly 87

on the action data itself because the low dimensional projection 88

would be very complex. Instead, we propose to visualize each 89

Fat Edge by a 2D curve that represents its mean action on the 90

X-Z plane. We optimize the angle and sign of these curves 91

to minimize occlusion. For edges with a starting node differ- 92

ent from the ending node, the edge angle is fixed. The only 93

adjustable variable is the bending side of the curves, which is 94



Preprint Submitted for review / Computers & Graphics (2017) 7

Fig. 5. The geometric patterns for landmark values between -1 and 1. Each
pattern represents a landmark posture in an action. (Lower) Comparison
of visualization without/with the patterns. Each curve represents a group
of action. The right image shows the uses of landmark patterns to identify
different types of action.

essentially the sign of the curves. For those with the same start-1

ing and ending node, both edge angle and bending side can be2

controlled. We optimize the signs and angles of the edges in a3

greedy manner such that they would blend towards a less dense4

region of the graph.5

To visually distinguish between different Fat Edges, we add6

some geometric patterns to the 2D curves. We collect the7

high-energy frames of all actions and project them onto a 1D8

space using the PCA system explained in Section 4.3.1. Since9

the high-energy frames of different actions are typically dis-10

tinguishing postures, the projection essentially maps all action11

features onto a normalized 1D space in the range of [−1.0,1.0].12

To visualize the value in this 1D space, we design some geo-13

metric patterns for landmark values -1.0, -0.5, 0.0, 0.5 and 1.014

as shown in Figure 5 Upper. The patterns to represent values15

between two landmarks are obtained by linear interpolation be-16

tween nearby landmarks.17

We further represent the number of member actions in the18

edge by the thickness of the curve. This allows the user to iden-19

tify the player’s preferred actions. For instance, if a boxer relies20

heavily on single straight punches, the Fat Edge for such action21

will be unreasonably thick, while edges for other attacks will be22

relatively thin, which demonstrates a potential lack of diversity23

attacking strategies.24

Through the comparison between Figure 5 Lower Left and25

Lower Right, it shows that adding the geometric patterns gives26

a better visualization of actions in the edges. This strategy27

presents an intuitive way to show the players preferences over28

actions of different complexity.29

4.3.3. Interactive Features30

We integrate some interactive features in our system to dis-31

play relevant information based on user input. When the user32

selects any specific entities in the graph, related information33

will be shown.34

When a Fat Node is selected, its corresponding Fat Edges35

will be highlighted for easier observation. Information about36

the number of members in that node, number of outgoing edges,37

and number of incoming edges are displayed in a sub window.38

When a Fat Edge is selected or highlighted (because of a Fat39

node selection), we render the member actions included, such 40

that the user can understand the content of the edge. 41

Fig. 6. The posture-based graph of the Boxer S. 1, 2 and 3 are Fat Nodes. 4
and 5 are two Fat Edges. 4 connects Node 2 and Node 3. 5 connects Node1
to itself.

As an example, in Fig. 6, there are three Fat Nodes indi- 42

cated by red arrows and numbered as 1, 2 and 3, each visual- 43

ized as a character with a mean posture in the node. The sizes 44

of the nodes are indicated by the body fatness. Node 1 is rep- 45

resented by the most muscular character, which indicates the 46

largest node size. Nodes 2 and 3 are far thinner. Fat Edges are 47

rendered as curves between nodes such as the ones shown by 4 48

and 5. The thicknesses of the edges indicate the frequency of 49

the actions taken. Edge 5 is thicker than edge 4, suggesting that 50

this boxer takes action 5 more often. In addition, an edge can be 51

smooth like a circle or bumpy with geometric patterns. A sin- 52

gle pattern means one activity segment such as a single punch, 53

while multiple patterns indicate a series of activities such as a 54

combo attack. Our system also supports interactive features. 55

Figure 6 is the result when the user selects Node 1. All the 56

edges starting from this node are highlighted, each with a small 57

character performing the action on it. 58

5. Action-based Graph 59

The action-based graph focuses on evaluating the transition 60

probability from one action class to another. In such a graph, 61

the nodes represent groups of action with similar activity seg- 62

ments. The edges represent the transition probability between 63

two action groups. It allows us to evaluate the pattern of launch- 64

ing actions and extract the strategy of the boxer. 65

5.1. Graph Construction 66

We use the hidden Markov model (HMM) to organize the 67

captured motion, as it has been shown effective in modelling 68

human motion. In the domain of character animation, HMM 69

has been mostly used in the posture level to create motion 70

graphs [12]. We adapt the graph into the action level such that 71

we can visualize the transition probability among actions. 72

The nodes of the graph represent different action groups. We 73

apply Equation 2 to group the captured actions into a number of 74

action groups with k-means clustering. The process is similar 75

to that in Section 4.1, in which we define a threshold based on 76

expert knowledge, and then incrementally increase the number 77
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of classes until the threshold is met. We denote k′ as the total1

number of groups, |Gi| as the number of actions in the ith action2

group (which is used in the visualization system for visualizing3

the fatness and the placement of the node and will be described4

later).5

The edges of the graph represent transitional probability from6

one action group to another. To obtain the transitional proba-7

bility, we go through the sequence of actions in the captured8

motion and count the number of occurrences for an action be-9

longing to group i to be followed by another belonging to group10

j, which is denoted as ci j. The transition probability of action11

group i to action group j is defined as:12

Ti j =
ci j

∑
k′
m=1 ∑

k′
n=1 cmn

(4)13

where the denominator represents the total number of transi-14

tion in the whole motion. Notice that i may be equal to j. In15

such a case, two actions of the same action group are launched16

successively.17

Fig. 7. The three HMM nodes represent action groups. The HMM edges
represent transitional probability between them.

The concept of the action-based graph is shown in Fig. 7.18

In general, experienced boxers tend to have a more evenly dis-19

tributed transitional probability across all actions, which means20

that there should be edges connecting all the nodes. This in-21

dicates that the boxer’s pattern is dynamic and cannot be eas-22

ily predicted by an opponent. Conversely, novice boxers may23

have limited edges and some thick edges connecting two nodes,24

which means a high probability to launch those two groups ac-25

tion consecutively. An opponent may discover such a pattern26

and counter-act in advance when the first action is observed.27

5.2. The Action Strategy Index28

In many sports, the unpredictability of action patterns is an29

important skill indicator. Experienced players would diversify30

their action patterns such that their opponents cannot predict the31

next action. However, novice players tend to perform actions32

based on predictable patterns (i.e. the sequence of actions to33

be launched continuously), which can be easily identified. For34

example, a novice boxer usually perform two straight punches35

successively. This is because the boxer is not able to link dif-36

ferent types of punches fluently, and therefore would perform37

the simplest punches again and again. The proposed action-38

level graph allows easy observation of boxing patterns, as we39

can visualize the transitional probability among actions. We 40

further propose the Action Strategy Index, which evaluates the 41

unpredictability of action pattern. We obtain the number of out- 42

going HMM edges for each HMM node, forming a set that is 43

denoted as e = {ei} ∀ i ∈ [1,k′], where k′ is the total number of 44

HMM nodes. Skillful players would have similar values in the e 45

set, while novice players would have very different values. We 46

therefore define the Action Strategy Index as the precision of e, 47

that is, the reciprocal of its standard deviation: 48

ASI =
1

σ(e)
(5) 49

where σ represents the standard deviation operator. A high ASI 50

value indicate that the player’s action patterns are more unpre- 51

dictable, which indicates a higher skill level. 52

5.3. Visualization System 53

Here, we explain the visualization system for the action-level 54

graph. The system allows easy observation of the preference of 55

action and the boxing pattern. Both are very important aspects 56

to evaluate the high-level strategy of a boxer. 57

5.3.1. Visualizing HMM Nodes 58

Each action group is represented by its corresponding median 59

action, which is the action that is the closest to the mean value 60

of the action group during k-means clustering. We render the 61

nodes using human characters with the starting posture of the 62

median action. The number of actions in each action group is 63

visualized using the fatness of the corresponding character. The 64

color of the nodes are randomized. 65

As mentioned in Section 4.1.2, we observe that some boxers, 66

especially novices, may produce random actions that are not 67

repeatable. Such actions may generate a large number of thin 68

nodes, which distract the user from evaluating the actions that 69

are often launched. Therefore, we classify the action groups 70

with |Gi| > a into the frequent class, and groups with |Gi| ≤ a 71

into the rare class, where Gi is the number of member actions in 72

a node as defined in Section 5.1, a is a preset frequency thresh- 73

old. Fig. 8 shows the result of setting different values of a. We 74

find that setting a = 2 generates the best results. 75

We place the nodes belonging to the frequent class at an inner 76

circle, and those belonging to the rare class at an outer circle, 77

such that the user can identify them easily and decide what to 78

focus on. For the inner circle, nodes are ordered according to 79

the corresponding value of |Gi|, and are placed evenly at a cir- 80

cle with a smaller radius. For the outer circle, to minimize edge 81

crossing, we place the nodes at a position on a circle with a 82

larger radius that is the closest to the nodes with incoming and 83

outgoing edges. To implement this, we develop a simple op- 84

timization algorithm that optimizes the position of the nodes. 85

During the optimization, we constrain the position to be at the 86

circle and not overlapping with existing nodes. We then mini- 87

mize the sum of distance with respect to the nodes connecting 88

to the current one. 89

By default, we render the HMM node belonging to the fre- 90

quent class with solid colors, and those belonging to the rare 91

class in semi-transparent colors. This further avoids the user 92

being distracted by the rarely performed actions. 93
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Fig. 8. Action-based graphs of the same boxer generated by setting the frequency threshold as (a) 0, (b) 1 and (c) 2. The red shade indicates the inner
circle covering nodes of the frequent class, and the blue shade indicate the outer circle covering nodes of the rare class.

Fig. 9. The action-based graph of the Boxer S. 1, 2 are HMM nodes be-
longing to the frequent class. 3, 4 are outgoing HMM edges from the node
1. 5, 6 are HMM nodes belonging to the rare class.

5.3.2. Visualizing HMM Edges1

We visualize the edges using 2D curves. While we can ren-2

der the edges with straight lines, the resultant group would be3

difficult to observe as the lines overlap significantly. We aug-4

mented the edges with a small random curvature to solve the5

problem. We also render the edges as semi-transparent such6

that the users can see through partially overlapped edges. The7

thickness of the edge is proportional to Ti j calculated in Equa-8

tion 4. As a result, a thicker edge connecting node i to node j9

indicates that the boxer often launches action group j after ac-10

tion group i. The color of the edges are decided based on that11

of the source node. This helps the user to identify which action12

groups the boxer may launch after a particular one.13

5.3.3. Interactive Features14

We also implement some interactive features such that the15

user can select what to view. The most important component16

of the action-based graph is the action itself. Therefore, we17

implement an interactive system such that when a user clicks on18

a particular HMM node, the median action of the corresponding19

action group is displayed. We also highlight the outgoing edges20

from such a node. This allows the user to examine individual21

action group together with the transition probability to the next22

groups. The information of the node, such as the number of23

member actions and the number of out-going HMM edges, are24

displayed on a separate window.25

As an example, in Fig. 9, there are 5 HMM nodes belong-26

ing to the frequent class including node 1 and 2. These nodes27

are visualized with more muscular characters, meaning that the28

boxer performs them more frequently. There are 3 HMM nodes29

belonging to the rare class including node 5 and 6, which are vi- 30

sualized with thinner characters. Node 1 has 5 outgoing HMM 31

edges, in which edge 3 point towards another node, while edge 32

4 is a self-connecting edge. Edge 4 is thicker than the others, 33

indicating that the boxer performs successive actions belonging 34

to node 1 very frequently. The screen is captured when the user 35

selects node 1, and as a result, all outgoing edges of node 1 are 36

highlighted, and the character representing node 1 performs the 37

corresponding median action. 38

6. Experimental Results 39

In this section, we present experimental results. We captured 40

the motions of four boxers with varying skill levels. We first 41

give detailed motion analysis and visualization of individual 42

motions, and then compare them side by side using the pro- 43

posed indexes. This demonstrates that our system is an effec- 44

tive tool for motion analysis, skill assessment and comparisons. 45

As it is difficult to show the motions in pictures, we refer the 46

readers to the supplementary video for more details. 47

The four boxers chosen have different skill levels. As a 48

ground truth, their skills were evaluated by a professional box- 49

ing coach as skillful, medium, medium and novice respectively, 50

and were denoted as S, M1, M2 and N. 51

6.1. Boxer Evaluation 52

The boxers’ posture-based and action-based graphs are 53

shown in Fig. 10, in which letter annotations are given to help 54

explain the graphs. These graphs allow the users to assess box- 55

ing skills even if they are not familiar with boxing. 56

6.2. Boxer S 57

The first row of images in Fig. 10 shows the graphs of boxer 58

S. The posture-based graphs shows a main standard posture (a) 59

to start and end actions, which is good for boxing as it allows the 60

boxer to transit from one action to another effectively through 61

the standard posture. A large variety of actions (b) can be pro- 62

duced from such a posture. There is a secondary posture in 63

which the arms are further apart (c). This should be avoided 64

as such a posture is weak in blocking attacks. Posture (d) is 65

generated because the boxer trips over during the training. Our 66

system can pick up and visualize such a mistake accurately. 67

The action-based graph of boxer S shows there there are 68

many actions in the frequent group (a) and only a few in the 69
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Fig. 10. (Left) The posture-based graphs and (Right) the action-based graphs for boxer N, M1, M2 and S (top to bottom) respectively.
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rare group (b). This shows that the boxer is experienced and his1

actions are consistent. There is a major movement action (c)2

in the frequent group (a), and such an action has good connec-3

tions to many of the others. This is good as experienced boxers4

typically use movement actions to adjust their position relative5

to their opponent, and launch attacks when the time is right.6

Other actions in the frequent group (a) are variations of attacks.7

For example, the more frequently used action (d) is a right-left8

combo and action (e) is a single right punch, which show that9

the boxer tends to start an attack with the right punch. It is good10

to see that attacking actions may connect to each other, which11

enhance the unpredictability of the boxer.12

6.3. Boxer M113

Next, we evaluate the posture-based graph of boxer M1. The14

boxer has a main standard posture (a) to launch most of the ac-15

tions (b). However, he has a secondary posture (c) for launching16

some attacks, and another (d) for launching a turning action. In17

both postures, the arms are in a low position and cannot guard18

the boxer well from the opponent. More importantly, the rela-19

tively more frequently used secondary posture (c) is performed20

with the foot distance much wider than the shoulder width. This21

means the boxer has limited mobility in this posture, as the legs22

must move towards each other before another stepping action23

can be performed. These observations show that the boxer is24

not as experienced and consistent as boxer S.25

The corresponding action-based graph shows that there are26

fewer frequent class actions (a) but more rare class ones (b)27

compared to boxer S. This means that that the boxing action of28

boxer M1 is less consistent. The boxer has a large number of29

movement actions (c) that are connected to all the rest of the30

action nodes. He also has a variety of attack actions as shown31

in other actions in the frequent class (a). In particular, action (d)32

is a left-right combo and action (e) is a left punch, showing that33

the boxer tends to start an attack with the left punch. Overall,34

there is an acceptable number of connections among attacks,35

demonstrating the acceptable unpredictability of the boxer.36

6.4. Boxer M237

For boxer M2’s posture-based graph, there is a main stan-38

dard posture (a) launching the majority of actions (b). There39

are, however, a number of secondary postures (b), (c) and (d).40

These postures are all performed sub-optimally with his arms41

not guarding the head, and should be avoided. Looking closely42

to the edges (f) going to posture (c), we can find that the pos-43

ture is performed as a subtle movement to prepare various left44

punches. This should be avoid as the opponent can tell the45

moves whenever seeing such a posture. Postures (g) and (h) are46

very different from the rest, and are geometrically far from the47

other postures. These two postures are performed because the48

boxer unintentionally raises the arms during the capture. Our49

system can pick up the mistake and visualize it in the graph.50

From boxer M2’s action-based graph, it can be observed that51

there are relatively fewer actions in the frequent class (a), but52

a large number of actions in the rare class combining (b) and53

(c). This shows that the boxer is quite inconsistent in the box-54

ing actions, and could be because of the lack of training and55

Boxer S Boxer M1 Boxer M2 Boxer N
SL Skillful Medium Medium Novice
PN 138 160 112 176
AN 69 80 56 88

Table 1. Statistics of the boxing motions. SL: Skill Level evaluated by a
professional boxing coach. PN: Posture Number (for starting and ending
actions). AN: Action Number.

Boxer S Boxer M1 Boxer M2 Boxer N
FNN 3 (2) 6 (4) 3 (3) 5 (5)
FEN 20 (10) 36 (12) 16 (7) 57 (8)
CI 5.0 3.0 2.3 1.6

Table 2. Statistics of the boxing motions. FNN: Fat Node Number (brackets
show numbers after removing accidentally created nodes). FEN: Fat Edge
Number (brackets show numbers of consistently performed edges). CI:
Connectivity Index.

experience. Different from the boxers discussed, boxer M2 has 56

a largest action node (d) of left punch. The second largest ac- 57

tion node (e) is a double left punch. The movement action node 58

(f) is relatively small. This shows that boxer M2 has a differ- 59

ent boxing style to use left punch as a major action to connect 60

to other actions and his left punch is dominant. Such a box- 61

ing style is not advised as a punching action, comparing to a 62

movement one, consume more energy and expose a larger risk 63

of being attacked. 64

6.5. Boxer N 65

In the posture-based graph of the novice boxer N, there are 66

two major standard postures (a) and (b) instead of one. There 67

are a large number of self-connecting actions (c) and (d) for 68

both postures, as well as a lot of actions (e) connecting the two. 69

This shows that the boxer is highly inconsistent in the boxing 70

postures. Posture (a), the more relatively frequently used one, 71

is inferior to posture (b), due to its wider foot distance. It does 72

not allow the boxer to step freely. Posture (f), (g) and (h) are 73

all secondary postures with different posture variations. They 74

are all not well performed due to the low arm positions limiting 75

blocking capability, and the wide foot width limiting movement 76

capability. 77

The corresponding action-based graph shows some actions 78

in the frequent class (a) but a large number of actions in the 79

rare class (b). This means that the novice boxer cannot perform 80

actions consistently. The action in the rare class (b) are mainly 81

very long combo that are randomly combined and cannot be 82

reproduced. The main action (c) is a movement action. Such an 83

action cannot connect to a number of others in the rare class (b), 84

and many actions in the rare class (b) are not well connected. 85

This means that the boxer’s action is more predictable, which is 86

bad in a match as the opponent can guess what the boxer may 87

launch next. The two more frequently used attack action (d) and 88

(e) are left-right combo and left punch respectively, showing 89

that the boxer tends to start an attack with a left punch. 90

6.6. Statistical Analysis 91

Here, we give some statistics about the proposed system. 92
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Boxer S Boxer M1 Boxer M2 Boxer N
NN 7 11 9 16

NNFC 4 3 4 5
NNRC 3 8 5 11

EN 16 27 20 38
ASI 0.572 0.448 0.426 0.378

Table 3. Statistics of the boxing motions in the Aciton Graphs. NN: Node
Number. NNFC: Node Number for Frequent Class. NNRC: Node Number
for Rare Class. EN: Edge Number. ASI: Action Strategy Index.

Table 1 shows the skill level assessed by a professional box-1

ing coach, as well as the number of postures and actions, for2

each of the boxers considered.3

Table 2 shows the statistics related to the posture-based4

graph, including the number of fat nodes and fat edges, as well5

as the Connectivity Index calculated with Equation 3. The in-6

dex evaluates the richness of actions and the flexibility of tran-7

sitions. It aligns with the boxers’ skill level and more skillful8

boxers have higher Connectivity Indexes.9

Table 3 shows the statistics related to the action-based graph,10

including the number of HMM nodes (which is further sepa-11

rated into the number for the frequent class and the rare class12

respectively) and HMM edges, as well as the Action Strategy13

Index calculated with Equation 5. It indicates the unpredictabil-14

ity of a boxer, and more skillful boxers are generally more un-15

predictable. Again, it aligns with the boxer’ skill level and more16

skillful boxers have higher Action Strategy Indexes.17

In terms of the computational cost, we run the proposed sys-18

tem on a laptop computer with a Core i7-6820HQ CPU, 16GB19

of RAM and a NVIDIA Quadro M1000M graphic card. The20

computational time to analyze the captured motion (Section21

3.2) and computing the graphs (Section 4 and Section 5) ranges22

from 6 to 9 seconds. The variation of computational time is23

mainly due to the iterative k-means clustering algorithm for24

both postures and actions, as a larger k requires longer com-25

putational time. The run-time cost is low and we achieve frame26

rate higher than real-time (i.e. 60Hz). The frame rate tends to27

be lower when there are more characters shown in the graphs.28

7. Conclusion and Discussions29

In this paper, we proposed a method to visualize the high-30

level skills of boxers using an automatic motion analysis and31

visualization framework. The proposed posture-based graph is32

a customized Fat Graph that allows us to evaluate the quality33

of standard postures for launching and finishing actions. The34

action-based graph is a customized Hidden Markov Model that35

visualizes the transition probability among actions. We fur-36

ther introduce the Connectivity Index that is deduced from the37

posture-based graph and allows evaluation of the richness of38

actions and the flexibility of transitions, as well as the Action39

Strategy Index that is deduced from the action-based graph and40

allows evaluation of the unpredictability of action patterns. The41

system is applied on the motion captured from 4 boxers with42

varying skill levels. The evaluations from our system aligns43

with that of a professional boxing coach.44

Although we use boxing as our target sport in the experimen- 45

tation section, the underpinning theoretical development can be 46

applied to most sports that require swiftness, flexibility and cre- 47

ativity, such as tennis, fencing and basketball. The adaptation of 48

the proposed system to these sports and the comparison of the 49

system performances on different sports remain as future work. 50

We focus on analyzing the skill level of the boxers in terms 51

of high-level motion behaviour such as the richness of the ac- 52

tion, the transition of action and the unpredictability of boxing 53

patterns. We do not evaluate the lower-level parameters such as 54

the speed of the punches, which has been explored in previous 55

works. It is an interesting future direction to combine both high- 56

level and low-level evaluation in order to have a full assessment 57

of the boxers. 58

There are limitations to our method. First, our method is 59

based on the assumption that the sports skills mainly consist of 60

a finite number of key postures and key actions. Admittedly, not 61

all sports follow this pattern. Second, the visualization and skill 62

assessment is based on an individual athlete, not considering 63

skills related to collaborations such as those in group sports, in 64

which the assessment might need to employ different criteria. 65

We argue that novice boxers tend to have different posture- 66

based graphs, while experienced boxers tend to have graphs of 67

a similar topology. This is because unlike experience boxers 68

who have only 1 to 2 main postures nodes, novice boxers tend 69

to have more nodes, resulting in a much larger variation on the 70

graph topology. As a future work, we would like to utilize the 71

system to evaluate a large number of boxers in different skill 72

levels to verify this argument. 73

In the future, we wish to extend the proposed algorithm to the 74

field of computer animation. Currently, when synthesizing ani- 75

mations by motion graphs, experienced animators are required 76

to tell what motions are missed or badly captured. With our 77

system, it is possible to analyze the connectivity and variety of 78

a motion set, which are two critical factors in motion synthesis. 79

However, how to generalize these findings to give high-level 80

suggestion, such as proposing the motions to capture, remains 81

an open problem. In addition, we would like to develop a visu- 82

alization system to take the adversarial nature of sports. For in- 83

stance, although two boxers might have roughly the same skill 84

level, in a match, one’s skill composition might give him/her 85

advantages over the other. This kind of analysis would be very 86

useful in preparation for a game or predicting the result. 87
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