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Smart environments and monitoring systems are popular research areas nowadays due to its potential

to enhance the quality of life. Applications such as human behavior analysis and workspace ergonomics

monitoring are automated, thereby improving well-being of individuals with minimal running cost. The

central problem of smart environments is to understand what the user is doing in order to provide the

appropriate support. While it is difficult to obtain information of full body movement in the past, depth

camera based motion sensing technology such as Kinect has made it possible to obtain 3D posture with-

out complex setup. This has fused a large number of research projects to apply Kinect in smart environ-

ments. The common bottleneck of these researches is the high amount of errors in the detected joint

positions, which would result in inaccurate analysis and false alarms. In this paper, we propose a frame-

work that accurately classifies the nature of the 3D postures obtained by Kinect using a max-margin clas-

sifier. Different from previous work in the area, we integrate the information about the reliability of the

tracked joints in order to enhance the accuracy and robustness of our framework. As a result, apart from

general classifying activity of different movement context, our proposed method can classify the subtle

differences between correctly performed and incorrectly performed movement in the same context. We

demonstrate how our framework can be applied to evaluate the user’s posture and identify the postures

that may result in musculoskeletal disorders. Such a system can be used in workplace such as offices and

factories to reduce risk of injury. Experimental results have shown that our method consistently outper-

forms existing algorithms in both activity classification and posture healthiness classification. Due to the

low cost and the easy deployment process of depth camera based motion sensors, our framework can be

applied widely in home and office to facilitate smart environments.

© 2016 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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. Introduction

One of the main purposes of smart environments and monitor-

ng systems is to enhance the quality of life. On one hand, by un-

erstanding the needs and intention of the user, smart systems can

rovide the appropriate support. On the other hand, by monitoring

he movement behavior of the user, these systems can alert the

ser in dangerous situations, such as performing movement that

ould result in injury. In particular, according to the Health and

afety Executive Annual Statistics Report for Great Britain [1], more

han 1.1 million cases of work-related ill health were reported be-

ween 2011 and 2012, in which more than 39% belongs to muscu-
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oskeletal disorders. A smart environment with an automatic pos-

ure monitoring system is a potential solution to save the high cost

f workplace injury and ill health.

One major challenge of a smart environment is to understand

hat the user is doing, in order to decide how to react properly

o the user’s behavior. Motion capturing is a traditional method to

btain the user’s posture [2]. However, most of the existing tech-

iques such as the optical motion capturing system require care-

ul setup and calibration. These systems usually require the user

o wear special devices on the body, making it difficult to be de-

loyed and used in daily life environments. Alternatively, identify-

ng human posture with traditional 2D video cameras can be per-

ormed using computer vision techniques [3]. However, because of

he lack of details in the source video, as well as the 3D informa-

ion of joints, only bigger limbs such as the body trunk and the
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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legs can be identified and evaluated. This greatly reduces the ac-

curacy especially for evaluating subtle posture differences.

Recently, motion sensor with depth camera such as the Mi-

crosoft Kinect has shown its effectiveness in tracking 3D human

posture in real-time [4]. Its advantage is that it can track 3D hu-

man posture without requiring the user to wear any special equip-

ment. The low cost of the hardware camera, as well as the easy

setup of the tracking system, also make it preferable to be used

in daily indoor environment such as office and home. By pro-

cessing the captured depth image, it becomes possible to iden-

tify depth-based edge extraction and ridge data, which are used

to track human body parts [5]. However, unsupervised approaches

require careful algorithm design and may not be easily general-

ized. To solve the problem, anatomical landmarks trained by sam-

ple data using random forests are used. The body skeleton is rec-

ognized by analyzing the depth silhouettes of the user and locat-

ing the anatomical landmarks [6]. However, run-time detection of

such landmarks is not always accurate, which results in degrading

the activity recognition accuracy. Similarly, utilizing the skeleton

recognized by Kinect for action recognition suffer from the same

problem, as the recognized joint can be different from the trained

data due to occlusions, which results in noisy skeletons [7]. Previ-

ous motion analysis algorithms that assume a reliable input stream

do not work well with Kinect, as the tracked joints returned by the

depth camera could be wrong [8]. The main focus of this work is to

propose new methods to account for the accuracy of the skeleton,

such that activity recognition can be more accurate.

We propose a new posture classification framework for Kinect,

which has an improved accuracy over previous algorithms. To

cope with the noisy input posture, we design a set of reliability

measurement [9] to evaluate how reliable the tracked joints are.

The more reliable joints then contribute more in a max-margin

classification system, which is used to classify postures of different

context. Our framework allows a smart environment to understand

what the user is doing from the noisy data obtained by Kinect.

Due to the improved accuracy, the system can even classify the

subtle difference between healthily and unhealthily performed

postures, such as operating equipment with postures that may lead

to injury. This facilitates automatic posture monitoring for work-

place, which can alert the user whenever an unhealthy posture

is performed. Since our method is robust, affordable and easily

deployable, it is a preferable solution for smart environments and

monitoring systems.

To facilitate further research in the field, the posture healthi-

ness database created in this research will be made available to

the public. Up to now, such a kind of database is not openly avail-

able. The comprehensive database consists of more than 8000 3D

postures for different behaviors such as working at an office desk

in sitting and standing postures, together with the source 3D depth

images and color images obtained from the depth camera. It is also

carefully annotated with information of the behavior, such as the

nature of the movement and the potential health risks.

1.1. Contributions

There are three major contributions in this paper:

• We propose a new framework to monitor and classify user pos-

tures. It evaluates the reliability of the observed joints from

Kinect, and applying such reliability as weights in a customized

max-margin classifier to robustly classify noisy posture data.

Our system can accurately distinguish the subtle differences be-

tween healthy and unhealthy postures.
• We propose a set of new reliability measurement terms on top

of those presented in [9] to enhance the accuracy of joint re-

liability estimation. Apart from the traditional kinematic-based

reliability measurements, we make use of the color and depth
Please cite this article as: E.S.L. Ho et al., Improving posture classificati
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images from Kinect to identify joint that are wrongly tracked or

corrupted by noise.
• We implement the first open access motion database targeting

at posture healthiness. The database includes correctly and in-

correctly performed postures for different work purposes, an-

notated posture information, as well as depth and color images

obtained from the depth camera.

.2. Outline

In the rest of this paper, we will first review the related work

n Section 2. An overview of our proposed method will be given in

ection 3. Next, we explain how to evaluate the reliability of each

racked joint by our proposed reliability measurements (Section 4).

max-margin classification framework which takes into account

he reliability of each joint will be introduced in Section 5. We

hen explain how our motion database is constructed (Section 6)

nd present experimental results in Section 7. Finally, we conclude

his paper in Section 8.

. Related work

In this section, we review how human motion is obtained us-

ng traditional methods, and point out why these methods can-

ot be applied efficiently for smart environments. We also review

epth camera based systems for motion tracking, and describe

heir weakness on noise control. We finally review works that eval-

ate posture based on the motion capture input, focusing the dis-

ussion on how they perform with depth cameras.

.1. Wearable activity recognition

In computer animations and games, 3D human postures are

sually captured using wearable motion capture systems. Lara and

abrador [10] provide a comprehensive survey on using wearable

ensors for activity recognition. In a smart environment, wearable

ensors can provide information to log the emotional status of the

ser [11]. Using different streams from smartphone such as audio

nd accelerometer can identify different activities for the purpose

f life logging [12].

Different wearable systems come with different strengths and

eaknesses. The optical motion capturer gather the user’s 3D pos-

ure using a set of reflective markers attached on the user’s body

2]. However, successful captures require the markers to be vis-

ble by the cameras, which is difficult when the user is partly

ccluded by surrounding objects. The accelerometer-based [13,14]

nd the magnetic-based [15] motion capturers overcome this con-

traint. By applying linear discriminant analysis (LDA) on a training

ction database, one can recognize the contextual meaning of the

aptured action using signals from accelerometers and gyroscopes

16]. By introducing audio signals captured from microphones on

op of accelerometers, the action recognition accuracy can be im-

roved [17].

Nevertheless, in these systems, the user has to wear the sen-

ors and the system requires careful calibration before actual us-

ge, which is not suitable for autonomous motion monitoring. On

he other hand, video-based activity recognition serves as an alter-

ative that utilizes an easier setup process, which will be reviewed

n next section.

.2. Video activity recognition

Traditional video activity recognition is performed by analyzing

D color images captured by video cameras and identifying mov-

ng objects [18]. By tracking the non-deformable parts of a human

ody, 2D human postures in the video can be recognized [19]. It
on accuracy for depth sensor-based human activity monitoring in

, http://dx.doi.org/10.1016/j.cviu.2015.12.011
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s then possible to gather high level information such as human–

bject interaction [20] and scene geometry [21]. The problem of

hese color image based algorithms is the relatively low precision

or smaller body parts and the lack of 3D support, making them

nsuitable for analyzing the fine details of complex human move-

ent.

Depth camera based motion tracking system such as the Mi-

rosoft Kinect has become popular in recent years. It obtains a

epth image using structured infrared light. Human posture can

hen be tracked by training a decision tree using a depth image

atabase to identify different human joints [22,23]. Another class

f tracking technique is to fit a skeleton structure into the de-

ected human point cloud [24,25]. Using depth camera, tracking

an be performed without requiring the user to wear any equip-

ent, which is by definition a natural user interface to capture hu-

an motion in real-time [26].

Apart from tracking body postures, a popular research direc-

ion is to apply depth cameras to identify high level activities

sing different features such as 3D point cloud with relative lo-

ation descriptors [27] and depth silhouettes [28,29]. To enhance

ecognition accuracy, skin joint features that use body skin color

o identify human body parts are suggested [30]. Shape features

ith movement information that are represented and silhouette

istory information with silhouettes motion variation data are also

roposed [31]. Hybrid features that combines different features in-

luding tracked joint movement and surface shape take advantage

n the diversity of features to improve the system performance

32]. Utilizing translation and scaling invariant features can en-

ances the robustness of the activity recognition system [33]. To

etter handle occlusions between joints, rigid body parts features

hat consist of binary edge extraction and ridge data are used [5].

Utilizing Kinect in smart environments is a popular research

opic. It can be applied in smart home to monitor older people

nd detect when they are likely to fall [34], to log daily activities

35–37], and to monitor residents [29]. It is also applied in smart

ffice to evaluate the seating postures [38,39]. In the area of er-

onomic, Kinect can be used for evaluating if lifting and carrying

otion is detrimental to the health of workers [40]. Kinect is also

pplied in rehabilitation monitoring [41] and physiotherapy [42]. It

s found to be suitable to assess rehabilitation performance if the

rror bounds are set [41]. While these researches attempt to uti-

ize Kinect in smart environments, they do not formally handle the

oisy input problem. It is pointed out that using Kinect for surveil-

ance or monitoring applications would usually require mounting

he device in high positions, which further degrades the tracking

erformance [43]. In this work, we propose a framework to deal

ith the noisy data for more accurate motion classification.

.3. Posture evaluation

Posture evaluation is the process to understand the nature of

given posture. While geometric rules can be defined to evalu-
Fig. 1. The overview of our proposed frame

Please cite this article as: E.S.L. Ho et al., Improving posture classificati

smart environments, Computer Vision and Image Understanding (2016)
te a posture [44] and thereby to classify it [45], the rules have

o be manually crafted in order to obtain the best system perfor-

ance. The domain of the rules also need to be selected based on

he nature of the postures to represent the posture context effi-

iently [46], making it inefficient to be extended to a wide variety

f movement.

Data-driven approaches overcome the difficulty by evaluat-

ng the postures with prior knowledge obtained from a posture

atabase [47]. Traditional data-driven algorithms usually assume

consistent [48] or reliable input signal [8] in order to evaluate

he posture with respect to the database. However, the movement

racked by a depth camera is highly noisy due to occlusion and

is-tracking. In order to apply data-driven algorithms on depth

amera based systems, it is important to assess the reliability of

he input signal to identify the noise [9]. In this work, we adapt

he kinematic-based reliability measurements from [9] and pro-

ose new terms utilizing the color and depth images, which en-

ances the overall system accuracy.

A naive method to classify an observed posture using data-

riven approaches is to find a best match in the posture database

4]. However, the result will easily be affected by outliers in the

atabase. A better approach is to search for the K nearest neigh-

ors and do the classification based on the set of retrieved pos-

ures [49]. To avoid the high run-time cost for searching neighbors,

aussian Process can be used to produce an abstract representa-

ion of the posture space [50].

In this work, we propose a new data-driven framework to clas-

ify Kinect postures. It includes a max-margin classification system

hat takes into account the reliability of the input data. Different

rom [9], which applies reliability measurements with a lazy learn-

ng algorithm to reconstruct the observed posture, this work uti-

izes the reliability measurements to enhance posture classification

ccuracy from noisy input data.

. Overview

Fig. 1 shows the overview of our proposed system. Since the

osture from Kinect is noisy and inaccurate, we introduce a set of

eliability measurement to evaluate the reliability of the captured

oints (Section 4). The reliability measurement is computed ac-

ording to the consistency of the (1) joint displacement, (2) bone-

ength, image pixels around the joint in (3) RGB image, and (4)

epth image over consecutive frames. Such reliability estimations

re then integrated with the captured posture data into a max-

argin classifier for posture classification (Section 5). Our pro-

osed classification framework will learn the weighting for each

eliability term to maximize the discriminative power of the clas-

ifier. During run-time, we monitor and analyze the user’s pos-

ure in real time by computing the reliability measurements from

he captured pose and classify it using our proposed max-margin

lassification framework. Depending on the application, our sys-

em can be used to classify different types of movement, or even
work for robust posture classification.

on accuracy for depth sensor-based human activity monitoring in

, http://dx.doi.org/10.1016/j.cviu.2015.12.011
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the healthiness status of a posture. Finally, we collect annotated

human motion data using Kinect and create a motion database

(Section 6) for training the classifier.

4. Reliability measurement

While Kinect can capture 3D skeletal information in real-time,

the tracked human motion data are too noisy to be used in seri-

ous applications such as health monitoring systems. Therefore, it is

necessary to identify the unreliable joints in order to improve the

classification accuracy.

The reliability of the source data can be measured by a set of

heuristics. On top of the existing behavior and kinematics reliabil-

ity terms that evaluate the movement behavior and the segment

length of the skeleton, respectively [9], we design two new terms

that utilize the color and depth image to evaluate extra features.

4.1. Behavior reliability term

The behavior reliability term evaluates abnormal behavior of a

tracked part, which is defined based on the amount of high fre-

quency vibration of the detected joint position.

Kinect detects the user posture with the acquired depth image.

The position of a joint is determined based on the depth pixels

that are classified to it using a decision tree based algorithm [22].

As a result, when some joints are occluded, or when they are in-

correctly recognized, the detected positions of the parts become

unstable due to the lack of expected features. By evaluating the

high frequency vibration of the tracked joints, we can model their

respective reliabilities.

Assuming pi(f), pi( f + 1) and pi( f + 2) to be the 3D position of

a tracked joint i in three successive frames, we can calculate the

displacement vectors of the joint in frame f and f + 1 as:

di( f ) = pi( f + 1) − pi( f ) (1)

di( f + 1) = pi( f + 2) − pi( f + 1) (2)

Since human movements are smooth in nature, the displacement

vectors of a joint over consecutive frames should be similar and

consistent. The inconsistency between the displacement vectors of

a joint will result in high frequency of vibration and it can be eval-

uated by the acute angle calculated by the dot product between

the two displacement vectors in consecutive frames:

θi( j)=

⎧⎪⎪⎨
⎪⎪⎩

arccos

(
di( f ) · di( f + 1)

||di( f )||||di( f + 1)||
)

if ||di( f )||>dmin and

||di( f + 1)|| > dmin

0 otherwise

(3)

where dmin is the minimum length of an acceptable displacement

vector, and is set to 3 cm in our experiment. It is used to avoid get-

ting a large angle change when the joint position is almost steady.

The behavior term is defined as:

Rbi( f ) = 1 −
max

(
min

(∑ fb
f=0

θi( f )

fb
, θroof

)
− θfloor, 0

)

θroof − θfloor

(4)

where Rbi(f) ∈ [0.0, 1.0], fb is the total number of frames we con-

sider to detect vibration, θfloor is an acceptable amount of rotation

for each frame, θroof is the amount of rotation we consider to be

the most unacceptable. Empirically, we found that setting fb = 3,

θfloor = 90◦, and θroof = 135◦ gives a good result.

Notice that Kinect works best when the user is 6 feet away

from the camera and is facing directly to it. In many workspace en-

vironments, it is impossible to have such a setup due to the limita-

tion of space. We found that the postures obtained by Kinect when
Please cite this article as: E.S.L. Ho et al., Improving posture classificati

smart environments, Computer Vision and Image Understanding (2016)
he camera is too far/close, or shooting the user in an angle, usu-

lly result in a higher level of noise. The behavior term described

n this section can detect such noise to enhance the usability of

he system.

.2. Kinematics reliability term

The kinematics term evaluates the reliability of joints based on

heir kinematics correctness, which is defined with the consistency

f segment length.

Kinect recognizes joints individually when determining their

osition, and does not explicitly maintain the kinematic correct-

ess of the resultant postures. As suggested in [51], the length

f each body limb needs to be constant over time during a real

uman movement. Therefore, when the position of a joint is in-

orrectly determined, the corresponding segment length will be

hanged. Here, we evaluate the reliability of a joint based on the

orresponding segment length difference with respect to the refer-

nce value.

A pose initialize process is usually required to obtain reference

alues of body dimensions [5,52]. In [9], the reference segment

ength is obtained by requesting the user to perform predefined

ostures, such as a T-pose, in order to accurately recognize all

oints. However, for anonymous tracking, it is impossible to ask in-

ividual user for initializing the system. Also, because of the space

imitation, the depth camera may be setup to look at the user in

n angle, making it difficult to accurately obtain the positions of all

oints. Here, inspired by Jalal et al. [52] in which torso area is ini-

ialized using left and right extremes values, we propose to utilize

he distance between the left and right shoulder joints detected by

inect to estimate the body segment length, as the shoulders can

e tracked accurately in a wide range of shooting angles. Based on

he shoulder width, we evaluate the length of other segments with

he segment length proportion described in [53].

In each pose, a joint can connect to multiple segments depend-

ng on the skeleton structure, such as the hips connecting to three

egments. Assuming the joint i is connected to spart_total body seg-

ents, for each connecting segment s, the segment difference ratio

t frame f is calculated as:

s( f ) = min

(
abs(ls( f ) − ls_ref)

ls_ref

, 1

)
(5)

here ls_ref is the reference segment length and ls(f) is the current

egment length for segment s at frame f.

The kinematics reliability value of a joint is defined as the mean

egment different ratio for all connecting segments:

ki( f ) = 1 −
∑spart_total

s=1
ds( f )

spart_total

(6)

here Rki(f) ∈ [0.0, 1.0]. The whole kinematic terms calculation

rocess is summarized in Algorithm 1.

.3. Color image reliability term

The color image term evaluates the reliability of joints based on

heir closeness of gradient features between two adjacent frames

n the RGB color video.

Since human movements are continues in nature, the appear-

nce of the joints in adjacent frames as shown in the color

ideo should be visually similar. Dissimilar joint appearance across

rames usually indicates mis-tracked joint in at least one of the

rames. In our system, the color image reliability of a joint is com-

uted by extracting a square patch of pixels centered at the joint

rom the color image, and evaluate the difference in color across

rames. We convert the RGB pixel into gradient representation to
on accuracy for depth sensor-based human activity monitoring in

, http://dx.doi.org/10.1016/j.cviu.2015.12.011
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Algorithm 1 Computing the kinematics reliability term.

1: Given a data set D which contains skeletal data, the kinematics

reliability values associated with each joint are extracted from

each frame (Section 4.2)

2: for each body segment do

3: estimate reference body segment length based on the shoul-

der width

4: end for

5: for each joint do

6: for each connecting body segment do

7: compute the segment difference ratio (Eq. (5))

8: end for

9: compute the kinematics reliability value as the mean seg-

ment difference ratio of all connecting segments (Eq. (5))

10: end for
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solate color changes from lighting condition differences. We also

uantize the computed gradient into eight bins to avoid the effect

f small color difference error. Example frames are shown in Fig. 2,

n which the left elbow and left wrist are not correctly tracked in

he middle column.

For each tracked joint i at frame f, the color patch is repre-

ented by a vector

patchi, f = [g1, g2, ..., gpatch_size] (7)

hich concatenate the binned gradient g1 to gpatch_size computed

rom each pixel within the patch. The color image reliability term

f joint i is calculated as the cosine distance between two corre-

ponding patches extracted from two consecutive frames:

ci( f ) =
(

1 − cpatchi, f · cpatchi, f+1

‖cpatchi, f ‖‖cpatchi, f+1‖
)

(8)

here Rci(f) ∈ [0.0, 1.0], cpatchi, f and cpatchi, f+1 are the patches

xtracted at joint i in frame f and f + 1, respectively.

The size of the color patch is set according to the size of the

keleton in pixel with respect to the screen resolution. Under a

ypical setup, that is, an adult user facing the Kinect and standing

m away from it, a patch size of 27 by 27 pixel works very well

n the resolution of 640 by 480. Such a size can be dynamically

djusted based on the camera angle and position.
ig. 2. Examples of image patches (shown in red squares) extracted around the body joi

uch as the left elbow (in the middle column) result in large difference in the patches

eferred to the web version of this article.)
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smart environments, Computer Vision and Image Understanding (2016)
.4. Depth image reliability term

The depth image term evaluates the reliability of joints based

n their closeness of gradient features between two adjacent

rames in the depth image sequence.

The idea of the term is to evaluate if there is any sudden change

f depth at the detected joint position across two frames, which

sually indicates that the joint is mis-tracked. Similar to the color

mage reliability term, we extract a patch of depth image dpatch

entered at a given joint and compare such a patch in consecu-

ive frames. Again, the gradients are quantized into eight bins and

patch is composed by concatenating the binned gradient values

f the pixels within the patch. The depth image reliability term of

oint i is then computed by:

di( f ) =
(

1 − dpatchi, f · dpatchi, f+1

‖dpatchi, f ‖‖dpatchi, f+1‖
)

(9)

here Rdi(f) ∈ [0.0, 1.0], dpatchi, f and dpatchi, f+1 are the patches

xtracted at joint i in frame f and f + 1, respectively.

The advantage of introducing the color and depth image terms

n top of the behavior and kinematics terms, is enabling the sys-

em to evaluate the reliability of a joint from the raw data point

f view. The major weakness of the behavior and kinematics terms

s that they cannot distinguish a correct but unstable joint from

mis-tracked joint. Unstable joints contains some usable informa-

ion, but mis-tracked ones as shown in Fig. 2 should not be used.

he proposed color and depth image terms fill the gap by ana-

yzing low level image-based information, in which we evaluate if

joint resembles similar features across frames. Notice that since

is-tracked joints are usually highly unstable in Kinect, the im-

ge terms only compare two consecutive frames. If the mis-tracked

oints would remain at a fix position in other tracking systems, a

onger time window should be considered.

. Max-margin classification with reliability measurement

In this section, we explain our proposed posture classification

lgorithm that considers both the skeletal features (e.g., joint posi-

ions, relative joint positions) and the respective reliability terms.

ince the reliability of the joint is taken into account, our classifier

s more robust than existing methods especially for noisy data.
nts for computing the color and depth images reliability terms. Mis-tracked joints

. (For interpretation of the references to color in this figure legend, the reader is

on accuracy for depth sensor-based human activity monitoring in

, http://dx.doi.org/10.1016/j.cviu.2015.12.011
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We adapt the max-margin learning framework [54] as our clas-

sifier as it can directly classify data in which some of the features

are unavailable in each data instance. Traditional max-margin sys-

tems formulate the learning process as maximizing the worst-case

instance margin in the training data. In particular, the calculation

of the margin of each instance is based on the availability of the

features, meaning that absent features do not contribute to the

classification process. This process allows instances with incom-

plete features to be compared and classified directly.

The problem of applying traditional max-margin framework

to our problem is that joint positions detected by Kinect may

be available but incorrect due to sensor error. Furthermore, the

noise level of different joints is different according to the type

of the motion performed, making it difficult to applying pre-

defined threshold to filter joint with low reliability. We therefore

formulate the instance margin calculation as a feature weight-

ing process according to the corresponding reliability measure-

ment. This enables the system to determine the importance of

a joint based on its reliability in order to achieve high system

robustness.

Here, we first review the max-margin classification framework

for data with absent features [54] in Section 5.1. We then point

out how we adapt it to classify data with different reliability in

Section 5.2. Finally, due to the reliability measurements we intro-

duced, our max-margin framework has more system parameters

than existing ones. We explain how we design a solver that solves

the system effectively in Section 5.3.

5.1. Max-margin classification with absent features

Classifying data with absent features with a max-margin frame-

work [54] is based on a classical support vector machine (SVM)

approach [55]:

min
w,ξ ,b

1

2
‖w‖2 + C

n∑
i=1

ξi

subject to yi

(
wxi + b

)
≥ 1 − ξi, i = 1 . . . n

(10)

where xi and yi are the features and label of instance i, C is the

tradeoff parameter between model complexity and accuracy, b is a

threshold and ξ are slack variables for handling training instances

that are linearly non-separable. In particular, w is learned by max-

imizing the margin ρ ≡ min iyi(wxi + b)/‖w‖.

When handling instances with missing features, however, the

whole feature vector xi will contribute to the margin calculation in

the classifier training process without ignoring the absent features

(usually the missing features will be replaced by predicted values

or simply zeros). As a result, the performance of the learned classi-

fier will be degraded. In order to classify data with absent features,

Chechik et al. [54] treat each instance in its own subspace of the

full feature space by calculating the instance margin ρ(i):

ρ(i) = yiw
(i)xi

||w(i)|| (11)

where w(i) contains a subset of entries in w that are correspond to

the valid (i.e., non-absent) features in xi. The geometric margin of

the classifier is represented by the minimum instance margin:

max
w

(
min

i

yiw
(i)xi

||w(i)||
)

(12)

The readers are referred to [54] for further details.

An important design in Eq. (12) is that the score (i.e., yiw
(i)xi)

is normalized according to the availability of features (i.e., ‖w(i)‖)

of the instance, allowing the system to classify instances with in-

complete features. The equation implicitly increases the weight of

the present features, and absent features would not contribute to

the margin calculation.
Please cite this article as: E.S.L. Ho et al., Improving posture classificati
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.2. Max-margin classification with reliability measurement

Here, we exploit the feature weighting design of traditional

ax-margin classifier such that it can be adapted to features of

ifferent reliability. We formulate our classifier learning problem

s maximizing the discriminative power by weighting the features

ccording to the reliability measurements.

In our framework, the vector of weight ti has the same dimen-

ion with the feature vector in an instance i (i.e., a posture), ti, j is

he weight of a skeletal feature j and it is calculated as a weighted

um of the corresponding reliability measurements:

i, j = αb,i, jRbi, j + αk,i, jRki, j + αc,i, jRci, j + αd,i, jRdi, j (13)

here Rbi, j, Rki, j, Rci, j, Rdi, j are the reliability values of feature j

n instance i, and α is vector contains the coefficients of the reli-

bility terms. Using a single value to represent the weight allows

n efficient coupling of weights and features. Here, we learn a set

f α for each sample when training a classifier.

The instance margin is then calculated as:

iw
ti

‖ti‖xi (14)

n which the weight vector ti is normalized by ‖ti‖. As a result,

eatures with higher reliability values contribute more in the in-

tance margin calculation.

Finally, the classifier can be learned by maximizing the discrim-

native power of the max-margin classifier to separate two differ-

nt classes:

max
w,α,b

1

‖w‖
subject to yi

(
w

ti

‖ti‖xi + b
)

≥ 1,

ti, j = αb,i, jRbi, j + αk,i, jRki, j + αc,i, jRci, j + αd,i, jRdi, j,

0 ≤ α{b,k,c,d},i, j ≤ 1, α{b,k,c,d},i, j ∈ α,

0 ≤ ti, j ≤ 1.

(15)

here ti contains the reliability measurements of instance i. The

bjective function in Eq. (15) is equivalent to minimizing ‖w‖2

ithout the slack variables.

With the solved values of the support vector w and the coeffi-

ient vector α, the label of an instance can be predicted by com-

uting the sign of the decision score using:

ign

(
w

ti

‖ti‖xi + b

)
(16)

The classifier explained above is a binary classifier. For multi-

lass classification, the framework learns multiple binary classifiers

nd select the predicted label with highest score as the final re-

ults.

.3. Max-margin solver

Given the max-margin classification with reliability measure-

ent formulated in Section 5.2, both w and α need to be opti-

ized. However, finding the global optimum is a hard problem

ince the objective function is non-convex because of the depen-

ency of the α values on w. Here, we propose a block based opti-

ization algorithm that iteratively optimize w and α [56] to max-

mize the discriminative power. To further improve the classifica-

ion performance, we formulate the final representation of each in-

tance as latent variables which will be computed when learning

max-margin classifier using Latent SVM [56]. The details of our

roposed method will be given below.
on accuracy for depth sensor-based human activity monitoring in
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.3.1. Model inference

Given w, our method computes a latent representation of each

nstance by finding α to maximize the decision score. This is done

y optimizing the entries in α for each reliability measurement ac-

ording to a given classifier w = [w1, . . . , wq]T :

S(w, Ri, xi) = max
α

w
ti

‖ti‖xi

subject to αb,i, j + αk,i, j + αc,i, j + αd,i, j = 1,

0 ≤ α{b,k,c,d},i, j ≤ 1, α{b,k,c,d},i, j ∈ α,

i = 1 . . . n.

(17)

here Ri contains the reliability values (i.e., Rbi, Rki, Rci and Rdi) of

nstance i, ti is calculated as in Eq. (13), and xi contains the features

f instance i. We constrain the sum of the entries in α as 1 such

hat ti is the normalized weighted sum of the associated reliability

easurements for each feature.

.3.2. Learning

Having presented the calculation of latent representation of

ach instance, we now explain how w is obtained by our proposed

ax-margin classification framework. Similar to conventional SVM

ormulation, w is solved by:

min
w,b

1

2
‖w‖2 + C

n∑
i=1

ξi

subject to yi(S(w, Ri, xi) + b) ≥ 1 − ξi,

i = 1 . . . n, 0 ≤ ξi.

(18)

here ξ i is slack variable introduced for non-separable training in-

tances, S(w, Ri, xi) (Eq. (17)) returns the decision score of instance

by multiplying the latent representation with the given w, and C

s the trade-off parameter, which is set as 1 in our experiments.

By solving Eqs. (18) and (17) alternatively, the classifier and rep-

esentation (i.e., the latent variable) of each instance will be up-

ated and the classification performance will be improved. Since

is a dependent of the latent representation, poor choice of

nitial conditions of α in the latent representation results in lo-

al minima. To tackle this problem, the classifier learning process

ill be performed several times (maxTrainNum = 20 in our exper-

ments) by randomly initializing α to solve Eq. (18). The classifier

hat produces the minimum value will be chosen as in previous

ork [56]. The whole classifier learning process is summarized in

lgorithm 2.

lgorithm 2 Reliability-value based max-margin classification.

1: Given the training set X , the reliability values associated with

each joint are extracted from each instance (Section 4)

2: for i = 1 to maxTrainNum do

3: randomly initialize α
4: repeat

5: compute latent variables to represent each instance (Eq.

(17))

6: train classifier w using the latent variables (Eq. (18))

7: until no change in w

8: end for

9: select the classifier w which produces the minimum value from

the objective function in Eq. (18)

. Posture database creation

In this section, we explain how our posture is represented in

he database, and detail what kind of posture we have included to

reate the database.
Please cite this article as: E.S.L. Ho et al., Improving posture classificati
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.1. Posture representation and capturing

We use the Microsoft Kinect to capture posture data for the

atabase, as it is one of the most popular depth camera based mo-

ion sensors. The Kinect SDK [57] provides the utility to record the

epth and color images, and the corresponding posture is tracked

y SDK function calls. We manually annotate descriptions such as

he nature of the motion and the potential risk of injury for each

aptured sequence.

Each posture P in the database is represented by a vector of 3D

oints:

= [p1, p2, . . . , pn] (19)

here pi is the 3D location of the ith joint of the user and n is

he total number of joints. Each posture is normalized by remov-

ng the global 3D translation and rotation along the vertical axis,

s the nature of most postures is defined by local joint movement.

xamples of the captured scene and the extracted 3D skeletal in-

ormation are shown in Fig. 3.

Since the training samples are extracted from motion se-

uences, consecutive frames tend to be similar. We filter the

atabase by removing similar postures base on the Euclidean dis-

ances of the 3D joint locations as explained in [9]. This allows

he database to cover a wide variety of representative postures

hile being compact. This also unifies the density of samples in

he database.

.2. Database construction

In order to identify postures that involve health hazards, we

apture both correctly and incorrectly performed postures in differ-

nt working environments. We follow the guidelines produced by

he European Agency for Safety and Health at Work [58] to capture

ovement that involves potential health risk. Both healthy and un-

ealthy postures of 10 participants, with ages ranged from 21 to

5, are captured. During capturing, the users are given instructions

n how to perform the postures. To avoid real injury, especially

hen capturing unhealthy postures, extra care has been taken and

he users are given time breaks during each capture. We created

wo databases focusing on different work environments.

The first database involves motion of standing and performing

and operations on a work bench, which is very common in field-

ased working environments. According to European Agency for

afety and Health at Work [58], one should prevent postures in

hich the joints are not in their natural position to avoid potential

endons, ligaments, and nerves damage. For a correctly performed

tanding posture at work, the neck should keep vertical and re-

axed, the head and the back should maintain an upright position,

nd the shoulder should be relaxed. We follow these guidelines to

apture a set of healthy postures performed by multiple people.

e also design the unhealthy postures including (A-1) working on

short bench in which the user has to bend the head, neck and

ack, (A-2) working on a short bench that is far away from the

ser, and the user has to bend the back and stretch the body, (A-3)

orking on a work bench that is placed at the side of the user, and

he user has to twist the back and raise the arms. We summarize

he details of the posture classes in Table 1 to indicate the body

arts are involved. The acute angles between the body part (i.e.,

he bone) and the vertical axis are computed from our dataset. For

he torso, the angle of rotation about the vertical axis is reported.

xamples of 3D pose and the corresponding RGB video are shown

n Fig. 4 and different views of the standing poses are illustrated

n Fig. 5.

The second database involves motion of sitting on a chair and

orking on a work bench, which is a usual posture for office work-

rs. Similar to the standing posture, one should prevent bending
on accuracy for depth sensor-based human activity monitoring in
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Fig. 3. Examples of postures captured in an office environment. (a) Healthy postures, (b) and (c) are considered as unhealthy postures.

Table 1

Details of the dataset of standing poses used in the experiments.

Dataset Action class Pose type Body parts (angle)

Neck Back Torso

Standing Stand straight Healthy Vertical (15°) Vertical (13°) Vertical (0°)
(A-1) Bend back Unhealthy Bended (50°) Bended (40°) Relaxed (0°)
(A-2) Bend and extend Unhealthy Relaxed (35°) Bended (30°) Relaxed (0°)
(A-3) Twist body Unhealthy Vertical (15°) Vertical (18°) Twisted (15°)

Table 2

Details of the dataset of sitting poses used in the experiments.

Dataset Action class Pose type Body parts (angle)

Neck Back

Sitting Straight back Healthy Vertical (15°) Vertical (10°)
(B-1) Bend neck Unhealthy Bended (40°) Relaxed (15°)
(B-2) Bend back Unhealthy Vertical (40°) Bended (50°)
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the head, neck and back [58]. Apart from the correctly performed

postures, we capture incorrect postures including (B-1) bending

the neck when working, and (B-2) bending the back when work-

ing. Since the user is in a sitting pose and is working on a work

bench, the lower body is usually not visible to the depth cameras.

We therefore only capture and evaluate the posture of the upper

body in this database. The details are listed in Table 2. Again, the

acute angles between the body part (i.e., the bone) and the vertical

axis are computed from our dataset. Examples of 3D pose and the

corresponding RGB video are shown in Fig. 3 and different views

of the sitting poses are illustrated in Fig. 6.

7. Experimental results

In this section, we evaluate the effectiveness of our proposed

method by classifying postures captured from two working envi-

ronments and two benchmark datasets—MSR Action3D [59] and

Florence 3D [60].

In our experiment, we trained max-margin classifiers explained

in Section 5.2 to classify the postures into different classes. We car-

ried out leave-one-subject-out cross validation, in which we used

postures from one of the participants as testing data and all
Please cite this article as: E.S.L. Ho et al., Improving posture classificati

smart environments, Computer Vision and Image Understanding (2016)
he rest postures as training data in our healthy pose datasets

Sections 7.3 and 7.4). The validation was repeated for all different

ombinations of the training datasets. For the benchmark datasets,

e followed the data split as in the state-of-the-art approaches

nd the details will be given in Sections 7.5.1 and 7.5.2. Finally, we

alculated the average accuracy, which is defined as the number of

amples correctly classified divided by the total number of testing

amples.

.1. Datasets details

The details of the datasets used in the experiments are sum-

arized in Table 3. To obtain a fair comparison with other ap-

roaches, we used the same data splitting (i.e., training and testing

ets) among all approaches in each experiment.

For our healthy pose datasets, 20 and 10 joints are tracked in

ach frames for the standing and sitting datasets, respectively. For

oth the RGB and depth videos, the resolutions of each frame are

oth 640 × 480 pixels. As stated in Table 3, 10 subjects were in-

ited to perform various kind of actions in an office environment.

heir age range is 21–35 years old.

.2. Experimental settings

To fully evaluate the performance of different parts of our

ramework, we design four setups as below:

Baseline classification: The baseline posture classification

ethod does not consider the reliability of the captured 3D skele-

al information, which is comparable to existing motion classifica-

ion algorithms. In other words, the feature vectors is defined as

he positions of all joints (i.e., joint positions) and the relative po-

itions between every pairs of joints (i.e., relative joint positions)
on accuracy for depth sensor-based human activity monitoring in
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Fig. 4. Examples of postures captured in an office environment. (a) is a healthy pose, and (b)–(d) are considered as unhealthy poses.

Fig. 5. Showing the captured standing poses in different view angles.
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Fig. 6. Showing the captured sitting poses in different view angles.

Table 3

Details of all the datasets used in the experiments.

Dataset Number of

subjects

Number of

classes

Size Time duration (min)

(approx.)
Training Testing

Standing 10 4 1722 poses 2869 poses 6

Sitting 10 3 1621 poses 2702 poses 5

MSR Action3D [59] 10 20 284 motions 273 motions 25

Florence 3D [60] 10 9 109 motions 106 motions 4

c

t

l

s

as used in [61]. Comparing the proposed method to the baseline

method can demonstrate the accuracy improvement by using reli-

ability measurements.

Individual reliability terms classification: To show the per-

formance of individual reliability measurement, we train the four

max-margin classifiers by using the reliability term independently.

The classification is performed by:

min
w,b

1

2
‖w‖2 + C

n∑
i=1

ξi

subject to yi

(
w

Ri

‖Ri‖xi + b

)
≥ 1 − ξi,

i = 1 . . . n, 0 ≤ ξi.

(20)

where Ri contains one reliability term (i.e., Rb, Rk, Rc or Rd) of all

features in instance i.
Please cite this article as: E.S.L. Ho et al., Improving posture classificati

smart environments, Computer Vision and Image Understanding (2016)
Equal weight reliability terms classification: To show the ac-

uracy improvement of optimizing the weight for the reliability

erms in Section 5.3, we setup a naive system of using all four re-

iability terms with the same weight:

min
w,b

1

2
‖w‖2 + C

n∑
i=1

ξi

subject to yi

(
w

Ralli

‖Ralli‖xi + b

)
≥ 1 − ξi,

i = 1 . . . n, 0 ≤ ξi

where Ralli = 0.25Rbi + 0.25Rki + 0.25Rci + 0.25Rdi

(21)

Variable weight reliability terms classification: Finally, we

how the performance of our proposed method to find optimal
on accuracy for depth sensor-based human activity monitoring in
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Table 4

Details of our healthy posture datasets used in the experiments.

Dataset Action class Pose type Size (poses)

Standing Stand straight Healthy 459

(A-1) Bend back Unhealthy 469

(A-2) Bend and extend Unhealthy 521

(A-3) Twist body Unhealthy 463

Sitting Straight back Healthy 669

(B-1) Bend neck Unhealthy 602

(B-2) Bend back Unhealthy 531

Table 5

Accuracy in classifying postures in the standing to work experiment.

Method Average %

accuracy

Joint positions 80.84

Relative joint positions (RJP) [61] 86.32

Lie group representation [62] 84.90

Moving pose [63] 81.79

Moving pose [63] with pose normalization and noise removal 81.04

Proposed RJP with Rb only 85.72

RJP with Rk only 86.32

RJP with Rc only 86.44

RJP with Rd only 85.34

RJP with Rb, Rk, Rc and Rd—equal weight 85.61

RJP with Rb, Rk, Rc and Rd—variable weight 88.67
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Table 6

Accuracy in classifying postures in the sitting to work experiment.

Method Average %

accuracy

Joint positions 66.67

Relative joint positions (RJP) [61] 70.58

Lie group representation [62] 71.41

Moving pose [63] 69.94

Moving pose [63] with pose normalization and noise removal 68.55

Proposed RJP with Rb only 71.72

RJP with Rk only 72.57

RJP with Rc only 71.57

RJP with Rd only 72.25

RJP with Rb, Rk, Rc and Rd—equal weight 72.60

RJP with Rb, Rk, Rc and Rd—variable weight 79.45
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eights for the reliability terms to improve the classification per-

ormance by alternatively solving Eqs. (18) and (17).

.3. Standing to perform hand operations on a work bench

Here, we perform leave-one-subject-out classification on our

tanding to work motion database, which includes healthy, A-1, A-

, and A-3 postures as explained in Section 6.2. Example postures

re shown in Fig. 4 and details of the data used in the experiment

an be found in Table 4. On average, 1722 and 2869 postures were

sed as training and testing data in each classification trial. The

eature vector size of the joint position and relative joint position

eatures are 60-d and 570-d, respectively. The average classification

ccuracies are shown in Table 5.

According to the results:

• The variable weight classifier with RJP features outperforms the

classifier with the RJP feature by 2.35%. This shows that the use

of reliability measurements can enhance classification accuracy.
• The variable weight classifiers with RJP features outperforms

the equal weight classifiers by 3.06%. This shows that the

weight optimization algorithm enhances the system accuracy.
• In all tests, the variable weight classifier performs better than

all of the individual reliability term classifiers. This supports our

algorithm of using multiple reliability terms.
• The variable weight classifier with RJP features outperforms the

state-of-the-art approaches Lie group representation [62] and

moving pose [63] by 3.77% and 6.70%, respectively. This high-

lights the effectiveness of our proposed variable weight classi-

fier.

The reliability measurements are estimation of the true relia-

ility. While they correctly evaluate the joints in general, individ-

al terms may be inaccurate under specific situations. This ex-

lains why the classification accuracy drops for some individual

erm classifiers comparing to the classifier using relative joint po-

ition only. Our proposed method has the strength of combining

ultiple reliability terms, such that we can tolerance errors in in-

ividual terms and produce consistent results.
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.4. Sitting on a chair and working on a work bench

Here, we perform evaluation on the sitting to work posture

atabase, which includes healthy, B-1 and B-2 postures as ex-

lained in Section 6.2. Example postures can be found in Fig. 3

nd details of the data used in the experiment can be found in

able 4. On average, 1621 and 2702 postures were used as training

nd testing data in each leave-one-subject-out classification trial.

he feature vector size of the joint position and relative joint posi-

ion features are 30-d and 135-d, respectively. The average classifi-

ation accuracies are shown in Table 6.

According to the results:

• Our variable weight classifier with RJP features has made a sig-

nificant improvement over the classifier with RJP features only.

Accuracy is enhanced by 8.87%.
• The variable weight classifier outperforms equal weight classi-

fier by 6.85%, supporting our weight optimization algorithm.
• The variable weight classifier outperforms all single reliability

term classifiers in both tests, supporting our algorithm of using

all four terms.
• All of the single reliability term classifiers with RJP features

perform better than the classifier with RJP features only. This

shows that accuracy is enhanced by reliability measurement in

general. More discussion about this can be found in Section 8.
• The variable weight classifier and all of the individual reliability

term classifiers outperform the state-of-the-art approaches Lie

group representation [62] and moving pose [63] by 0.16%–8.04%

and 3.02%–9.51%, respectively. This highlights the effectiveness

of our proposed method.

.5. Postures of different semantic meaning from benchmark datasets

Here, we show that our proposed algorithm can enhance the

ccuracy of movement semantic classification. We utilize the 3D

keletal data in the MSR Action3D dataset [59] and Florence 3D

ctions dataset [60] in Sections 7.5.1 and 7.5.2, respectively.

.5.1. MSR Action3D dataset

The dataset contains 20 action classes and each action is per-

ormed by 10 subjects with 2–3 trials, and 557 motion sequences

ere used in the experiment as in [61]. We follow [61] to conduct

cross subject test by classifying motions from 20 action classes:

igh arm wave, horizontal arm wave, hammer, hand catch, forward

unch, high throw, draw x, draw tick, draw circle, hand clap, two

and wave, side-boxing, bend, forward kick, side kick, jogging, ten-

is swing, tennis serve, golf swing, pickup and throw. The motions of

alf of the subjects are used in training and the rest are used as

esting data.

We classify the motions by training the proposed binary clas-

ifier in a one-versus-all manner. Since the length of the motions
on accuracy for depth sensor-based human activity monitoring in

, http://dx.doi.org/10.1016/j.cviu.2015.12.011
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Table 7

Accuracy in classifying postures in the MSR Action3D [59] dataset with

20 action classes.

Method Average %

accuracy

Joint positions 87.74

Relative joint positions (RJP) [61] 88.23

Bag of 3D points [59] 74.70

Histogram of 3D joints [65] 78.97

Shape and motion features [66] 82.10

EigenJoints [67] 82.30

Joint angle similarities [68] 83.53

Actionlet ensemble [61] 88.20

Spatial and temporal part-sets [69] 90.22

Covariance descriptors on 3D joint locations [70] 90.53

Random forests [71] 90.90

Moving pose [63] 91.70

Lie group representation [62] 92.46

Proposed RJP with Rb only 89.88

RJP with Rk only 90.70

RJP with Rd only 88.81

RJP with Rb, Rk and Rd—equal weight 90.39

RJP with Rb, Rk and Rd—variable weight 93.36

Table 8

Accuracy in classifying postures in the Florence 3D [60] dataset with

nine action classes.

Method Average %

accuracy

Protocol of [62]—Half–half data split

Joint positions 85.44

Relative joint positions (RJP) [61] 89.66

Moving pose [63] 81.42

EigenJoints [67] 87.28

Lie group representation [62] 90.88

Proposed RJP with Rb only 86.95

RJP with Rk only 89.76

RJP with Rb and Rk—equal weight 89.97

RJP with Rb and Rk—variable weight 93.29

Protocol of [60]—Leave-one-subject-out

Joint positions 84.69

Relative joint positions (RJP) [61] 91.42

NNBB + parts + time [60] 82.00

EigenJoints [67] 89.53

LARP+TSRVF [72] 89.50

LARP+mfPCA [72] 89.67

Elastic shape analysis [73] 89.67

Taha et al. [74] 96.20

Proposed RJP with Rb only 91.08

RJP with Rk only 91.75

RJP with Rb and Rk—equal weight 91.75

RJP with Rb and Rk—variable weight 98.33
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are not equal, we temporally align each motion to a class template

motion which is having the minimum variance with all other pos-

itive training motions in each class. Then, to reduce the temporal

dimensionality of the motions, we extract representative keyframes

(17 keyframes in our experiment) to represent the class template

using Frame Decimation [64]. Next, all training data (i.e., posi-

tive and negative) are aligned to the class template by dynamic

time warping (DTW) and we train a classifier using the temporally

aligned training data in each class. When classifying a testing mo-

tion, we temporally align the testing motion to all class templates

and compute the decision value using the trained classifier in each

class. The feature vector representing each motion is created by

concatenating the temporally aligned frame-based features. On av-

erage, the number of motions for training is 284 and that of test-

ing is 273. Since only the skeletal data and depth image sequences

are available in this dataset, we can only calculate three reliabil-

ity terms Rb, Rk, and Rd in our experiments. The accuracy of the

classifiers is shown in Table 7.

According to the results:

• Our variable weight classifier with RJP features has made an

significant improvement over the classifier with RJP features

only. Accuracy is enhanced significantly by 5.13%.
• The variable weight classifier outperforms equal weight classi-

fier by 2.97%, showing the effectiveness of our weight optimiza-

tion algorithm.
• The variable weight classifier outperforms all single reliability

term classifiers by 2.66%–4.55%, supporting our algorithm of us-

ing all three terms.
• All of the single reliability term classifiers perform better than

the classifier with RJP features only. This shows that accuracy

is enhanced by reliability measurement in general. More dis-

cussion about this can be found in Section 8.
• Even though the state-of-the-art approaches such as Lie group

representation [62] and moving pose [63] achieved very high

performance in this dataset, our variable weight classifier

achieves an even better result by taking into account the re-

liability measurement in motion classification.

When compared with the Lie group representation [62] on the

MSR Action3D dataset, our proposed variable weight optimizing

approach outperforms the previous method with a smaller mar-

gin than other experiments in this paper. It is because the motions

are captured in higher quality in general when compare with other
Please cite this article as: E.S.L. Ho et al., Improving posture classificati
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atasets used. In particular, all motions are recorded in a front-

acing manner and the subjects are in standing pose without occlu-

ion by other objects. As a result, the motions are in higher quality

nd there is less room for improvement by analyzing the joint ac-

uracy in this dataset. Nevertheless, our method still outperforms

he state-of-the-art approaches and this highlight the robustness

nd consistency of our proposed method.

.5.2. Florence 3D Actions dataset

In this experiment, we evaluate the accuracy of classifying mo-

ions from the skeleton data in the Florence 3D Actions dataset

60]. The dataset contains nine action classes: wave, drink from a

ottle, answer phone, clap, tight lace, sit down, stand up, read watch,

ow. Each action which is performed by 10 subjects with 2–3 tri-

ls, and 215 motion sequences were used in the experiment as in

60].

We follow [62] to classify motions from all nine action classes

y using the motions of half of the subjects as training and the rest

s testing and follow [60] to perform leave-one-subject-out classi-

cation, and report the average classification accuracy. Similar to

ection 7.5.1, we classify the motions by training the proposed bi-

ary classifier in a one-versus-all manner. We also find the class

emplate motion (with nine keyframes) and all training and testing

ata are aligned to the class template by DTW as explained in last

ection. On average, the number of motions for training is 109 and

hat of testing is 106. Since only the skeletal data are available in

his dataset, we can only calculate two reliability terms Rb and Rk

n our experiments. The results are shown in Table 8.

According to the results, in the experiments using the half–half

ata split setting as in [62]:

• Our variable weight classifier with RJP features has made an

significant improvement over the classifier with RJP features

only by 3.63%.
• The variable weight classifier significantly outperforms equal

weight classifier by 3.32%, showing the effectiveness of our

weight optimization algorithm.
• The variable weight classifier outperforms all single reliability

term classifiers by 3.53%–6.34%, supporting our algorithm of us-

ing all two terms.
on accuracy for depth sensor-based human activity monitoring in

, http://dx.doi.org/10.1016/j.cviu.2015.12.011
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• Our variable weight classifier out-perform the state-of-the-art

approaches such as Lie group representation [62] and moving

pose [63] by 2.41% and 11.87%, respectively. This highlights the

effectiveness of our proposed method.

In the experiments using the leave-one-subject-out data split

etting as in [60], the results also showed the same pattern as our

roposed variable weight classifier outperforms all single reliabil-

ty term classifier as well as existing approached. This highlight the

onsistency and robustness of our method across different experi-

ent settings.

. Discussion and conclusions

In this paper, we presented a data-driven framework that con-

iders the reliability of the source data to classify postures cap-

ured from depth cameras. We propose new reliability terms

o better evaluate the features, and present a customized max-

argin classification framework that takes in the measurements.

ur framework can classify the subtle different between healthy

nd unhealthy postures in a workplace environment. We made our

otion database available to public usage in order to facilitate fur-

her research in this area.

Since the postures captured by Kinect is incomplete and noisy

ue to occlusion, it is proposed to reconstruct the unreliable joints

sing prior knowledge [9]. A traditional method of posture clas-

ification is to evaluate the reconstructed posture. However, since

he reconstruction process involve modifying unreliable features,

t introduces another major source of error. We opt for a max-

argin classification framework, which evaluates posture consid-

ring joints with high reliability more, and do not require altering

he posture.

As a common problem of data-driven approaches, if there is no

osture similar to the observed one in the database, our method

ay fail. This is because we do not have the knowledge to accu-

ately classify the posture. This could happen if the user has a sig-

ificant different body size or segment length proportion. In the

uture, we would like to explore motion retargeting techniques to

etarget the observed posture.

Apart from unhealthy postures, moving rapidly or keeping the

ody static for extensive long duration can also result in injury. To

dentify these kind of movements, the spatio-temporal information

f the motion has to be considered. In order to efficiently classify

ong duration of movement, abstraction in the temporal domain

ay also be needed. We are interested to explore this area in the

uture to broaden the scope of our classification algorithm.

This research demonstrates how our framework can be applied

n smart environments to identify incorrectly performed working

osture. There are other motions, such as wheelchair handing, floor

weeping and window cleaning, that have a high risk of injury. As

future work, we wish to enhance the database to include a wide

ariety of motions. Apart from capturing data ourselves, we would

ike to set up a standard format for capturing different types of

otion in the topic of workspace health and safety, such that in-

erested researchers can contribute and share captured motions.
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