Computers & Graphics 76 (2018) 60-72

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Technical Section

High-quality compatible triangulations and their application in n
interactive animation ™ ey

Zhiguang Liu®*, Liuyang Zhou"*, Howard Leung®, Hubert P.H. Shum¢

2INRIA, MimeTIC Team, Campus Universitaire de Beaulieu, 35042, Rennes, France

b Zhiyan Technology (Shenzhen) Limited, Nanshan District High-tech Industrial Park, Shenzhen, China

¢ Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
d Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, UK

ARTICLE INFO ABSTRACT

Article history:

Received 2 March 2018

Revised 6 July 2018

Accepted 7 July 2018

Available online 29 August 2018

We propose a new method to compute compatible triangulations of two polygons in order to create
smooth geometric transformations between them. Compared to existing methods, our approach creates
triangulations of better quality, that is, triangulations with fewer long thin triangles and Steiner points.
This results in visually appealing morphings when transforming the shape from one into another. Our
method consists of three stages. First, we use a common valid vertex pair to uniquely decompose the
source and target polygons into pairs of sub-polygons, in which each concave sub-polygon is triangulated.
Second, within each sub-polygon pair, we map the triangulation of a concave sub-polygon onto the corre-
sponding sub-polygon using a linear transformation, thereby generating compatible meshes between the
source and the target. Third, we refine the compatible meshes, which creates better quality planar shape
morphing with detailed textures. In order to evaluate the quality of the resulting mesh, we present a
new metric that assesses the deformation of each triangle during the shape morphing process. Finally,
we present an efficient scheme to handle compatible triangulations for a shape with self-occlusion, re-
sulting in an interactive shape morphing system. Experimental results show that our method can create
compatible meshes of higher quality as compared to existing methods with fewer long thin triangles and
smaller triangle deformation values during shape morphing. These advantages enable us to create more
consistent rotations for rigid shape interpolation algorithms and facilitate a smoother morphing process.
The proposed algorithm is both robust and computationally efficient. It can be applied to produce con-
vincing transformations such as interactive 2D animation and texture mapping. The proposed interactive
shape morphing system enables normal users to generate morphing video easily without any professional
knowledge.

Keywords:

Character animation
Shape morphing
Compatible triangulation

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction 2D image deformation algorithms such as rigid shape deforma-

tion in [4,5] have been extensively explored in the research com-

Planar shape morphing, also known as metamorphosis or shape
blending, allows smoothly transforming a source shape into a tar-
get one [1-3]. Shape morphing techniques have been used widely
in animation and special effects packages, such as Adobe After Ef-
fects and HTML5, generating visual effects for both the film and
television. The key research focus here is to synthesize high-quality
character animations that can handle shapes with self-occlusion
and avoid collapsing of polygons during the morphing process.

* This article was recommended for publication by Hongchuan Yu, Taku Komura
and Jian Jun Zhang.
* Corresponding author.
E-mail address: leo@webot.ai (L. Zhou).

https://doi.org/10.1016/j.cag.2018.07.002
0097-8493/© 2018 Elsevier Ltd. All rights reserved.

munity. With these algorithms, users can manipulate constrained
handlers to deform a given image. However, such image warping
techniques offer a limited range of transformations. Transforming
a shape into a significantly different one is difficult due to the lack
of feature correspondence.

Planar shape morphing methods offer solutions that determine
the trajectory along which the source vertex will travel to the tar-
get one. Previous attempts to tackle the shape morphing problem
by linearly interpolating the coordinates of each corresponding ver-
tex pair between the source and the target polygons. However,
simple linear interpolation sometimes creates intermediate poly-
gons that overlap with each other, resulting in geometrically in-
correct transformations. While other image space techniques such

https://doi.org/10.1016/j.cag.2018.07.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2018.07.002&domain=pdf
mailto:leo@webot.ai
https://doi.org/10.1016/j.cag.2018.07.002

Z. Liu et al./Computers & Graphics 76 (2018) 60-72 61

Stage One

Compute Valid Collect Common
Vertex Pairs Valid Vertex Pairs

Using Diagonal for
Decomposition
No

Target Polygon O

£
£
=
=
£
B
£.
g
=

Yes,
Using Link path for
@ Decomposition

Source Polygon P

(c) (d) (e

Stage Two Stage Three

Fig. 1. The overview of the proposed framework to compatibly triangulate two simple polygons. (a) The target polygon Q. (b) The source polygon P. (c) We compute the valid
vertex pairs for both the source and target polygons. (d) We collect the common valid vertex pairs. (e) We use the common valid vertex pair for compatible decomposition
if the common vertex pair exists; otherwise, we calculate the link path, e.g., the 2-link path between vertex u, and us with the blue color shown in (h). (f-h) We use the
polyline found in (e) that maximizes the minimum angle to decompose the source and target polygons. (i) We triangulate each sub-polygon p; of source polygon P using
Delaunay triangulation. (j) We may need to add some Steiner points on the edge of sub-polygon g; to keep equivalent topology. (k) We solve a linear system to map the
triangulation of sub-polygon p; onto the corresponding sub-polygon g; of target polygon Q. (I-m) We finally refine the compatible meshes by operations such as splitting

long edges and flipping interior edges to improve the interior angles of the mesh.

as [5,6] achieve pleasant blending results, they usually suffer from
overlapping problems due to the lack of topology information.

Previous work [7-10] has shown that computing compatible
triangulation can successfully create smooth transformations for
both the boundary and the interior of a shape. Two triangulations
are compatible if they have the same combinatorial structure, i.e.,
if their face lattices are isomorphic [11]. However, in many sit-
uations, compatible meshes can be generated only if additional
points, known as Steiner points, are added. Thus, one challenge
of building compatible triangulation is to use a small number of
Steiner points such that we can reduce the shape morphing com-
plexity. Another challenging problem of computing compatible tri-
angulation is to avoid the generation of some long thin triangles
using a computationally efficient algorithm. The long thin trian-
gles can cause inconsistent rotation problems and create artifacts
when applied to shape interpolation algorithms [12]. Therefore, a
good compatible triangulation contains a small number of Steiner
points and keeps a small percentage of long thin triangles. In this
paper, we propose a heuristic polygon decomposition method that
reduces the overall algorithm complexity.

We observed that most existing compatible triangulation ap-
proaches either create a large number of skinny triangles or are
too complicated for real-time shape morphing. In this paper, we
propose an efficient framework to compute compatible triangula-
tion of two simple polygons defined as planar shapes with non-
intersecting edges that form a closed path. Our method pro-
duces compatible meshes with fewer long thin triangles and fewer
Steiner points, thereby enabling smooth transformations from one
shape into another. The proposed method applies to any 2D shape
without holes. Here, we use the human shape as an example to
illustrate our interactive animation system. We demonstrate an in-
teractive entertainment system that transforms a human into a
bird or other objects that people may never experience in real life.

The major contributions of this paper are summarized as fol-
lows:

« First, we propose a new algorithm to calculate the compatible
polygon decomposition based on the common valid vertex pairs
that results in a flexible decomposition of the source and target
polygons.

« Second, we present a new metric to measure the quality of the
resulting mesh during the shape morphing process.

- Finally, we propose an enhanced scheme that can compute a
compatible triangulation for a shape with self-occlusion by in-
troducing a calibration image. To demonstrate the effectiveness
of the proposed algorithm, we present an interactive morphing
system that uses human silhouette as the source input shape.

Our preliminary research documented in [12] proposed a ba-
sic system to construct the compatible triangulation for two sim-
ple polygons. Compared with this work, our new compatible poly-
gon decomposition algorithm is more flexible and leads to better
mesh quality with fewer number of Steiner points, as illustrated in
Fig. 8 and Table 2. The method of [12] generates different triangu-
lation results depending on whether we start the convex decom-
position from the source or target polygon. However, our method
always produces the same triangulation results even when started
from different directions. This is because we consider the source
and target polygons at the same time using the common valid ver-
tex pairs. Generally, our algorithm is faster than [12], as shown in
Section 5. Compared to [13], we proposed a new metric to mea-
sure the quality of the resulting meshes during the rigid shape de-
formation process. We have also conducted extensive experiments
to analyze the influence of the mesh quality on shape morphing
such as texture mapping. Finally, to produce sensible transforma-
tions, we proposed an improved scheme to deal with compatible
triangulations with self-occlusion, and we tested the proposed in-
teractive animation system using a human silhouette as our source
shape input.

2. Related work

Planar shape morphing involves two sub-problems: vertex cor-
respondence and vertex path computation [14]. Vertex correspon-
dence determines how the vertex u of source polygon P matches
the vertex v of target polygon Q. The vertex path determines the
trajectory along which the vertex u will travel to the vertex v. In
this paper, we concentrate on the vertex correspondence problem,
i.e.,, computing compatible meshes.

Previous methods for computing compatible triangulations usu-
ally fall into two categories: (1) Transforming the source and tar-
get polygons into another common space [7,11,15]. (2) Iteratively
partitioning the source and the target polygons until both inputs
become a set of triangles [9,10,16,17].

62 Z. Liu et al./Computers & Graphics 76 (2018) 60-72

Table 1

The computational complexity: the main computational cost of our method is computing the link paths, where N is the total number of boundary
vertices of source polygon P, C, is the number of concave vertices of P, L and H are the number of sub-polygon pairs created by Liu et al. and our
method, N; and S; are the number of boundary vertices and the number of Steiner points of the i—th sub-polygon respectively.

Surazhsky-Gotsman, 04

O(N?logN)

Baxter et al., 09

Liu et al, 15

Proposed method Convex decomposition
Link paths generation

Linear system computation

0(2N?)
O(L-max(N3,$3)), Si,N; < N[3Co|+1<L=<Co+1

Common valid vertex pairs computation O(N?)

O(HN?), N; <N
O(HS?), Si<«N, H<L

Table 2
Quantitative comparisons between triangulation quality.

Method #Steiner Point ~ Minimum angle

Angles <10° (%)

Angles <15° (%) Angles <20° (%) Computation time (s)

BN Surazhsky-Gotsman, 04 0 1.6730°
Baxter et al.,09 0 3.3052°
Liu et al, 15 3 3.7557°
Ours 0 6.4161°
Ty
Surazhsky-Gotsman, 04 2 0.0441°
Baxter et al., 09 5 0.9779°
Liu et al,, 15 2 0.9913¢
Ours 1 1.3653°
P Surazhsky-Gotsman, 04 6 0.4837°
Baxter et al.,09 4 0.5849°
Liu et al, 15 3 0.6120°
Ours 1 1.6855°
Surazhsky-Gotsman, 04 0 0.0347°
Baxter et al.,09 0 0.0229°
Liu et al,, 15 0 0.3294°
Ours 0 5.6835°
MQECJ Surazhsky-Gotsman, 04 0 0.8893°
Baxter et al.,09 0 2.1933¢
Liu et al, 15 0 2.6746°
Ours 0 2.9338°

11.57 16.12 31.27 21
10.61 14.39 30.30 12
11.90 22.02 7
12.87 26.93 3
2743 36.81 42.36 24
2191 29.32 37.96 14
15.27 2291 32.29 6
12.49 21.08 26.37 5
13.03 20.59 27
12.42 18.64 15
11.64 17.46 8
911 15.72 7
28.96 35.47 44.88 35
2145 29.21 35.48 18
16.01 23.77 29.54 6
7.63 121 4
12.43 19.16 2413 29
10.95 14.68 21.89 16
14.18 20.15 9
10.94 15.92 5

Aronov et al. [11] constructed the compatible triangulations by
overlaying the triangulations of the source and target polygons in a
convex polygon. The intersections of the two triangulations built a
piecewise-linear homeomorphism, which introduced a large num-
ber of Steiner points. To solve this problem, [7] employed Delau-
nay triangulation to reduce the number of Steiner points. Kranakis
and Urrutia [15] proposed another method by which the number of
Steiner points can be determined by the number of inflection ver-
tices. While their method can reduce the number of Steiner points,
it sometimes results in Steiner points on the edge of a polygon.

Gupta and Wenger [17] used the divide-and-conquer method to
partition the source and target polygons iteratively. Their algorithm
introduced a small number of Steiner points by using the link
paths. However, it is not suitable for polygons with a small number
of vertices. Surazhsky and Gotsman [9] simplified the algorithm
of [17] and proposed a new remeshing method that greatly im-
proves the mesh quality by adding a few number of Steiner points.
Their algorithm requires the implementation of many data struc-
tures and algorithms in [16], and therefore is algorithmically com-
plex. Baxter et al. [10] proposed a new way to find compatible link
paths. Based on this new link path generation algorithm, they used
a similar scheme as in [9] to compatibly partition the two poly-
gons. Although their algorithm for computing link paths is faster
than [9], the proportion of regular-shaped triangles (as opposed to
long thin triangles) still needs to be improved.

A lot of work has been proposed for interpolating two shapes.
Alexa et al. [7] proposed a method that attempted to pre-

serve rigidity. They separately interpolated the rotation and the
scale/shear components of an affine transformation matrix, which
generated pleasing results with small rotations for most of the
cases. Inspired by [7,18] presented a 3D morphing method based
on the Poisson’s equation that generated visually pleasing mor-
phing sequences. However, their method suffered from the in-
herited problem of rigid interpolation methods that the rota-
tions may be incorrectly interpolated. As a solution, [19] pro-
posed a method to consistently assign rotations. Sumner and
Popovic [20] proposed a method that transferred the 3D defor-
mation of a source triangle mesh onto a different target triangle
mesh. However, their algorithm is designed for the case where
there is a clear semantic correspondence between the source
and target. Li et al. [21] introduced a new type of coordinates
for Hermite interpolation that can be applied to shape deforma-
tion. Other methods such as [22] try to preserve certain prop-
erties such as the smoothness and the distortion for 2D shape
interpolation.

In this paper, we propose a new method to construct the com-
patible meshes of two simple polygons. Our approach draws in-
spiration from [23], which uses barycentric coordinates to map
a spatial surface triangulation to a planar triangulation. However,
[23] requires that every Steiner point of the target polygon Q must
be a strict convex combination of its neighbors, which cannot al-
ways be satisfied in practice. As a solution, we propose an efficient
compatible polygon decomposition algorithm that simultaneously
partitions the source and target polygons into a set of sub-polygon

Z. Liu et al./Computers & Graphics 76 (2018) 60-72 63

pairs such that we can solve the compatible mapping with a sparse
linear system for each sub-polygon pair. On the other hand, the
resulted initial triangulation may still contain long thin triangles
that need to be improved. We propose some efficient schemes to
further improve the mesh quality.

3. Compatible triangulations

As illustrated in Fig. 1 (a,b), the input data of our system are
two simple polygons P and Q with corresponding vertices ordered
in counter-clockwise. We denote P = {U, EF} and Q = {V, E?} as the
source and target polygons with point set ue U and v € V, together
with the edge set EP, EQ, respectively. P and Q are assumed to be
simple polygons without holes, in which the edges do not cross
each other and form a closed contour enclosing each polygon. We
define 7p and 7, as the triangulation of the polygon P and Q. 7»
and 7, are compatible if they have an equivalent topology, which
is defined as:

1. There is a one-to-one correspondence between the vertices of
Tp and that of 7.

2. There is a one-to-one correspondence between the edges of 7p
and 7y, meaning that if there is an edge connecting two ver-
tices of 7p, then there is an edge connecting the corresponding
vertices of 7y and vice versa.

3. The boundary vertices of both 7p and 7, are traversed in the
same clockwise or counter-clockwise order.

The core of our framework is a new algorithm for partitioning
the source and target polygon pairs, which is more flexible to in-
crease the mesh quality. Given two simple polygons P and Q with
a boundary vertex correspondence as illustrated in Fig. 1 (a,b), our
algorithm works in three stages. First, we decompose the source
polygon P and the target polygon Q into compatible sub-polygons
(p,q9) = U(pi, q;) as shown in Fig. 1 (c,g), where either the target
sub-polygon g; or the corresponding source sub-polygon p; is con-
vex. Considering a sub-polygon, p; of P, we triangulate p; using De-
launay triangulation as illustrated in Fig. 1 (h,i). Second, we map
the triangulation 7p, of the source sub-polygon p; onto the cor-
responding target sub-polygon ¢; using a sparse linear system as
shown in Fig. 1 (j,k). Third, we refine the compatible meshes to
improve the mesh quality shown in Fig. 1 (I,m), which is impor-
tant for high-quality morphing in 2D animation, special effects for
movies and texture mapping.

3.1. Compatible decomposition of the target and source polygons

In the first phase, we compatibly decompose the source and
target polygons, P and Q, into pairs of sub-polygons. In a simple
polygon, a vertex u e U is convex if the angle o formed by the two
edges at u is less than 7 radians. Otherwise u is considered to be
concave. Our goal is to turn some concave vertices into convex ones
through the decomposition and to construct pairs of sub-polygons
from the source and target polygons such that each of the sub-
polygon pair contains at least one convex sub-polygon.

Without loss of generality, we assume the source and target
polygons P and Q each to be a simple polygon with N vertices ar-
ranged in counter-clockwise order. Here, we label the concave ver-
tices of Q as vy,...,v. and the convex vertices Vegsnos Uy Simi-
larly, we label uq,..., u, as the concave vertices and Uy yoemen Uy
as the convex vertices of P. We call a vertex pair (i, j) of P valid
if u; is visible from u;, and at least one of the two vertices is a
concave vertex, e.g., (1, 4) is valid as shown in Fig. 2. If two ver-
tices are visible to each other while not being a valid pair, then
it implies that both vertices are convex such as vertex pair (2, 4)
as illustrated in Fig. 2. A diagonal uqu, of P is a line segment that

' 0 Us
u;

Fig. 2. A valid vertex pair (1, 4) used to partition the source polygon, which yields
four interior angles between vertex u; and uy.

joins vertex uq and u;, of P and remains strictly inside P. A diago-
nal such as uyuy in Fig. 2 that connects two convex vertices is re-
dundant in our compatible decomposition algorithm because it can
be removed and the two convex sub-polygons on its sides can be
merged into a convex polygon. Therefore, for the construction of
a compatible decomposition, we consider only the diagonals that
connect two vertices that belong to valid vertex pairs.

In some cases, the compatible triangulation can be constructed
only if Steiner points are added. In order to introduce the mini-
mum number of Steiner points, we need to search for all the po-
tential decomposition combinations in the solution space. As a re-
sult, there can be an exponential number of ways to decompose
a simple polygon into convex sub-polygons using the valid ver-
tex pair, which forbids the practical use of the algorithm. Previ-
ous work converted the compatible triangulation problem into a
common base domain [7,11] or used a divide-and-conquer meth-
ods [10,12,24] to iteratively partition the source and target poly-
gons. However, these methods may either be too complex for a
real-time application or produce a mesh of poor quality. This mo-
tivates us to design an efficient compatible triangulation algorithm
with improved mesh quality.

We start from the source polygon P and find all the valid vertex
pairs VPp for P. Similarly, we find the valid vertex pairs VPy for
the target polygon Q. Among all the valid vertex pairs in VPp and
VPq, we collect the common valid vertex pairs VP = VP N VP, that
appear in both VP, and VP,. The best partition for P and Q is the
common valid vertex pair that generates the maximum minimum
interior angle IntAng by:

(a, b) = arg max min{IntAngp(a, b), IntAngq (a, b)} (1)
e
a#b
where the IntAngp(a, b) contains four angles formed by the inter-
section of the source polygon P and the diagonal u4u, that con-
nects a valid vertex pair (a, b). For example, IntAngp(1, 4) contains
za, 2B, <y and £§ in Fig. 2.

Decomposing polygons with Eq. (1) generates a balanced angle
partition for both the source and target polygons, which maximizes
the interior angle of both the source and target sub-polygons in
the current iteration. Liu et al. [12] only considered a balanced an-
gle partition for the target polygon; however, the source polygon
may still generate small interior angles. Previous methods such as
[9,10] only considered balanced index partition of the source and
target polygons, which is likely to decrease the mesh quality re-
garding the proportion of small angles in the compatible meshes,
which will be discussed in Section 6.2.

In practice, the common valid vertex pair may not always be
available in some cases. For example, as shown in Fig. 1(c,d), the
intersection of two valid vertex pair sets {(2, 4), (2, 5)}n{(3, 1), (3,

64 Z. Liu et al./Computers & Graphics 76 (2018) 60-72

5)} is empty. Here, we apply a link path to determine the partition
line between two vertices instead of using the common valid ver-
tex pair. A link path between vertex u, and uj, is a polyline within
the polygon that joins the vertex pair (a, b) such as vertex pairs
(2,6) and (6, 5) in Fig. 1(h), which defines a 2-link path between
vertex u, and us. A minimum link distance for vertex pair (a, b),
linkDist(ugq, up), is the minimum number of line segments in a poly-
line, for example, the minimum link distance for vertex pair (2, 5)
in Fig. 1(h) is 2. We follow [10] to compute the link path with the
minimum link distance for all vertex pairs in O(H - Nf), where H is
the number of sub-polygon pairs and N; is the number of vertices
for the i—th sub-polygon. Algorithm 1 summarizes our recursive

Algorithm 1: Compatible decomposition of the source and the
target polygons.

1 Input: The source and target polygons, P and Q

2 Output: A decomposition of P, p=Jp;, and Q, g =Uq;,
where either p; or g; is a convex sub-polygon

3 convexDecomposition(P, Q)

4 if P or Q is convex then
5 exit
6 end
7 Compute valid vertex pairs VP and VPy
8 Find common valid vertex pairs
9 VP =VPNVPy
10 if VP is not empty then
n Calculate the best partition by:
12 (a,b) =
arg maxv min{IntAngp(a, b), IntAngq (a, b)}
oyl
a#b
13 Decompose P and Q using (a, b) that creates two
sets of sub-polygons:
14 {pi» piv1} {40 Giv}
15 else
16 Decompose P or Q using link path that creates two
sets of sub-polygons:
17 {pi, pisa} {90 Gisa}
18 end
19 convexDecomposition(p; , q;)
20 convexDecomposition(p;, 1, qiy1)

polygon decomposition algorithm.

By this stage, we have compatibly decomposed the source poly-
gon P and the target polygon Q into sub-polygons {p; = (UPi, EPi)}
and {q; = (V% E%)} , where (p;, q;) is a pair of sub-polygons and
either p; or g; is convex. We apply Delaunay triangulation as the
initial triangulation of a sub-polygon, which can maximize the
minimum interior angle with no extra Steiner points in O(N;logN;)
[25]. Here, we denote 7p, as the triangulation of the sub-polygon p;
and aim to construct the compatible triangulation 75, of g; based
on 7p,.

3.2. Compatible triangulations mapping

The compatible decomposition process may introduce Steiner
points on the link path of either the source polygon P or the tar-
get polygon Q. Moreover, to improve the mesh quality, the mesh
refinement process detailed in Section 3.3 creates Steiner points
within each sub-polygon. Therefore, we have two types of Steiner
points: (1) Steiner points that lie on the link path of source sub-
polygon p;, and (2) Steiner points that lie within p;. For (1), we
map the Steiner points onto the corresponding edges of the target
sub-polygon g; based on the simple line-segment-length propor-

U,

Uy

U Ve
Uy
(a) (b)

Fig. 3. Mapping the Steiner points within the source sub-polygon onto the target
sub-polygon. (a) The source sub-polygon with the Steiner points u; and u,. (b) The
corresponding target sub-polygon with the unknown Steiner points v; and v,.

tion principle. For (2), we solve the mapping with a sparse linear
system.

3.2.1. Mapping the Steiner Points onto the Link Path of the Source
Polygon

We denote ug as a Steiner point that lies on the link path be-
tween vertex ug and uy in the source sub-polygon p; such as the
vertex ug for vertex pair (u, us) in Fig. 1(h). We add a Steiner
point vs for the target sub-polygon g; on the corresponding line
segment vqv;, based on the linear ratio with the following equa-
tion:

polylineLength(uy, us)
~ polylineLength(uq, up)

polylineLength (us, ug)

polylineLength(ug, u,) ° @)

S

where polylineLength(ug, up) is the summation of the length of all
line segments on the link path between u, and u,.

As shown in Fig. 1(h), the length of the polyline for ver-
tex pair (uy, us) is polylineLength(u,, us) = polylineLength(u,, ug) +
polylineLength(ug, us). We place the vertex vg on the line segment
V5 using Eq. (2).

3.2.2. Mapping the Steiner points within the source polygon

In this section, we will explain how to map the Steiner points
inside the source polygon onto the corresponding locations inside
the target polygon. As shown in Fig. 3, we have to decide how to
map the Steiner point u; and u, onto v; and v, inside the target
polygon. Here, we calculate the barycentric coordinates of u; and
u,. We then compute the proper locations for Steiner point v; and
v, using the barycentric coordinates found in the source polygon.

Denoting uj, j € {1.....S;} as a Steiner point that lies within the
source sub-polygon p;, where S; is the number of the Steiner points
within p;. We use the barycentric coordinates A to map the Steiner
point u; of the source sub-polygon p; onto the Steiner point v;
of the target sub-polygon g;. Here, we employ the Floater’s mean
value coordinates [26] to calculate the barycentric coordinates A.
The barycentric coordinates A of vertex u; can be seen as a weight
of its neighboring vertices, which allow us to generate continuous
data from these adjacent vertices. We represent the Steiner point
u;, including the Steiner points on the link path of source polygon
and Steiner points inside the source polygon, as a weighted aver-
age of its neighboring vertices:

M M
uj= Y Ajahs D Aju=1 (3)
k=1 k=1

where M is the total number of points including the boundary
vertices and the Steiner points for source sub-polygon p;, i.e. M =
Ni + Si.

Z. Liu et al./Computers & Graphics 76 (2018) 60-72 65

We now explain how to map the Steiner point u; e UPi, je
{1,..., S;} of the source sub-polygon p; onto the corresponding
Steiner point v; € V% of the target sub-polygon g;, where S; is the
number of Steiner points within p;. We define vy, ..., Us; to be the
solutions of linear equations with S; variables.

M M

Uj = Z)‘j,kvk’ Z)Lﬁk =1 (4)
k=1 k=1

where

Ajk=0, (jk) ¢E%

Ajk>0, (k) eE%®

Note that the barycentric coordinates A; , can be uniquely de-
termined by Eq. (3).

We rewrite Eq. (4) by breaking the summation term into two
sub-terms:

Si Si+N; .
Vj=kz)»j,kvk+ > Akl je{l,.... 5}
=

k=S;+1
Si Si+N;
Vi— 2 AUk = 2 Ajrlk (5)
P k=541

where S; is the number of Steiner points within the target sub-
polygon g; and N; is the number of boundary vertices of g;.

Denoting v; = (x;,y;) to be a Steiner point within target sub-
polygon g; that we want to solve, Eq. (5) is equivalent to the fol-
lowing form:

Ax = b] s Ay = bz (6)
where x = (X1.....Xs)T. y = (1.....ys5)T. and the matrix Ag,s, is
in the form

a;j= 1,j€ {1,...,51‘}
aj, j, =—Ajj, Ur.ja e {1,....5}, j1 # J2)-

This linear system in Eq. (6) has S; unknown variables and §;
equations. The solution to Eq. (6) is unique as the matrix A is non-
singular. We apply LU decomposition to solve Eq. (6) in O(Sl?') [27],
where §; is the number of Steiner points within target sub-polygon
d;-

In practice, the source sub-polygon p; maybe concave and we
cannot guarantee that any point inside p; can be mapped onto
its corresponding point inside the target sub-polygon g; using the
barycentric coordinates. Our decomposition algorithm generates a
pair of sub-polygons in which at least one of the sub-polygons
is convex. As shown in Fig. 1 (g) and (h), although the source
sub-polygon P,345 is concave, its corresponding target sub-polygon
Q2345 is convex. We can triangulate the target sub-polygon Qj345
and map it onto the source sub-polygon P,34s. Because the target
sub-polygon Q345 is convex, we can map the points inside Qj345
onto the countering-points inside P,345 using the barycentric coor-
dinates.

3.3. Compatible mesh refining

While the compatible meshes generated by our method intro-
duce a small number of Steiner points, there may still be some
long thin triangles such as the second column in Fig. 7(a). In prac-
tice, we found that these long thin triangles can cause numerical
problems such as inconsistent rotations for shape morphing. There-
fore, we have to refine the compatible meshes to avoid numerical
problems.

To refine the compatible meshes, we apply a variation of the
remeshing method in [9]. We only smooth those triangles with
small interior angles and long edges. Specifically, we smooth the
mesh using area and angle based remeshing, splitting long edges,

t=0.6 t=0.8 t=1

Fig. 4. An example of shape morphing with self-occlusion. The transformation does
not make sense as the limbs of the user are not transformed into the corresponding
wings of a butterfly due to self-occlusion.

and flipping interior edges to improve the interior angles. We fol-
low [28] to employ the minimum interior angle as a criterion to
measure the mesh quality. We want to increase the minimum inte-
rior angle for both the source and target meshes. We apply the re-
finement operations to improve a pair of meshes only if these op-
erations can further improve the mesh quality for both the source
and target meshes. The smoothed results can be found in Fig. 7(b).

4. Computing Compatible triangulation with self-occlusion
4.1. The problem of shape morphing with self-occlusion

As shown in Fig. 4 (t=0), the user adopts a pose with self-
occlusions, e.g., with the right hand placed in front of the torso
and the left hand behind it. We apply the compatible triangula-
tion method discussed in Section 3, which generates the compat-
ible meshes. However, these meshes cannot distinguish the hands
and the other body parts due to self-occlusion. We apply the rigid
shape interpolation method introduced in [7] to blend the mesh,
which results in the transformations shown in Fig. 4. We can see
the transformations of the in-between images such as the time
slice t=0.2, which dose not make sense because we want the
hands of the user to be gradually transformed into the wings of
the butterfly.

4.2. Enhancing shape morphing with self-occlusion

To generate sensible transformation, we need to enable our
compatible triangulation method to deal with the shape with self-
occlusion. However, the shape extracted from an image with self-
occlusion does not contain any overlapping information, which
makes it hard to compute the compatible triangulation between
two shapes with self-occlusion. Thus, we propose an improved
scheme to tackle triangulation with self-occlusion by introducing
a calibration image.

Our inputs are the RGB image of the source object, together
with its deformation control points, and the target shape with tex-
ture. Here are the steps to build the compatible triangulation be-
tween the source shape with self-occlusion and the target shape:
(1) We capture a calibration shape of the source object that gives
us the full body texture of the source object. Here, the calibra-
tion shape is used to extract the topology information, e.g., the
deformation control points, and it requires the shape to have no
overlapping parts. Additionally, the calibration shape enables us to
synthesize texture for transformation with overlapping as it con-
tains the full texture of the source shape. In particular, the cal-
ibration shape for human in this case is the full body image as

66 Z. Liu et al./Computers & Graphics 76 (2018) 60-72

(c) Target shape

(a) Source shape with
self-occlusion

(b) Calibration shape

(f) Compatible triangulation (e) Compatible triangulation (d) Compatible triangulation
of source shape of calibration shape of target shape

Fig. 5. The overview of compatible triangulation for shapes with self-occlusion us-
ing a human posture as an example. Our inputs are the source shape with self-
occlusion (a) and the target shape (c). (b) We introduce a calibration shape without
self-occlusion. (d-e) We build the compatible triangulation between the calibration
shape (b) and target shape (c). We deform the calibration mesh (e) into the source
shape with occlusion (a) using the four color-coded control points.

§ ¢ fan

Yy Y, L I T b

- v

2% 2% .ﬁ

(b) Without depth ad- (c) With depth adjust-
justment ment

(a) Calibration shape

Fig. 6. Collision detection and depth adjustment. Without appropriate depth as-
signment, one can see interpenetration (b). We detect overlapping regions and ad-
just depth on the fly (c).

shown in Fig. 5(b). (2) We build the compatible triangulation be-
tween the calibration and target shapes, which bridges the shape
with self-occlusion and the target shape. (3) We use the control
points to deform the mesh of the calibration shape into the source
shape with occlusion, which implicitly builds the compatible trian-
gulation between the source shape with occlusion and the target
shape. As illustrated in Fig. 5, we take the human posture as an
example to explain the process of computing compatible triangu-
lation with self-occlusion.

Using as-rigid-as-possible shape morphing, the points on the
medial axis of a shape experience only rotations [7,29]. Therefore,
it is reasonable to use a sparse set of points on the media axis
as the deformation control points. Methods such as [30,31] have
been proposed to extract the skeleton of a shape. Since we are
using the human as an example, we follow the Kinect’s posture
estimation method [32] to identify the skeleton of human and use
these skeleton joints as our deformation control points. In addition,
Kinect also simplifies the work of capturing the silhouette and tex-
ture of the source object.

4.3. Collision detection and depth adjustment

As the searching sequence of our polygon decomposition al-
gorithm is similar to the breadth-first search method, the trian-
gles are not stored in sequence. We must be careful when differ-
ent parts of the shape overlap. If we assign depths inappropriately,
the overlapping parts may interpenetrate as shown in Fig. 6(b). We
continuously monitor the mesh for self-intersection and assign ap-
propriate depth values to the overlapping parts. The depth value
we assigned to each triangle is estimated from the posture recon-
struction algorithm studied in [33]. As we have recovered the joint

(a)

Fig. 7. Compatible triangulation results. (a) The initial tessellations of two polygons.
(b) Mesh refinement and morphing. Note that our compatible meshes can be used
to blend shapes with large rotations, e.g., shapes in the third row.

positions for each joint, we know if the hands are in front of or
behind the spine as shown in Fig. 6(c).

As shown in the second row of Fig. 12, we blend the human
with self-occlusion and the butterfly. Compared with the transfor-
mations that do not consider body parts overlap as shown in Fig. 4,
the results in the second row of Fig. 12 make more sense as we
now transform the human’s limbs into the butterfly’s wings.

5. Method complexity

In this section, we will analyze the computational complexity of
our method. It takes O(N) time to determine the concave vertices
and O(N) time to find a valid vertex pair using the visibility poly-
gon algorithm [34], where N is the number of vertices of a polygon.
Finding the common valid vertex pairs using methods like hash
table usually requires O(1) time. Thus, the time cost of decompos-
ing the source and target polygons into pairs of sub-polygons is
O(N?). Finding a corresponding link path for a sub-polygon, e.g.,
p; in source polygon P, is O(N?), where N; is the number of ver-
tices of a source sub-polygon p;. The Delaunay triangulation can
be finished in O(N;logN;). The compatible mapping between a pair
of sub-polygons requires solving a linear equation using LU decom-
position that leads to O(S?) operations, where S; is the number of
Steiner points in the sub-polygon p;.

Table 1 compares the computational complexity between our
method and alternative approaches. The main computation of our
algorithm is dominated by computing link paths and solving a lin-
ear system, i.e., O(H - max(N}, $3)), where H is the number of sub-
polygon pairs. In practice, the most time-consuming part of our
algorithm is building the link path as S; is often smaller than N;.
Generally, our algorithm is faster than [12]. This is because our
method simultaneously decomposes the source and target poly-
gons, and we will stop partitioning a polygon pair if one of them
is convex. However, [12] keeps partitioning the target polygon until
all the target sub-polygons are convex. Our method is much faster
than [9,10] as we solve a small linear sparse system within each
sub-polygon pair.

The matrix A in Eq. (6) is sparse and non-symmetric. There-
fore, we further speed it up by using iterative methods such as Bi-
CGSTAB [35]. Here, we apply an open library Eigen [36] to solve
the sparse linear system. The compatible mapping process of a
sub-polygon pair can be even faster before the mesh refinement
operations, and it can be completed in O(S;). This is because the

Z. Liu et al./Computers & Graphics 76 (2018) 60-72 67

Surazhsky-Gotsman, 04

L L=

Steiner Points: 0

Baxter et al., 09

Steiner Points: 2

N&

Steiner Points: 6

Steiner Points: 0

Steiner Points: 0 0

Liuetal, 15 Ours

Fig. 8. Compatible triangulations comparisons. We compare our results with [9,10,12]. While we generally use fewer number of Steiner points than the others, our algorithm

creates high-quality compatible meshes concerning the proportion of long thin triangles.

Delaunay triangulation can triangulate the sub-polygon p; with no
Steiner points such that we only need to map the Steiner points
on the link path as discussed in Section 3.2.1.

6. Experimental results

In this section, we will show the experimental results and
present the comparisons with the alternative approaches includ-
ing [9,10,12]. Qualitative analysis is conducted to evaluate the mesh
quality between the proposed method and other alternatives. The
experiments are conducted on an Intel Core i3-2350M 2.3 GHz PC
with 4 GB RAM.

6.1. Compatible triangulations

To demonstrate the effectiveness of our method, we imple-
mented the as-rigid-as-possible shape interpolation method intro-
duced in [7]. Figs. 7 and 8 show some compatible triangulation
results and some challenging polygon pairs that are quite differ-
ent such as the shark and the seahorse in the third row of Fig. 7.
More examples of comparing morphing against previous triangu-
lation strategies can be found in Fig. 13. In practice, in order to
create good correspondences between two polygons, shape match-
ing algorithms such as [37] and [38] can be employed to automati-
cally construct a few key correspondences between the source and
target polygons, e.g., the vertices around the head, the hands and
the feet of the human. Then, the remaining vertices between the

user selected key points can be aligned based on linear interpola-
tion. The user can specify a small number of matching points to
ensure that the matching points are selected with similarity con-
text. The mismatched correspondences can be detected by observ-
ing the generated transformations.

Fig. 7(a) shows that our initial compatible triangulation con-
tains few long thin triangles and we only need to flip some edges
of such triangles to enlarge the minimum interior angles. Fig. 7(b)
shows that our compatible meshes can be further refined by meth-
ods such as splitting long edges and averaging the area of adjacent
triangles. However, it should also be noted that not every long thin
triangle can be further enhanced with our refinement method. For
example, in the third row of Fig. 7, some thin triangles around the
head of the seahorse cannot be improved.

Given the compatible triangulations of two input polygons,
shape interpolation can be applied to create animations showing
the transitions from one shape to another. Fig. 7(b) shows some
interpolation results using our compatible meshes. For more trans-
formations, please see our supplemental demo video.

6.2. Mesh quality evaluation

The quality of the compatible meshes greatly influences the in-
termediate shapes generated by morphing techniques. In particu-
lar, meshes with those long and skinny triangles would suffer from
the inconsistent rotation problem [7,19].

We employ the following criteria to measure the mesh quality:
(1) the minimum interior angle of a given mesh; and (2) the pro-

68 Z. Liu et al./Computers & Graphics 76 (2018) 60-72

1 o——
P * * //
0.9 - .k Z
0.8 d e =
g 07t y il
o0 7
| . |
£ 06
= &
¢ 05
@ 2
o0
£ ® r
§ 04 ® — Ours
z 4 Livetal, 15
S 03} L —=— Baxter et al., 09
ﬁ [- Surazhsky-Gotsman, 04
0.2 l//
0.1} o //
A
ol

0 01 02 03 04 05 06 07 08 09 1 11
The triangle deformation (E)

1 s
* ———
° I
095} P
-

o9 ¢
g -
E [
: .
‘£ 085} ’
-
=]
& |
£ o8 : @ Ours
g | 4 Livetal, 15
2 : —=— Baxter et al., 09
075} I ¥ Surazhsky-Gotsman, 04
= 1/
=)

L]
0.7} |
!
0.65 2 ¢ e - . = e
0 0.1 0.2 0.3 0.4 0.5 0.6

The triangle deformation (E)

Fig. 9. Mesh deformation evaluation. (top) Dog and cat. (bottom) Alligator.

portion of angles that are smaller than a certain constant value,
which is known to be a reasonable mesh quality criteria [28]. We
want to increase the minimum interior angle of a mesh and de-
crease the percentage of small angles.

Table 2 shows a quantitative comparison between our algo-
rithm and three alternative methods. [9] tends to create more long
thin triangles than the others. Compared with the results of [9],
[10] improves the minimum interior angle. [12] enhances the pro-

&

B BB

System
Interface

Kinect ? i - o

Fig. 11. The interactive shape morphing system. (a) The system setup. The system
interface for capturing the source object image (b) and generating transformations

(c).

portion of regular triangles but sometimes introduces a few more
Steiner points than [9]. While our results are similar to [9] regard-
ing the number of Steiner points, our algorithm creates a much
smaller percentage of small angles than [9,10]. Compared with
[9,10,12], the minimum angle of our method has been improved
greatly while we generally add a fewer number of Steiner points
than the alternative methods. Regarding our computational time,
most of the examples in this paper take less than 5 s. Additionally,
as the compatible decomposition and mapping are highly indepen-
dent, our method can potentially benefit from the parallel comput-
ing of GPU, and hence the entire computing process may be done
in real-time.

6.3. Triangle deformation evaluation

We apply the rigid shape interpolation algorithm [7] to trans-
form a source mesh 7p into the target one 7Ty. Here, we define an
edge deformation function to measure the deformation of each tri-
angle face during the transformation. Given the vertices of a source
triangle 7p, = {uy, up, u3} and the target triangle To, = {v1, 2, v3},
the edge deformation function is defined as

g Lluatsll = [|vavs]| |
Uglly —
lluau |
where ||uquy| is the length of the edge that connects vertex u, and
Up.
The deformation of the triangle 77:f is defined as

1
Er=3 > Euy (8)

ua,ut,e77)]r

,a,bef1,2,3}, a#b (7)

(@)

Fig. 10. Texture mapping comparisons. (a) The source shape with texture. Adding texture to the target shape using the compatible meshes generated by methods of (b)

Surazhsky-Gotsman, 04. (c) Baxter et al., 09. (d) Liu et al., 15. (e) Ours.

(C))

©

Z. Liu et al./Computers & Graphics 76 (2018) 60-72 69

t=0

Fig. 12. Producing interactive animation using our interactive animation system: transforming a man into one wolf beast (first row), butterfly (middle row), and bat monster

(bottom row).

where u, and uy, are vertices of the f—th source triangle in 7p.

The deformation function E; measures the deformation degree
of each triangle. A source triangle 77;f will experience very small
deformation to transform into the target triangle TQf as Ef ap-
proaches 0; Otherwise, a source triangle will experience a big dis-
tortion as Ef becomes larger. For a good compatible triangulation, a
larger percentage of small deformation E is preferred, which ben-
efits applications such as shape morphing and texture mapping.
The horizontal axis of Fig. 9(bottom) shows the deformation val-
ues that range from the smallest to the largest deformation values
in a mesh. For some specific deformation amount of the horizon-
tal axis, the value of vertical axis demonstrates the percentage of
triangles that need a deformation smaller than such a particular
deformation value. For example, one triangle in the mesh needs a
deformation value of 0.5, and more than 90% of triangles gener-
ated by our method experience the deformation values less than
0.5. Fig. 9 shows that our method generally creates the compatible
meshes with a higher percentage of triangles that experience small
deformation E. On the other hand, our method generates fewer
triangles that need large deformation during the shape morphing
[37,38].

As illustrated in Fig. 10, we demonstrate the texture map-
ping using compatible triangulations generated by methods of
[9,10,12] and ours. The system inputs are a source polygon with
texture and a target polygon without texture. We first build
the compatible triangulations of two shapes with alternative ap-
proaches, as shown in the third and fourth rows in Fig. 8. Based on
the compatible meshes, we map the texture of a source shape onto
the target one. In general, mapping the texture of a shape onto an-
other very different one always suffers from the texture stretching.
As shown in the dog-cat example in Fig. 10 (b-e), nearly all the
squares experience some distortion due to the creation of some
long thin triangles as shown in the third example in Fig. 8. These
long thin triangles need large distortion to be transformed into
the target triangles. We can still observe that both [12] and our
method preserved some regular squares around the upper body of

the cat while our method only generates 1 Steiner point. We then
try to map the texture of an alligator between two postures. For
the method of [9] in Fig. 8(b), we can see some distortions ap-
pear around the abdomen of the alligator. The stretched pattern
can also be observed at the back of the alligator for both methods
of [10] and [12] as shown in Fig. 8(c) and Fig. 8(d) respectively.
Compared with the other methods, ours generates a smoother pat-
tern around the back of the alligator, and the deformation of the
abdomen makes more sense. This is because our method generates
much more regular triangles that only involve small deformation
during the shape morphing process, as shown in Fig. 9(b).

6.4. Interactive shape morphing system

To test the effectiveness of our approach, we have implemented
a prototype of the proposed interactive shape morphing system us-
ing a human posture as the input of source shape. Fig. 11(a) shows
the setup of our interactive shape morphing system. We use Kinect
as the input device of the source shape. The user stands in front of
the Kinect, and the system can be controlled by gesture command.
For example, the system starts to capture and extract the shape of
the user when the user in the scene raises his/her left hand over
the head. More commands such as raising two hands to go back to
the default capture view have been implemented.

Fig. 11(b) and (c) show the interface of the interactive shape
morphing system. As shown in the bottom left of Fig. 11(b), the
user adopts a pose as the source input shape. The user can se-
lect the target shape in the shape database with a certain gesture
such as waving the hand, and then the target shape is rendered
in the right of Edit window in Fig. 11(b). We then compute the
compatible triangulation between the source and target shapes. Fi-
nally, we transform the source shape into the target shape based
on the compatible meshes. The intermediate results are shown in
the Transformation window as shown in Fig. 11(c). More animations
generated by our system can be found in Fig. 12.

70 Z. Liu et al./Computers & Graphics 76 (2018) 60-72

(9]

(10]

[12]

Ours

(9]

[10]

[12]

Ours

rrrriil
» 7yl
4448555

(9]

b b/

Fig. 13. Shape morphing comparisons by using different triangulation algorithms.

On the other hand, our interactive shape morphing system
can be applied to create animation, movie and even special ef-
fects. The typical users may not have the professional resources
to create some interesting morphing video, our method and sys-
tem can simplify the work to produce the interactive morphing
video.

7. Conclusions

We propose a new method to compute the compatible trian-
gulations of two simple polygons and apply them to 2D shape
morphing. Our method compatibly decomposes the source and
target polygons into sub-polygon pairs and maps the triangula-

Z. Liu et al./Computers & Graphics 76 (2018) 60-72 71

tion between a pair of sub-polygons using a sparse linear sys-
tem. We present a new metric to measure the quality of the re-
sulting mesh during the transformation. In addition, we propose
an enhanced scheme to fix compatible triangulations with self-
occlusion that benefits sensible transformations. Finally, to demon-
strate the proposed algorithm, we build an interactive shape mor-
phing system using the human silhouette as the source shape
input.

Comparing with previous methods, our compatible polygon de-
composition algorithm offers a more flexible way to decompose
the source and target polygons such that the minimum interior
angle can be maximized at each iteration. This leads to compati-
ble triangulations with more regular-shaped triangles as opposed
to long thin triangles. This is supported by the analysis that we
generate fewer triangles whose minimum angles are small un-
der our approach when compared to methods in [9,10,12]. Sec-
ond, compared to our preliminary work [12], the proposed method
generates the same compatible meshes whether we start the de-
composition from the source or target polygon. Another advan-
tage is the simplicity of our system that involves only three
stages. All we need is to decompose a polygon, to calculate link
paths, and to solve a sparse linear system, enabling real-time
morphing.

While our method handles well the mapping between shapes,
the morphing results need to be further improved. As we focus on
generating the compatible meshes, we simply crossfade between
textures in the image space. More sophisticated texture blending
or image warping algorithms such as [5] can be incorporated into
our technique. Currently, the intermediate images interpolated are
uniquely determined by a rigid interpolation method [7], which
offers no means of control. It would thus be desirable to modify
some parts of the intermediate shapes if the users were not sat-
isfied with them. We can explore possible solutions such as the
linear constraints proposed in [19] to increase the user controlla-
bility.

Another drawback of our method is that we cannot deal with
polygons with holes. One possible solution would be adding a
bridge between the outer polygon and the inner polygons (i.e., the
holes). We may connect the outer polygon to all the holes to treat
such a polygon with holes as a single polygon. We can then apply
our method to decompose the source and target polygons compati-
bly. While we have shown many examples of compatible triangula-
tions both in the paper and the supplemental video, we also want
to test our algorithm on shapes with a more complex structure or
completely different topologies in the future.

Finally, we want to make better use of the features afforded by
commodity depth cameras. It is possible to detect self-occlusions
in a video sequence using the depth image captured by commod-
ity depth cameras automatically. However, it is hard to recover
the occluded textures for human figures with self-occlusion, which
makes it difficult to compute the cross-fade textures for each in-
between transformation. That is why we need a calibration image
that offers the full body texture for shape morphing with occlu-
sions. An interesting direction of future work would be to skip
the calibration image and compute the compatible triangulation
directly from shapes with self-occlusions using data from a com-
modity depth camera.

Acknowledgments

This work was partially supported by the INRIA PRE “Smart sen-
sors and novel motion representation breakthrough for human per-
formance analysis” project, the Engineering and Physical Sciences
Research Council (EPSRC) (Ref: EP/M002632/1) and the Royal Soci-
ety (Ref: IE160609).

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.cag.2018.07.002.

References

[1] Wolberg G. Image morphing: a survey. Vis. Comput. 1998;14(8):360-72.

[2] Chiang C-C, Way D-L, Shieh J-W, Shen L-S. A new image morphing technique
for smooth vista transitions in panoramic image-based virtual environment. In:
Proceedings of the ACM symposium on virtual reality software and technology.
VRST '98. New York, NY, USA: ACM; 1998. p. 81-90. ISBN 1-58113-019-8.

[3] Dym N, Shtengel A, Lipman Y. Homotopic morphing of planar curves. Comput
Graph Forum 2015;34(5):239-51.

[4] Igarashi T, Moscovich T, Hughes JF. As-rigid-as-possible shape manipulation.
ACM Trans Graph 2005;24(3):1134-41.

[5] Schaefer S, McPhail T, Warren]. Image deformation using moving least
squares. ACM Trans Graph 2006;25(3):533-40.

[6] Fang H, Hart JC. Detail preserving shape deformation in image editing. ACM
Trans Graph 2007;26(3).

[7] Alexa M, Cohen-Or D, Levin D. As-rigid-as-possible shape interpolation. In:
Proceedings of the 27th annual conference on computer graphics and inter-
active techniques. ACM Press/Addison-Wesley Publishing Co.; 2000. p. 157-64.

[8] Gotsman C, Surazhsky V. Guaranteed intersection-free polygon morphing.
Comput Graph 2001;25(1):67-75.

[9] Surazhsky V, Gotsman C. High quality compatible triangulations. Eng Comput
2004;20(2):147-56.

[10] Baxter W, Barla P, Anjyo K-i. Compatible embedding for 2D shape animation.
IEEE Trans Vis Comput Graph 2009;15(5):867-79.

[11] Aronov B, Seidel R, Souvaine D. On compatible triangulations of simple poly-
gons. Comput Geom 1993;3(1):27-35.

[12] Liu Z, Leung H, Zhou L, Shum HPH. High quality compatible triangulations for
2D shape morphing. In: Proceedings of the 21st ACM symposium on virtual
reality software and technology. VRST '15. New York, NY, USA: ACM; 2015.
p. 85-94.

[13] Liu Z, Zhou L, Leung H, Multon F, Shum HPH. High quality compatible trian-
gulations for planar shape animation. In: Proceedings of the ACM SIGGRAPH
ASIA Workshop; 2017. p. 1-8.

[14] Sederberg TW, Gao P, Wang G, Mu H. 2-D shape blending: an intrinsic solution
to the vertex path problem. In: Proceedings of the 20th annual conference on
computer graphics and interactive techniques. ACM; 1993. p. 15-18.

[15] Kranakis E, Urrutia J. Isomorphic triangulations with small number of steiner
points. Int] Comput Geom Appl 1999;9(02):171-80.

[16] Suri S. A linear time algorithm for minimum link paths inside a simple poly-
gon. Comput Vis Graph Image Process 1986;35(1):99-110.

[17] Gupta H, Wenger R. Constructing piecewise linear homeomorphisms of simple
polygons. J Algorithms 1997;22(1):142-57.

[18] Xu D, Zhang H, Wang Q, Bao H. Poisson shape interpolation. Graph Models
2006;68(3):268-81.

[19] Baxter W, Barla P, Anjyo K-i. Rigid shape interpolation using normal equations.
In: Proceedings of the 6th international symposium on non-photorealistic ani-
mation and rendering. ACM; 2008. p. 59-64.

[20] Sumner RW, Popovic J. Deformation transfer for triangle meshes. ACM Trans
Graph 2004;23(3):399-405.

[21] Li X-Y, Ju T, Hu S-M. Cubic mean value coordinates. ACM Trans Graph
2013;32(4) 126:1-126:10.

[22] Chen R, Weber O, Keren D, Ben-Chen M. Planar shape interpolation with
bounded distortion. ACM Trans Graph 2013;32(4):108.

[23] Floater MS. Parametrization and smooth approximation of surface triangula-
tions. Comput Aid Geom Des 1997;14(3):231-50.

[24] Surazhsky V, Gotsman C. Explicit surface remeshing. In: Proceedings of the
2003 Eurographics/ACM SIGGRAPH symposium on geometry processing. Eu-
rographics Association; 2003. p. 20-30.

[25] Fortune S. A sweepline algorithm for voronoi diagrams. Algorithmica
1987;2(1-4):153-74.

[26] Floater MS. Mean value coordinates. Comput Aid Geom Des 2003;20(1):19-27.

[27] Murota K. Lu-decomposition of a matrix with entries of different kinds. Linear
Algebra Appl 1983;49:275-83.

[28] Sarrate], Palau J, Huerta A. Numerical representation of the quality mea-
sures of triangles and triangular meshes. Commun Numer Methods Eng
2003;19(7):551-61.

[29] Ben-Chen M, Weber O, Gotsman C. Variational harmonic maps for space de-
formation. ACM Trans Graph 2009;28(3):34:1-34:11.

[30] Au OK-C, Tai C-L, Chu H-K, Cohen-Or D, Lee T-Y. Skeleton extraction by mesh
contraction. ACM Trans Graph 2008;27(3):44:1-44:10.

[31] Tagliasacchi A, Alhashim I, Olson M, Zhang H. Mean curvature skeletons. Com-
put Graph Forum 2012;31(5):1735-44.

[32] Shotton], Fitzgibbon A, Cook M, Sharp T, Finocchio M, Moore R, et al. Real-
time human pose recognition in parts from single depth images. In: Proceed-
ings of the CVPR 2011; 2011. p. 1297-304.

[33] Liu Z, Zhou L, Leung H, Shum HPH. Kinect posture reconstruction based on
a local mixture of gaussian process models. IEEE Trans Vis Comput Graph
2016;22(11):2437-50.

[34] Joe B, Simpson RB. Corrections to lee’s visibility polygon algorithm. BIT Numer
Math 1987;27(4):458-73.

https://doi.org/10.1016/j.cag.2018.07.002
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0001
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0001
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0002
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0002
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0002
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0002
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0002
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0003
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0003
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0003
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0003
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0004
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0004
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0004
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0004
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0005
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0005
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0005
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0005
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0006
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0006
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0006
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0007
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0007
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0007
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0007
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0008
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0008
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0008
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0009
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0009
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0009
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0010
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0010
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0010
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0010
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0011
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0011
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0011
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0011
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0012
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0012
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0012
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0012
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0012
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0013
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0013
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0013
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0013
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0013
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0013
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0014
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0014
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0014
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0014
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0014
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0015
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0015
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0015
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0016
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0016
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0017
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0017
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0017
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0019
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0019
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0019
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0019
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0020
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0020
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0020
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0021
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0021
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0021
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0021
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0022
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0022
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0022
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0022
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0022
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0023
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0023
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0024
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0024
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0024
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0025
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0025
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0026
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0026
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0027
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0027
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0028
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0028
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0028
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0028
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0029
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0029
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0029
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0029
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0031
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0031
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0031
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0031
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0031
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0033
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0033
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0033
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0033
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0033
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0034
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0034
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0034

72 Z. Liu et al./Computers & Graphics 76 (2018) 60-72

[35] Van der Vorst HA. Bi-cgstab: A fast and smoothly converging variant of BI-CG
for the solution of nonsymmetric linear systems. SIAM] Sci Stat Comput
1992;13(2):631-44.

[36] Guennebaud G., Jacob B., et al. Eigen v3. http://eigen.tuxfamily.org; 2015.

[37] Belongie S, Malik], Puzicha J. Shape matching and object recognition using
shape contexts. IEEE Trans Pattern Anal Mach Intell 2002;24(4):509-22.

[38] Mai F, Chang CQ, Hung YS. Affine-invariant shape matching and recognition
under partial occlusion. In: Proceedings of the 2010 IEEE international confer-
ence on image processing; 2010. p. 4605-8.

http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0035
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0035
http://eigen.tuxfamily.org
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0036
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0036
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0036
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0036
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0037
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0037
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0037
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0037

	High-quality compatible triangulations and their application in interactive animation
	1 Introduction
	2 Related work
	3 Compatible triangulations
	3.1 Compatible decomposition of the target and source polygons
	3.2 Compatible triangulations mapping
	3.2.1 Mapping the Steiner Points onto the Link Path of the Source Polygon
	3.2.2 Mapping the Steiner points within the source polygon

	3.3 Compatible mesh refining

	4 Computing Compatible triangulation with self-occlusion
	4.1 The problem of shape morphing with self-occlusion
	4.2 Enhancing shape morphing with self-occlusion
	4.3 Collision detection and depth adjustment

	5 Method complexity
	6 Experimental results
	6.1 Compatible triangulations
	6.2 Mesh quality evaluation
	6.3 Triangle deformation evaluation
	6.4 Interactive shape morphing system

	7 Conclusions
	 Acknowledgments
	 Supplementary material
	 References

