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Abstract
By overlaying virtual imagery onto the real world, mixed reality facilitates
diverse applications and has drawn increasing attention. Enhancing physical
in-hand objects with a virtual appearance is a key component for many appli-
cations that require users to interact with tools such as surgery simulations.
However, due to complex hand articulations and severe hand-object occlu-
sions, resolving occlusions in hand-object interactions is a challenging topic.
Traditional tracking-based approaches are limited by strong ambiguities from
occlusions and changing shapes, while reconstruction-based methods show a
poor capability of handling dynamic scenes. In this article, we propose a novel
real-time optimization system to resolve hand-object occlusions by spatially
reconstructing the scene with estimated hand joints and masks. To acquire
accurate results, we propose a joint learning process that shares information
between two models and jointly estimates hand poses and semantic segmen-
tation. To facilitate the joint learning system and improve its accuracy under
occlusions, we propose an occlusion-aware RGB-D hand data set that mitigates
the ambiguity through precise annotations and photorealistic appearance. Eval-
uations show more consistent overlays compared with literature, and a user
study verifies a more realistic experience.
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1 INTRODUCTION

In recent years, mixed reality (MR) has drawn wide attention due to its versatile capabilities. Instead of rendering the
whole scene from scratch like virtual reality, MR focuses on enhancing users’ perception of the real world by overlaying
virtual objects onto it.1

The hand is one of the key components in MR, and hand-object interactions are critical to a wide range of MR
applications such as surgery simulations.2 However, their practicality and immersive experiences are severely limited by
occlusions. When we are holding some objects, it is very likely that fingers will partially occlude the object. If we ren-
der the virtual object with incorrect occlusions, an unrealistic “floating” illusion will lead to incorrect depth/distance
perception, ruining an immersive MR experience.3

To resolve occlusions in MR, previous literature proposed various methods to resolve occlusions for virtual objects.
However, the quality of their results is subpar when applied to hand-object interactions. Reconstruction-based methods
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utilize algorithms such as SLAM to obtain the model of the scene and render virtual objects through Z-buffer.3 How-
ever, they are less viable for hand-object interactions that incorporate dynamic environments. The performance of
tracking-based methods that track the object’s contour through flow is limited due to the highly deformable hand
shapes and severe occlusions.4 Although depth-based methods can handle the aforementioned problems, sensor noise,
misaligned boundaries, and unknown pixels within a close range limit their usefulness against egocentric scenes.5

In this article, we first proposed a photorealistic and occlusion-aware RGB-D hand data set that mitigates the ambiguity
caused by occlusions and facilitate our learning-based system. By synthesizing pairwise occluded samples and augment-
ing them with realistic appearance, the data set containing precise annotations of hand poses and segmentation masks is
generated with minimal manual input.

Making use of the generated data set, we propose an occlusion-aware joint learning system that shares information
between the tasks of estimating hand poses and predicting semantic segmentation. By passing information between tasks,
our system can predict more consistent results compared with existing single-task architectures. Taking advantage of
the occlusion-aware data set, our joint-learning system is more robust in hand-object interactions. With precise estima-
tions of hand joints and masks, the system facilitates the occlusion resolving task with our novel real-time optimization
system.

Taking the advantage of occlusion-robust pose and mask information, we propose a novel real-time optimization
system that renders correct occlusions when enhancing physical in-hand objects with a different virtual appearance. It
overcomes the reconstruction-based approaches’ limitation of not being able to handle dynamic scenes by efficiently
reconstructing the spatial scene through a two-step optimizing-and-fitting method. By iteratively updating a parameter-
ized hand model according to segmentation information and fit it back to tracked joints in real time, we calculate occlusion
masks and augment virtual objects with correct representations.

Experimental results show high-quality overlays of augmented in-hand objects. A quantitative evaluation shows bet-
ter performance over state-of-the-art approaches, a qualitative comparison shows better capabilities, and a user study
verify more realistic MR experiences over literature. This research can be applied to egocentric applications that include
hand-objects interactions such as tool-based simulations.

The contributions of this work are summarized as follow:

• A photorealistic and occlusion-aware RGB-D hand data set that facilitate occlusion-robust hand joints tracking and
hand semantic segmentation. The data set is available for further research through the script: https://bit.ly/2TwCrS1

• An occlusion-aware deep-learning system that jointly estimates hand pose and semantic segmentation. With shared
information between tasks, it can predict occluded hand-object interactions with high accuracy.

• A novel real-time optimization system for augmenting virtual objects that spatially reconstructs the scene through a
two-step optimizing-and-fitting method.

The rest of the article is organized as follows. We revisit existing occlusion solutions and hand tracking methods in
Section 2. In Section 4, we explain the proposed RGB-D data set and the joint learning process to estimate hand joints
and masks. In Section 5, we present our novel two-step approach to resolve the occlusions. Implementation details,
evaluations, and the user study are presented in Section 6. Finally, Section 7 concludes this work.

2 RELATED WORKS

As the main goal of this work, we first revisit previous occlusion handling approaches in this section. Since the hand data
set and the joint learning system are important components of this work, we also review previous learning-based methods
and occlusion-aware data sets.

2.1 Occlusions in mixed reality

A low-quality overlay in MR, such as incorrect occlusions, can easily break the immersive experience.6 Methods in fol-
lowing literature estimate occlusions to correctly composite augmented objects with real environments without prior
geometric knowledge.

https://bit.ly/2TwCrS1
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Tracking-based solutions. Semiautomatic approaches, such as manually selecting the boundaries7 and assigning the
foreground and background objects,4 estimate occlusions from the tracked contour of the selected foreground objects.
These methods require manual input and implicitly assume that the objects have finite and constant boundaries. More-
over, the automatic contour extraction performance can be highly influenced by the insufficient resolution, false local
minima, and errors in initialization.

Reconstruction-based solutions. Since the geometric relation between objects can be easily acquired if an accurate
model of the real scene is provided, using a fast SLAM algorithm to reconstruct the environment is a popular option.3
However, computationally expensive solutions require translating motions and textured environments, and have a major
weakness of dynamic scenes with transient objects. Another type of approaches use predefined 3D models to perform
fitting tasks via tracking.8 The performance of these methods depends on the tracking robustness and is usually weak of
deformable objects. Without an occlusion-robust tracking solution, these methods are prone to inconsistent results.

Depth-based solutions. Using additional depth sensors to obtain the per-pixel depth information directly can serve the
purpose as well. However, temporal noise and misaligned depth edges and other underlying problems lead to low-quality
results. Chao et al.5 proposed an edge snapping algorithm to improve the consistency along the boundaries. However, most
state-of-the-art algorithms are not practical when the computational cost is a problem that cannot be ignored in modern
MR applications.9 Refining the obtained depth in a “layered” fashion with cost-volume filtering10 can achieve real-time
performance, but it generalizes poorly for complex scenes such as interactions. Besides, the hand being simultaneously
foreground and background object would make color-based segmentation impractical.

By leveraging the efficiency of tracking-based and model-based methods, our proposed real-time method solve occlu-
sions in hand-object interactions without introducing a lengthy initialization, extra sensors, or an expensive process of
reconstructing the entire scene.

2.2 Occlusion-aware hand tracking

Learning-based approaches. Vision-based 3D hand pose prediction is a challenging task due to its high degree of free-
dom articulations and severe self and hand-object occlusions. Markerless approaches introduce generative components
to improve the estimation between the simulation and the observation, such as consistencies between frames,11 itera-
tive closest point,12 particle swarm optimization,13 and so forth. However, most methods require a lengthy initialization
process, and its accuracy highly depend on the quality of observations. To address these limitations, learning-based dis-
criminative components have become a popular choice in recent years.14 Although being beyond the scope of this study,
adapting MANO15 to solve interactions between hands,16 and joint tracking of hand and object17 are all promising direc-
tions for improvements. In this work, we use a learning-based approach to precisely and efficiently predict hand poses
without manual initialization.

Occlusion-aware data sets. One of the major issues of learning-based hand tracking methods is difficulties in prepar-
ing training data with correct 3D annotations. Recently, a handful of high-quality data sets for 3D hand pose estimation
are released.13 Even data set constructed upon manual annotations exists,14 inaccuracy and insufficient size are prob-
lems that cannot be ignored. Multiview approaches18 suffer from the limitation of occlusions due to their outside-in
setups. To obtain accurate paired data, some works render synthetic RGB-D hand-object images with hand models and
virtual cameras.14 However, existing CNNs-based approaches that are trained on synthetic data generalize poorly due
to the domain gap between synthetic and real-world images. To improve the accuracy of occlusion-aware hand tracking
from RGB-D input, our method leverages a CycleGAN and incorporates the geometric consistency loss19 to synthesize a
photorealistic RGB-D hand data set.

3 THE FRAMEWORK OVERVIEW

To achieve the goal of augmenting in-hand objects with correct occlusions in real-time, our approach consists of two major
components (see Figure 1). The first one is an occlusion-aware joint learning framework for (a) hand pose estimation
and (b) semantic segmentation. This involves building an occlusion-aware hand database, a joint tracking module, and a
segmentation module. The second one is a real-time optimization-based occlusion resolving system (c) for virtual object
augmentation. This involves optimizing a hand model using the estimated segmentation mask, fitting the model with the
tracked hand pose from the joint learning step, and resolving occlusion masks for augmenting virtual objects.
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F I G U R E 1 The architecture of our hand-object occlusion resolving system

4 OCCLUSION-AWARE JOINT LEARNING FOR POSE TRACKING AND
SEGMENTATION

4.1 The photorealistic and occlusion-aware data set

We proposed a photorealistic and occlusion-aware RGB-D data set to facilitate learning-based pose tracking and semantic
segmentation in hand-object interactions. This is motivated by the difficulty to annotate hand poses and segmentation
in occluded scenes. Capture-and-annotate methods are limited due to ambiguities, glove-based methods yield different
appearance and are not suitable for bare-hand applications. To acquire accurate pose information and segmentation
masks for hand-object interactions, synthesizing samples and annotations is a more efficient and suitable way compared
with capture-based methods.

To efficiently synthesize the photorealistic and occlusion-aware RGB-D data set, we repurpose an existing synthetic
RGB-D hand data set.14 It contains samples with hand-object interactions and hand joint annotations. To adapt it to our
use, we first re-render the hand into binary masks for the semantic segmentation task. Inspired by Mueller et al.,19 we then
use the generated segmentation masks as geometric constraints to transfer photorealistic appearance to synthetic samples
by training a CycleGAN. To ensure annotations stay correct after the transfer, we calculate the geometric consistency loss
from the estimated and real silhouettes:

Lgeo = −
∑

i
(SilogŜi + (1 − Si)log(1 − Ŝi)), (1)

where S is the rendered segmentation and Ŝ is the mask of the generated sample. The pipeline is explained in Figures 2
and 3 shows some samples of the data set. We only show the synthetic-to-real half of components for simplicity.

By reducing the domain gap between synthesized and real-world scenarios, our approach improves the accuracy of
learning-based approaches. A photorealistic RGB-D hand data set with occlusions that contains 40,000 precise joint and
segmentation annotations is created to facilitate applications including hand tracking and semantic segmentation.

4.2 Hand semantic segmentation and pose estimation under occlusions

With precise pose annotations and semantic segmentation of photorealistic hand data available, we propose a
deep-learning system that jointly estimates hand semantic segmentation and tracks joints. As illustrated in Figure 1a,b,
we pass the input to our joint-learning system with a resnet-structured pose tracking module and a U-net-structured
segmentation module running parallelly to each other.

To achieve a more coherent estimation even under occlusions, we exploit the information of joint annotations and
inform the other task of potential uncertainties with concatenated heatmaps of pose estimation. More specifically, in
addition to predicting 3D coordinates of each joint, 2D Gaussian heatmaps of every joint is also created with the pose
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F I G U R E 2 The CycleGAN
architecture of our photorealistic RGB-D
data generating network

F I G U R E 3 An example of
generated photorealistic RGB-D hand
data set. Images from left to right are (a)
synthesized RGB; (b) synthesized Depth;
(c) synthesized RGB-D; (d) photorealistic
RGB-D

tracking module. We find that two tasks are complementary to each other since hand joints should always located within
the hand contour, hence we concatenate and convey heatmaps to the semantic segmentation module. With a heatmap
loss calculated to reduce false-positive predictions, our joint learning system has improved accuracy compared with two
separate modules without communications.

4.2.1 The pose tracking module

To estimate hand poses with improved accuracy and robustness, we take advantage of our generated photorealistic hand
data set and propose the pose tracking module to predict hand poses. With the input of an RGB-D image, the pose tracking
module is trained to regress 3D locations of 21 hand joints. As additional information to be shared with the other task,
2D Gaussian heatmaps are also output in image space with the pose estimation module.

A two-step localizing-and-tracking method is used to improve the robustness of the network. We adapt the HALNet14

and trained with the proposed data set to localize the hand when an image is inputted. D̃ that contains hand will be
cropped from the input RGB-D frame D and passed to the next step. We then propose a pose estimation network bases on
a modified ResNet-50 structure with reduced layers to achieve real-time performance. By minimizing the Euclidean loss
between predicted joints and ground truth Ĵ, our hand pose tracking module can estimate 3D hand joints’ coordination
J in real-time during usage.

dpred =
N∑

i=0
||J − Ĵ||22. (2)
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F I G U R E 4 A comparison between
segmentation masks estimated with and
without heatmap loss. (a) Input color
image. (b) Ground truth segmentation
mask. (c) Estimated mask without the
heatmap loss. (d) Estimated mask with
the heatmap loss

Since hand pose annotations being a high-level information is expensive to acquire but highly correlated to and ben-
eficial for different tasks (model reconstruction, normal estimation, etc.), we exploit the learned image to pose mapping
through heatmap representations. As 2D likelihood heatmaps Hj are regressed during pose estimation for each joint, we
concatenate heatmaps of each joint to obtain hand heatmap Hh, and pass the information to the segmentation module
during training.

4.2.2 The semantic segmentation module

To facilitate the real-time optimization system in the next step, we propose a semantic segmentation module to estimate
hand masks from an image input. To take advantage of hand pose knowledge, the segmentation module outputs interme-
diate heatmaps for mask estimations, and calculate an additional heatmap loss to ensure that the hand joints fall within
the segmentation estimation. Combined with the synthesized occlusion-aware pairwise images and masks, this module
can handle occluded scenes with improved performance.

Structurewise, the segmentation module consists of a U-Net structure with the encoder part replaced with a ResNet-18
backbone. Considering the binary output mask, we choose the dice coefficient as our segmentation loss function.

Ldice =
2|Ŝ ∩ S|
|Ŝ + S| . (3)

The Ŝ in Equation (3) is the estimated segmentation, while S is the ground truth. The architecture of our hand semantic
segmentation network is shown in Figure 1b.

To reduce false-positives in estimated masks, we leverage the information, heatmap of the hand Hh obtained from
the pose tracking module. Apart from the main loss between the segmentation masks, with the average pooling, we
create activation maps at the same time for calculating the complementary heatmap loss between the H̃h obtained by
the segmentation module and the Hh with Euclidean loss. The weight of heatmap loss is set at 0.1 during training, and
the resolution is downscaled to 640× 360 to maintain a stable speed. As demonstrated in Figure 4, we can clearly see the
effectiveness of guiding the semantic segmentation task through heatmaps passed by the pose tracking module.

5 VIRTUAL OBJECT AUGMENTATION WITH REAL-TIME
OPTIMIZATION

In this section, we explain our novel real-time optimization system that resolves the occlusions in hand-object interactions
through a two-step optimizing-and-fitting method. With the hand pose and semantic segmentation information available,
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F I G U R E 5 The process of
updating the hand model during runtime
with estimated hand poses and masks.
The model is optimized by minimizing
the distance between observed and
model’s rendered segmentation

we spatially reconstruct the region of interest with high accuracy by first iteratively optimizing a virtual hand model based
on user’s hand and then fitting the updated model to estimated hand poses.

This system design circumvents the limitations of previous occlusion resolving approaches effectively. For
reconstruction-based methods, we overcome the constraint of only being able to recover a static scene by fitting the opti-
mized model to estimated joints in real time. For tracking-based methods, the problem of low-quality outcomes against
changing shapes or under severe occlusions is solved by our occlusion-aware joint learning system. Instead of tracking
contour directly, we calculate it through more occlusion-robust hand poses. With local models of the hand and the virtual
object available, we then augment the object through an occlusion mask calculated in real time.

5.1 Hand model optimization

With the current frame of hands available, a hand pose and semantic segmentation are estimated with the joint learning
system and inputted to this occlusion module to optimize a virtual hand model Md in real time. This iterative process
(Figure 5) is effective and efficient against hand-object interactions by only reconstructing models. More specifically, by
fitting the (b) current model according to (a) the estimated hand pose J and projecting the model back to the image
plane where the scene is rendered, we can obtain (c) a binary mask S̃. At the same time, we can acquire (d) an estimated
hand segmentation mask Ŝ through our segmentation module. The hand model consists of fingerwise components and
a palm component, and each has parameters of vertical and horizontal scale. We then update (e) the current model Mu
to minimize the euclidean distance dS = ||Ŝ − S̃|| between observed and rendered hand masks.

To further enhance the stability of outputs, we take consistency into consideration and minimize the distance through
a step-based iterative optimization. The initial step for updating the scale of the model is 0.2 for every 30 frames. When
the model meets a plateau for successive 300 frames, we upscale/downscale the step by 50%. Since we want to achieve a
more stable output, the optimization is stopped when the step size goes smaller than 0.02 to save computational power
and prevent flickering effects in the implemented real-time application.

5.2 Hand model fitting and virtual objects augmentation

To cope with fine occluding edges between user’s hand the in-hand objects, we propose a way to calculate occlusion
masks through refined depth relations by comparing the reconstructed hands and objects to be augmented in a virtual
environment. Existing depth-based methods suffer from problems including noise and misalignment, and their quality
deteriorates when the distance from targets getting closer.

More specifically, we solve occlusions with the updated hand model by fitting it to the joints acquired through the pose
tracking module in our joint learning framework. Our approach minimizes the fitting energy with regard to the optimized
hand model. The updated hand model is displaced to minimize the distance dj between the captured hand joints Ji and
the current hand model Mu(i):

dj =

√√√√ N∑
i=0

(dJ(i) − d̂Mu(i))2, (4)
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where d(i) is the normalized distance obtained by d(i) = ri∕
√

Ŝ. The ri is the distance between the feature joint
Ji(i= 0,1, … , N) and the root of the hand Jr. We fit the optimized hand model Mu back according to the acquired joint
coordination J to calculate the occluding mask m, the spatial location is shown on the image plane to which the invisible
part of the virtual object V corresponds.

We decide the label of each point as “visible” or “invisible” of V based on the comparison between the 3D displace-
ment of V and the optimized hand Mu to determine the occluding mask m. During rendering, pixels of V′ labeled with
“invisible” will not be rendered to represent the occlusion. Based on the acquired occlusion mask, some portion of the vir-
tual object model will be masked invisible, while other portions remain visible to the user. This process is done by frame
and will remain robust even under strong motion.

6 EVALUATIONS

6.1 The mixed reality application

We implemented a complete table-top application (Figure 6) to showcase the idea, verify the quality of masks, and conduct
a user study. This Unity3D application allows users to use their bare hands to interact with real objects augmented with
virtual appearances. The frame rate was fixed at 30 fps with a resolution of 1,440× 1,440 per eye using a PC with a Intel
7800X CPU and a NVIDIA RTX 2080Ti. Although a video-see-through equipment (Intel RealSense SR300) is used during
the experiment, our system also works with optical-see-through devices.

6.2 Qualitative results

To qualitatively verify the applicability of our proposed system when applied to hand-object interactions, we compared
it to previous real-time occlusion solutions in the following five aspects. First, the system should be able to resolve the
occlusion with a moving viewpoint. Restricting the viewpoint will significantly reduce the practicability. Second, the
placement of in-scene objects will change constantly, and thus being able to handle dynamic scenes is critical. Moreover,
additional equipment and complex implementations can limit usability. The detailed comparison is shown in Table 1.
Our approach can handle dynamic scenes with moving objects and egocentric viewpoint in real-time with a simple setup.

F I G U R E 6 The configuration of the implemented application

T A B L E 1 A comparison between the proposed method and the previous methods

Method Viewpoint Scene Mutual occlusion Equipment
Lu23 Depth based Restricted Static No Stereo cameras

Tian et al.4 Contour based Arbitrary Static No RGB camera

Dong et al.24 Depth based Restricted Dynamic Yes TOF camera

Tian et al.8 Reconstruction based Arbitrary Static Yes RGB-D camera

Holynski et al.3 Reconstruction based Arbitrary Static Yes RGB camera

Walton et al.10 Depth based Arbitrary Dynamic No RGB-D camera

Our method Arbitrary Dynamic Yes RGB-D camera

Note: Bold text in the table shows the best capability for most applications/run most efficiently/require minimal setup among proposed approaches.
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F I G U R E 7 A MR scene rendered
with occlusions based on (a) naive
approach that uses raw depth, (b) CVF
occlusion,10 and (c) our approach

We evaluate our system and verify this is a better method compared with the naive method that decides the visibility
of each pixel based on the raw input of the RGB-D camera, the state-of-the-art CVF occlusion approach.10 We exclude
SLAM-based methods due to their unrealistic requirements of a stable and rigid environment in hand-object interactions.
By placing virtual objects in the scene to interact with the scene geometry, we implemented a traditional AR scenario
of object insertion to evaluate the accuracy of the occlusion mask and rendered object. Direct results of rendered virtual
objects can be observed in Figure 7. The readers are also referred to the supplementary video for further results.

6.3 Quantitative results

6.3.1 Tracking under occlusions

To verify the effectiveness of the improved photorealistic hand-object RGB-D data set, our model is trained with a similar
architecture to the JORNet14

with Caffe framework. The weight of our network is initialized based on the original ResNet50 trained with
ImageNet.20 We use percentage of correct keypoints (PCK) as the measure to evaluate the accuracy of our approach.
After training 45,000 iterations with the same configuration based on the original SynthHands14 and our improved data
set, we benchmark both approaches with the stereo tracking benchmark data set,21 which consists of 12 sequences of
paired RGB-D images. Figure 8a presents the result that and our approach outperforms the original method trained with
synthetic data. With a threshold set at 50 mm, the accuracy is significantly improved from 0.55 to 0.63.

6.3.2 Ablative analysis

To validate the quality of the overlay, we mainly focus on the reprojection error in pixels of the rendered objects. Since the
egocentric HMD works differently from the traditional screens, the screens are positioned closer to the user and thus make
the pixels easier to be identified. To evaluate the experimental results quantitatively, we multiply the factor of the pixels
per degree of visual angle of the magnified headset screen with the measured length of the deviated position to obtain
the reprojection error. Figure 8b presents an ablative analysis of hand optimization step. With updated hand models, our
combined approach shows the best performance with the lowest average reprojection errors.

F I G U R E 8 (a) PCK benchmark
with the Stereo data set. The model
trained with the improved data set
(orange) shows a higher tracking
accuracy compared with the original
approach (blue). (b) Reprojection errors
of occlusion masks acquired by different
approaches for three sequences, pencil,
pencil sharpener, and eraser. While
using cost volume filtering (orange) to
improve the raw depth (brown) shows
better accuracy, our approach (gray and
blue) shows a further improvement
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While we outperform the previous approaches in the quantitative comparison (Figure 8b), we emphasize that our
approach can also handle complex scenes that the hand cannot be labeled as either foreground or background object.

6.4 User study

We designed a participant-based cooperative qualitative evaluation to evaluate our application for real-object enhance-
ment. Nine subjects (ages 18–26 years, average 21.7 years) without VR/AR experience participated in this study. The
main goal of this study is to test sense of presence, realism of experience, stability, and identify potential issues through
interviews after each trial. This study compares experiences of using four different conditions (Figure 9): (a) without any
occlusion handling; (b) with a naive approach22 that adjusts the transparency of virtual objects based on the angle of the
palm; (c) render occluded objects without the updated hand model using the proposed method, and (d) render occluded
objects with the updated hand model.

During the experiment with the configuration shown in Figure 6, each user went through three scenes interacting with
a pencil, a box, a card, with four different conditions. The sequence of trials in each scene was randomized to prevent bias.
Users followed instructions to perform the simple task of interacting with objects with translating and rotating motions.
After each trial, feedback was collected through a semistructured interview.

Figure 10 illustrates the results of the study. From both the results of the questionnaire as well as the comments in
the subsequent open discussions, we confirmed a positive impression of our implementation. Since most of objects are
partly occluded by fingers during interaction, and participants were actually holding realistic objects in hand, the naive
solution of adjusting transparency to be fully opaque when participants flip their hands outward was highly problematic
under this situation and resulted in a strange impression that virtual objects seemed to be fading away when they turned
their arm. This problem can be observed in Figure 9. With a K–W test, we verified a more immersive MR experience and a

F I G U R E 9 Results of three methods to augment a green can with a virtual Cola can: (a) the real scene without any overlay; (b) result
without any occlusion handling; (c) result when applying the approach proposed by Liang et al.22 The transparency was adjusted to 70%
according to the direction of the palm in this case; (d) result of our method

F I G U R E 10 Likert-type survey result from the user study.
The experience of each trial is rated from 1 as “Bad” to 5 as “Good”
with a step of 1
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significantly more realistic feeling of interacting with virtual objects with our approach (p < .001 in Scenes 1 and 3, p= .022
in Scene 2). Some users reported that rendering model hands mitigates some latency and resulted asynchronization, and
thus give them a more consistent feeling.

7 CONCLUSION AND DISCUSSION

In this article, we have presented a real-time method to handle the hand-object occlusions in MR. We propose a pho-
torealistic RGB-D hand data set with precise joint and segmentation annotations to facilitate our occlusion-aware joint
learning system. With a novel real-time optimization pipeline, we utilize the jointly estimated poses and masks to calcu-
late occlusion masks and render objects with correct occlusions. The experimental results show better quantitative and
qualitative performance than previous literature, and a user study verifies a more realistic MR experience of hand-object
interactions. The implementation shows good accuracy, robustness, and speed with the potential to be further adapted to
other applications.

Since we are using a commercial implementation of object augmentation this time, there is a technical issue of mis-
alignment when localizing the optimized hand model. We believe a reimplementation can solve this problem. As a general
limitation of learning-based approaches, greatly changing the appearance of hands such as wearing gloves may reduce
the robustness. In addition, there is no sophisticated occlusion-aware object tracking in the current implementation, and
this lead to losing augmentation of the object during experiments due to strong occlusions. Joint tracking of hand and
object is a promising direction for future improvements.
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