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ABSTRACT

Humans adjust their movements in advance to prepare for the forthcoming action, resulting in efficient and smooth transi-
tions. However, traditional computer animation approaches such as motion graphs simply concatenate a series of actions
without taking into account the following one. In this paper, we propose a new method to produce preparation behaviors
using reinforcement learning. As an offline process, the system learns the optimal way to approach a target and to prepare
for interaction. A scalar value called the level of preparation is introduced, which represents the degree of transition from
the initial action to the interacting action. To synthesize the movements of preparation, we propose a customized motion
blending scheme based on the level of preparation, which is followed by an optimization framework that adjusts the pos-
ture to keep the balance. During runtime, the trained controller drives the character to move to a target with the appropriate
level of preparation, resulting in a humanlike behavior. We create scenes in which the character has to move in a complex
environment and to interact with objects, such as crawling under and jumping over obstacles while walking. The method is
useful not only for computer animation but also for real-time applications such as computer games, in which the characters

need to accomplish a series of tasks in a given environment. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In an environment where humans have to quickly conduct
one motion after another, they adapt their behaviors and
prepare for the next motion while approaching the target.
This allows smooth transitions between actions, as well as
a quick activation of the next action, especially when the
person needs to interact with another person or the environ-
ment. For example, when a human notices a forthcoming
obstacle that he or she needs to crawl under, he or she usu-
ally slows down and lowers his or her body before reaching
the obstacle. It is not likely that one would run in full speed,
stop absurdly, and start crawling.

Traditional kinematic motion synthesis approaches such
as motion graphs [1,2] do not alter the movements what-
ever the next motion is. As a result, awkward behaviors,
such as running to an obstacle and suddenly stopping to
crawl, may appear. A naive solution would be to capture
different levels of preparation movements for all pairs of

Copyright © 2013 John Wiley & Sons, Ltd.

movements and to select the appropriate transition motion
according to the action sequence. However, the size of the
motion database increases in the square order with respect
to the number of actions.

In this paper, we introduce a scalar parameter called
the level of preparation, that adjusts the kinematics of the
movements and the speed of the motion during the transi-
tion. We design a customized motion blending scheme that
utilizes the value to generate a smooth preparation move-
ment. To ensure that the synthesized posture is physically
plausible, we introduce a postural optimization framework
to adjust the center of mass of the character. Given the
two actions and the corresponding level of preparation,
our method can synthesize a series of movements with
the style of preparation added, while following the original
motion context.

We further propose a unified controller based on rein-
forcement learning that controls a character to approach to
a target with the proper preparation behavior in real time.
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Figure 1. A motion sequence created by using our method. The character prepares for the crawling motion by lowering its pelvis and
crouches its torso while walking.

During the training stage, our system learns the optimal
motion to approach to the target and, more importantly, the
level of preparation that should be applied to create realis-
tic preparation behaviors. At runtime, the trained controller
anticipates how much the preparation behavior may affect
the movement and computes the time series of the level of
preparation. As a result, an optimal transition motion that
appears natural and humanlike can be synthesized.

We present experiments for various target actions, such
as punching, crawling, kicking, and jumping and show that
our system can produce realistic preparation behaviours
in real time. Figure 1 shows an example of preparation
behaviour synthesized by our system. The proposed algo-
rithm is computationally efficient, making it suitable for
applications such as interactive animation creation and
computer games.

The rest of the paper is organized as follows. We first
review previous work in Section 2. We then explain how
we prepare the captured motion in Section 4. Our algorithm
involves two major parts. Section 5 explains how to synthe-
size a preparation movement, and Section 6 explains how
to create a controller to control a character with preparation
behavior. We present experimental results in Section 7 and
conclude the paper in Section 8.

2. RELATED WORKS

Our idea to adapt motions toward the subsequent motion is
related to motion blending, motion-style translation, and
spacetime motion editing. We first compare our method
with such methodologies. Then, we evaluate algorithms
involving data-driven approaches, which perform subop-
timally in our problem. Finally, we discuss long hori-
zon techniques to intelligently control the characters by
predicting the future.

Motion blending is a traditional technique to synthe-
size new motions by interpolating existing motion data.
Motion warping [3] edits a motion by inserting an interme-
diate posture as an offset. Boulic et al. [4] blended several
motions simultaneously by changing the weights for dif-
ferent degrees of freedom. Ménardais et al. [S] proposed
a method to compute the appropriate weights for blend-
ing different motions based on intuitive input by the user.
Shum et al. [6] proposed to blend motions considering the
angular momentum profile. In these methods, the change of
weights has to be hand tuned during synthesis to create a
realistic motion. We need an automatic method to compute
the weights in order to control agents intelligently.

Motion style translation extracts movement style based
on two motions, which are a plain motion without any style
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and a style-added motion. Style can be extracted b using
Hidden Markov Models [7] or linear time-invariant models
[8], then injected to other plain motions in order to synthe-
size new style-added motions. A major problem is the need
of capturing styled motions. As movements with differ-
ent degrees of preparation appear visually dissimilar, these
approaches require capturing a large amount of motions.
Moreover, it is difficult to ask humans to precisely conduct
preparation movement with small variations on the degree
of preparation. On the contrary, our method computes the
styled motion and minimizes the amount of labor work.

Spacetime optimization [9] is a method for optimiz-
ing a motion when the objectives of the motion conver-
sion are known. It has been used to satisfy kinematic
constraints [10], to maintain kinematics similarity in the
original motion while retargeting on a different character
[11], and to convert manually designed motions to physi-
cally plausible motions [12,13]. The major problem is its
computational cost: each motion computation requires an
optimization of hundreds of parameters, which can hardly
be done in real time, especially when synthesizing motions
in a dynamic environment.

With data-driven motion synthesis, all motions includ-
ing those preparing for the target motions are captured
to compose data structures such as motion graphs [1,2]
or finite state machines [14,15]. One can also inter-
polate/blend motions to synthesize intermediate motions
[16—18]. However, such methods are data intensive, mak-
ing it unsuitable for applications such as 3D computer
games. In our approach, we represent the style of the
motion by a single posture in the target motion. As a result,
we can enhance the reusability of the individual motions
and reduce the total amount of data to be precaptured.

Approaches involving future prediction predict upcom-
ing situations and select the most appropriate motion. Sup-
port vector machine has been used to select the appropriate
motion and to avoid external disturbances [19]. Min-max
search can control a character to intelligently fight with
another character [20,21]. Reinforcement learning pro-
duces control systems for characters to fight [22], to avoid
obstacles [23], to control pedestrians [24], and to prepare
for user controls [25]. In these works, the optimal sequence
of captured motion clips are selected and concatenated.
Thus, they can only reproduce the captured sequence of
motions. In this research, we also apply reinforcement
learning to learn the optimal motions for approaching a
target while preparing for the upcoming event. The major
difference with previous approaches is that we include
an additional dimension in the action space, which is
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Figure 2. The overview of our method.

called the level of preparation. This allows us to adjust a
basic motion for synthesizing a large variety of preparation
behaviors.

3. METHODOLOGY OVERVIEW

In this paper, we synthesize the behavior to approach a
target object/character while preparing for the subsequent
action to interact with it. The outline of our approach is
shown in Figure 2. A hierarchical motion graph is used as
the motion database. An offline reinforcement learning is
used to train a controller that selects the optimal motion
and level of preparation for a specific action to perform.
On the basis of a given environment and the information
from the controller, we synthesize movements with the a
correct preparation behavior.
‘We have two contributions in this paper:

e We propose a customized motion blending and opti-
mization algorithm to synthesize preparation move-
ments from a given level of preparation. The level
of preparation is a scalar parameter used to describe
the movement style and movement trajectories when
preparing for a target action. The method can synthe-
size preparatory movements without capturing addi-
tional motions.

e To control a character to reach a target with the proper
preparation behavior, we propose a controller based
on reinforcement learning. Unlike traditional rein-
forcement learning approaches, our action space con-
sists of both motions and the level of preparation,
enabling it to synthesize a large variety of movements.

4. MOTION DATABASE

In this section, we explain how we organize the motion
database, as well as the extraction of the reference
postures in the motions, which contain the preparation
characteristics.
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Figure 3. A hierarchical motion graph that includes cyclic loco-
motion as core nodes and target motions to interact with the
environment.

4.1. Hierarchical Motion Graph

We construct a hierarchical motion graph structure
[14,15,26] that includes cyclic locomotion as core nodes,
such as standing and walking, and target motions to inter-
act with the environment, such as crawling, jumping,
and attacking. Edges in the motion graph represent valid
transitions between motions with no kinematics artifacts.
Figure 3 shows an example of the motion graph. Notice that
while the character can conducts a specific target motion
from the locomotion, the behavior for switching to the tar-
get motion can be unnatural. One example is walking in
full speed and then ducking suddenly. The overall move-
ment is kinematically continuous, but the sudden transition
between two movements may not appear realistic.

4.2. Reference Posture Extraction

Here, we explain how we extract a reference posture from
each target motion, which is used to produce a transition
motion.

Let £ be a locomotion, and 7 be a target motion. We
scan 7 to find a posture that represents the style of the
preparation behavior semiautomatically. Assuming 7 is
connected to £ in the motion graph, it can be divided
into three major parts: (i) a kinematically smooth transition
from the ending posture of £; (ii) a duration that involves
that target movement; and (iii) a transition to the starting
posture of £ or another locomotion. Figure 4 shows an
example with a jumping motion. In our system, the user
identifies the first frame of the target movement, 7;. Our
system then automatically scans from 7; toward the first
frame of 7, which is denoted as 7y, and monitors the
following conditions:

1. The center of mass of the body is within the sup-
porting area.

2. The contact foot pattern is the same as that of 7.

3. The sum of squares of the joint position difference
of the legs with respect to T is within a predefined
threshold.

Condition 1 ensures us to obtain a stable posture. Condi-
tions 2 and 3 ensure the reference posture does not sig-
nificantly affect the edge connectivity in the motion graph
when synthesizing the preparation movement in Section 5.
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Figure 4. Finding the reference posture in a typical target motion that consists of three parts.

The first frame found that satisfies all the conditions is
used as the reference posture of the target motion, 7p. If
we cannot find such a frame, 7 is used as the reference
posture.

5. MOVEMENT SYNTHESIS

In this section, we explain how we synthesize preparation
movements, which are movements with added styles such
that the following target action can be launched smoothly.
We observe that preparation movements are spatially oft-
setted and temporally scaled. To facilitate efficient style
control, we introduce a single scalar parameter « € R
called the level of preparation to control the aforemen-
tioned two characteristics of the preparation movement.

5.1. Movement Style Synthesis

Here, we explain our customized motion blending algo-
rithm to create the preparation movement style.

Given two movements, previous techniques of paramet-
ric motion blending use a linear blending weight to interpo-
late the movement of all the degrees of freedom. However,
we observe that when humans shift their motions from one
to another, the joint movements are not linearly warped
altogether. For example, when we prepare for actions such
as punching or crawling while walking, we usually adapt
the arms and torso quickly in the beginning stage of the
preparation movement, whereas the joints of the lower
body are adapted gradually. This is because of the dom-
inant role of the arms in the target motion, whereas the
gait movement does not affect the target motion heavily.
Such an observation leads us to separately blend the joint
movements during motion blending.

The blending weight of joint i is calculated as follows:

wi= 41— -a)Ci 1)

where « is the level of preparation given by a high-level
controller that will be explained in Section 6, and C; is a
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Figure 5. The blending curves for (left) the upper body with C;
set to 0.5 and (right) the lower body with C; set to 1.0.

constant individually set for each joint. The blended joint
angle of joint i is calculated as follows:

-
gi=(1—w)gF +wiq," 2

where qi‘: and qZ;’ represent the Euler joint angles in
the locomotion £ and reference posture 7, respectively.
When o = 0, the character is not prepared and the blend-
ing weights are zero: the posture is the same as those in
L. When o = 1, the character is fully prepared and the
weights become one: the resultant posture becomes the
reference posture 7.

The constant C; in Equation 1 represents the blending
behavior of the joint, because it affects the curvature of the
blending curve as shown in Figure 5. Although it is possi-
ble to design a suitable C; for each joint, we observe that
for our motion database, the human joints can be roughly
classified into the upper body and the lower body. In our
system, we suggest the user to set C; = 1.0 for the lower
body joints including the root and the legs (Figure 5 left),
and C; = 0.5 for the upper body joints (Figure 5 right).
For other combinations of locomotion and target actions,
the user can further edit C; for specific joints to obtain
satisfactory transitions.

An example of using a traditional blending method [3]
to prepare for a boxing motion is shown in Figure 6 (top).
Notice that the arms are gradually raised while increasing
the level of preparation because a single blending parame-
ter is used. The third and fourth postures appear unnatural,
as the character raises its arm horizontally while walking.
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Figure 6. A walking motion with the preparation behavior to boxing created by (top) traditional blending methods and (bottom) our
method.

On the other hand, with our approach, the arms quickly
switch to the boxing style when the level of preparation
increases, whereas the lower body is blended with a longer
transition period (Figure 6 bottom).

5.2. Movement Trajectory Adjustment

Here, we explain how we adjust the position of the root in
the blended motion, which affects the movement trajectory
of the character. Notice that the root orientation is scaled in
the same way as other joints with Equation 2.

The displacement of the root in the horizontal plane
(x—z plane) depends on the lower body movement.
Although the best solution is to calculate the horizontal
displacement based on the stride of the legs, in the interest
of computational costs, we approximate it by the blending
weight of the root:

prx =(—w)pF.x 3)

prz=(—-w)pF.z (4)

where w; is the blending weight of the root calculated by
Equation 1, p,L.x and p,['.z represent the horizontal root
displacement of the locomotion L.

The root displacement in the vertical direction (y direc-
tion) is calculated on the basis of the difference of the
height of the feet before and after the blending. The aver-
age difference of the left and right feet height is computed
and subtracted from the root height:

1
pry=pF.y— E(Ayf +AyF) (5)

wherep,‘:.y is the root height in £, and Ayf, Ayrﬁ are the
height of the left and right feet relative to the root caused
by blending the joint angles.

Finally, we use inverse kinematics to adjust the location
of the feet. We detect the foot contact information from
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Figure 7. An example of the COM and the center of the
supporting polygon during a double supporting stage.

the original locomotion data, which is kept the same in the
blended motion. When a foot is supposed to support the
body, its location is kept the same on the ground through-
out the supporting phase. In our implementation, we apply
inverse kinematics based on a particle system to solve for
the posture [27].

5.3. Balancing the Character

Here, we explain about our optimization scheme that
adjusts the posture of the character such that the center
of mass stays within the supporting polygon of the body.
We use a cost function that is composed of three different
terms to evaluate each posture, which are described in the
succeeding texts.

First, the balance term evaluates how dynamically sta-
ble the posture is. It is based on the distance between the
center of mass (COM) and the center of the supporting
polygon, as illustrated in Figure 7:

Cp = |IPcom —Pcosl| (6)

where peom 18 the 2D floor projection of the COM, and peos
is the 2D COS on the floor. The COM is calculated as the
weighted average of body part centroids, and the weights
are set according to the estimated mass as described in [28].

535



Natural preparation behavior synthesis

H. P H. Shum et al.

Figure 8. The synthesized preparation movement (left) without and (right) with posture optimization.

The postural style term is used to minimize the posi-
tional difference between the posture being optimized and
the posture computed by blending:

oat {[p? (1) ~pi0)||
C=y 1

; @)
i=0 total

where i;,;4; 18 the total number of body parts in a charac-

ter, and p;.’p (t) and p;(¢) are the 3D center of body part i

under the current time step ¢ in the optimized posture and

the original posture, respectively.

Finally, the smoothness term maintains the smooth-
ness of the movement in the time domain. It considers the
change of displacement vector for each body part across
the previous two frames:

itotal

(PP =p =) = (P~ D= -D))||

predefined threshold, which is set to 10 in our system. By
adjusting the maximum number of steps, we can adjust the
trade-oft between the postural quality and the runtime com-
putational cost. We do not apply postural optimization if ¢
is smaller than a threshold, which is set to 0.3 in our sys-
tem, because it is likely that the blended movement already
looks natural enough.

Because optimizing the lower body would easily lead to
unnatural behavior such as foot sliding, we only adjust the
joints of the upper body. Although this strategy limits the
degrees of freedom that we can manipulate, we find that
in most situations, adjusting the upper body significantly
improves the naturalness of the motion.

Figure 8 demonstrates the effect of the postural adjust-
ment scheme: the COM of the blended posture is slightly
offsetted from the supporting polygon, whereas the upper

i=0

itotal

P 0) =29 (=) +p (2|

®

ltotal

-3

i
i—0 total

where p?P ), p;.)p (t—1),and p?P (t —2) are the 3D center of
body part i in the optimized posture of the current frame,
last frame, and the second to last frame, respectively.

The overall cost of an optimized posture is evaluated as
the weighted sum of the three terms:

where wp, wy, and wy, are weights set as 2.0, 1.0, and 0.25,
respectively. A general principle to tune the weight is to
use the smallest possible wy, that can create smooth move-
ment, as the term may constraint the optimization process.
Besides, w,; should be larger than wy because the major
objective of the optimization is to adjust the COM.

We apply gradient descent [29] in the Euler joint angle
space to optimize for a posture that minimizes Equation 10
at runtime. The computation is terminated either if a local
optimal solution is found or if the number of steps reach a
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body including the spine and the neck leans forward in the
processed posture, as can be seen in real human motions to
ensure balance.

6. BEHAVIOR CONTROLLER

In this section, we explain how we apply reinforce-
ment learning to train a unified controller, which controls
the motion that the character should perform to move
toward a target, and the level of preparation that should
be applied.

We define the term preparation behavior as the high-
level behavior to approach a target and to prepare to
interact. The behavior involves multiple motions with
a change of level of preparation throughout the series
of movement.

Comp. Anim. Virtual Worlds 2014; 25:531-542 © 2013 John Wiley & Sons, Ltd.
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Figure 9. The separated goal and source of influence in our
state representation.

6.1. State Space and Action Space

Here, we first explain the states and actions designed in
our system.

‘We assume the character has a goal to reach, and there is
a source of influence that affects the preparation behavior.
The goal of movement and source of influence are usually
identical, such as approaching a ball and preparing to kick
it. The advantage of separating them into two variables
is that it allows more general definition and thus a wider
range of synthesis. For example, we can simulate a char-
acter walking in one direction, while preparing to avoid a
nearby obstacle that blocks the way.

We create a state space S in which every state is defined
as follows:

s ={a, Next(m),dg, 0g,d;, 0;},5s €S (11)

where « is the level of preparation in the current time
instance, m is the last action performed, Next(m) is the
set of available actions to be performed after m accord-
ing to the motion graph, dg and g are the distance and
relative orientation between the character and the goal,
respectively, and d; and 6; are those with respect to the
source of influence (Figure 9). Except from Next(m), the
parameters in the state are continuous numerical values.

We create an action space A, in which each action is
defined as follows:

a={m,a},a €A (12)

where m is the action to be performed, and « is the corre-
sponding level of preparation. Notice that unlike traditional
reinforcement learning [30], the action in our system is not
simply a movement. Instead, it involves the level of prepa-
ration, o, which is quantized during training and is used to
adjust the movement. Because using discrete values of « in
simulations could result in discrete behaviors, we apply a
Gaussian filter on « to smooth the value over time.

6.2. Reward Function

Here, we explain about the reward function, which evalu-
ates the actions in a given state.

Let s; be the current state and s;4+1 be the next state
after performing the chosen action a4 1. « in the action is
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a feedback to the state whenever an action is selected:
St41.00 <= dpy1.0 (13)

The reward function that evaluates a;41 consists of
three terms. The first term evaluates how much the charac-
ter faces the target. It is defined as the absolute orientation
between the target and the goal:

_ |5t+1~9g’

Jo=1 (14)

enorm

where s741.0¢ denotes the angle with respect to the goal
for the state s;41, and Gp0rm is a constant to normalize
angle values and is set as 180°. The second term evaluates
how much the character approaches the goal. It is defined
as the difference in distance toward the goal:

_ dnorm + St-dg _St+1~dg
Ja =
2 X dnorm

15)

where s;41.dg and s;.dg denote the distance to the goal
for the two states, and dyorm is a constant to normalize
distance values and is set as 1 m. The last term evaluates
how steadily the level of preparation changes. It is defined
as the absolute value of the difference in o:

Jo=1—sir1.0 —sp.0|C . (16)

where Cy is a constant, and s;4+1.0c and s;.« denote the
level of preparation of the two states. This term is used
to penalize sudden changes of preparation level. Cy is
a power operator and is used to magnify the difference
between small and large changes, which is set to 2.0 in
our system. During training, when a character reaches the
source of influence, o is forced to be 1.0. Therefore,
the trained system increases « gradually before reaching
the source of influence to minimize this term.
Finally, the reward function is defined as follows:

re =wq fo +wq fg + Wa fa a7

where wg, wg, and wy are constant weights, which
are empirically set to 0.1, 0.3, and 0.6 respectively. The
expected range of r; is [0.0, 1.0].

6.3. State-Action-Reward-State-
Action Learning

Here, we explain the concept of return and how we use
the SARSA (State-Action-Reward-State-Action) approach
to solve for it.

The return represents the long-term benefit of launching
a series of actions based on a control policy, which tells the
action to be performed in a given state:

n
R = Zytr, (18)
t=0
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where y is called a discount value that reduces the influ-
ence of future states because of their uncertainties, and
n is the number of steps until the character reaches the
terminal state.

To find an optimal policy that maximizes R in
Equation 18 at every state, we apply the SARSA learn-
ing which is a standard scheme in reinforcement learn-
ing. Here, we briefly explain the SARSA framework. The
reader is referred to [31,32] for further details.

Using SARSA, the system learns the state-action value
QO (s,a), which is the estimated return of launching an
action a at state s, for all possible state-action combina-
tions. A control policy is defined as the optimal choice
of action based on the set of the state action values for
all states. The objective is to learn the optimal policy by
converging Q (s, a) to the maximum R in Equation 18.

The training is divided into episodes. At each episode,
we randomly pick a state s € S, allow the character to
perform an action a € A based on the current policy,
and observe the reward r. The character keeps launching
actions until the terminal state, for which we define as
reaching the goal position. SARSA represents Equation 18
as follows:

O(st,ar) < Q(se,ar)+

(19)
A1+ vO@sea1.ar41) — Q(st.ar))

where A is the rate of learning, which is set to 0.7 in our
experiments, and y refers to the discount value as shown in
Equation 18, which is set to 0.3.

The control policy is updated whenever a state action
value is changed. Training is conducted by using a large
number of episodes until the policy becomes optimal (i.e.
the policy cannot be improved further). The algorithm
converges provided that all state-action pairs are visited
infinite number of times. In practice, to reduce the con-
vergence time, we keep track of the number of state action
values updated per episode. If the number drops below 2%
of total number of states, we terminate the training and
assume the policy to be optimal.

6.4. Maintaining Exploration

It is important to maintain exploration during the training
process in order to obtain a globally optimal policy. We
apply two strategies for this:

o Exploring starts: We attach a flag for each action in
all the states to indicate whether if the actions have
been selected or not. During training, higher priority
is given to the actions that have not been selected. This
ensures uniform exploration in the state action space
during the early stage of training.

e c-greedy policy: When selecting an action, there is
an € chance that the system randomly selects an
action, instead of picking the one with the best state-
action value. This ensures exploration throughout the
training. We set € to 0.1 in our system.
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7. EXPERIMENTS

In this section, we explain the experiments we conducted
to evaluate our system.

7.1. System Setup

All experiments are performed BY using a computer with
an Intel Core 17-2630QM CPU, 8GB of RAM, and a
GeForce GTX 560M graphic card.

We set up a motion database with 78 motions, includ-
ing walking, crawling, ducking, jumping, punching, and
kicking. The cyclic walking motions including stepping to
different directions are used as the core nodes in the hier-
archical motion graph, whereas the rest are used as target
motions. The created graph contains four core nodes.

We quantize the state and action spaces for the SARSA
learning. The sampling steps and number of samples for
each variable are shown in Table I, which resulted in 19 200
states. The training stage took around 2 h (around 20 mil-
lion training steps), whereas the runtime system performed
in real-time. Figure 10 shows the average return per state
during the training process.

7.2. Preparation Control

An interactive 3D application prototype is presented to
show the effectiveness of our system. Notice that our
preparation control system does not involve launching the
target motions. Although it is possible to define procedural
rules that control the character launching such motions, we
prefer an interactive system where the user can indicate the
timing of launching the motions for better flexibility.

In the first experiment, we prepare an interface for the
user to select a ball in a given environment, which is used
as both the goal location and the source of influence. The
system controls the character to approach the ball with the
appropriate preparation behavior. The user then indicates
when a kicking motion is launched to interact with the ball.
Notice that when the character approaches the ball, it low-
ers its COM and slows down to prepare for the kicking
motion (Figure 11 top).

The second experiment involves interacting with non-
player characters that are controlled by a procedural con-
troller to move toward and to attack the user-controlled
character. The user uses the keyboard to indicate the goal,
while using the mouse to launch target motions. We synthe-
sized preparation behavior for all characters in the scene,
and the closest opponent is considered as the source of

Table I. The sampling steps and number of samples in the
state space.

d,' 0,‘ dg 99 o
Steps 40 cm 90° 40 cm 45° 0.2
Number 5 4 5 8 5
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Figure 10. Average return per state against the number of training steps.
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Figure 11. Preparation behaviors created by our system for different target motions.
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influence. As a result, they raise their arms, slow down,
and prepare the punch whenever an opponent is nearby.
Notice that the left punch and the right punch motions have
the same reference posture 7, and thus having the same
preparation styles (Figure 11 middle).

In the third experiment, the character has to navigate
through a complex environment with different obstacles.
Again, the user controls the goal and launches the tar-
get motions. The source of influence is set as the closest
obstacle in the facing direction, and the preparation style
is based on the corresponding target motion to interact
with the obstacle. The system creates different levels of
preparation behaviors to perform crawling, ducking, and
jumping. Notice that with our system, the character main-
tains a preparation style when getting through two nearby
obstacles, generating a humanlike behavior (Figure 11
bottom).

8. CONCLUSION AND
DISCUSSIONS

In this paper, we proposed a method to synthesize prepara-
tion behavior for the next motion to be launched. By using
our method, we can generate realistic behaviors to prepare
for the next action as humans do. Our system produces con-
vincing results in real-time, making it suitable for real-time
applications such as games.

We observe that in console games nowadays, because of
the lack of preparation movement, character movement is
usually unrealistic. Because the character does not consider
the next motion, it is common that a character performs
a target motion, runs in full speed, and performs a target
motion again. In our system, the character maintains the
preparation style if there are remaining targets nearby.

A possible solution for preparation behavior synthesis is
the data-driven approach [16,17]. For every pair of locomo-
tion and subsequent action, one can capture different levels
of preparatory motions. However, this approach is not pre-
ferred because of the large amount of motion that has to be
captured. Also, it is difficult for a human to exhibit prepara-
tory behavior properly with small variations of level of
preparation, because the movements are usually performed
subconsciously in daily life.

The major challenge of creating preparation behavior is
that it affects the movement of the locomotion. The char-
acter needs to approach the target quickly, while adjusting
movement trajectories to prepare for the target motion in
advance. We defined the reward function and return and
conducted reinforcement learning to solve the multimodal
problem as a whole.

A feature of our design is that the state space represen-
tation in Equation 11 contains the locomotion only without
the target motion. This design allows us to reuse a trained
system for different target motions, as long as the blending
curve of the lower body remains unchanged. If the blending
curves for two target motions are different, the lower body,
hence the movement trajectory, in the synthesized motion
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will be different. As a result, a controller has to be trained
for each motion.

At the current stage, our system cannot synthesize the
preparation behavior when there are multiple potential tar-
get motions, unless they have the same reference posture
and blending curve. As a future direction, we plan to con-
trol the character intelligently in a dynamic environment
where arbitrary events can happen in a probabilistic man-
ner. We could apply Bayesian models to let the characters
predict what kind of behaviors could benefit them the most
under different environments.
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