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ABSTRACT
We propose a new method to compute compatible triangulations of
two polygons in order to create a smooth geometric transformation
between them. Compared with existing methods, our approach
creates triangulations of better quality, that is, triangulations with
fewer long thin triangles and Steiner points. This results in visually
appealing morphing when transforming the shape from one to
another. Our method consists of three stages. First, we use the
common valid vertex pair to uniquely decompose the source and
target polygons into pairs of sub-polygons, in which each concave
sub-polygon is triangulated. Second, within each sub-polygon
pair, we map the triangulation of a concave sub-polygon onto the
corresponding sub-polygon using linear transformation, thereby
generating compatible meshes between the source and the target.
Third, we refine the compatible meshes, which can create better
quality planar shape morphing with detailed textures. Experimental
results show that our method can create compatible meshes of
higher quality compared to existing methods with fewer long thin
triangles and smaller triangle deformation values during shape
morphing. These advantages enable us to create more consistent
rotations for rigid shape interpolation algorithm and facilitate a
smoother morphing process. The proposed algorithm is robust and
computationally efficient. It can be applied to produce convincing
transformations such as interactive 2D animation creation and
texture mapping.
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1 INTRODUCTION
Planar shape morphing, also known as shape blending, aims to
smoothly transform a source polygon into a target polygon [6, 7, 29].
2D morphing techniques are used widely in animation and special
effects packages, such as Adobe After Effects and HTML5. Given
a sparse set of source data (polygon shapes), it’s difficult to apply
machine learning methods to synthesize in-between animation.
In such a case, shape morphing algorithms based on the input
data is necessary. With such algorithms, We can create character
animations similar to data-driven methods with a small number
of target shapes. This is done by interpolating some key shapes
extracted from the source data to synthesize animation. The
key research focus here is to synthesize high-quality character
∗Corresponding author: liuyang.zhou@webot.ai

animation that avoids collapsing or overlapping of polygons during
the morphing process.

2D image deformation algorithms such as the rigid shape
deformation in [15, 22] have been extensively explored in the
research community. Users can manipulate constrained handlers
to deform a given image. However, such kind of image warping
techniques offer a limited range of transformations. Transforming
a shape to a significantly different one is difficult due to the lack of
feature correspondence.

Planar shape morphing methods offer solutions to blend two
shapes with different silhouettes. Previous attempts to tackle the
shape morphing problem linearly interpolate the coordinates of
each corresponding vertex pair between the source and the target
polygons. However, simple linear interpolation sometimes creates
intermediate polygons that intersect with each other, resulting in
geometrically incorrect transformations. While other image space
techniques such as [8, 22] achieve pleasant blending results, they
usually suffer from overlapping problems due to the lack of topology
information.

Previouswork [1, 4, 12, 26] has shown that computing compatible
triangulation can successfully create smooth transformations for
both the boundary and interior of a shape. However, in many
situations, compatible meshes can only be generated if Steiner
points are added, which do not belong to the vertices of the
polygon. [2] first started the study of compatible triangulation by
introducing at most O(N 2) Steiner points, where N is the number
of vertices of the polygon. Although the algorithm is conceptually
simple, it introduces a large number of Steiner points that increases
the morphing complexity. On the other hand, this method generates
many long thin triangles, which can result in inconsistent rotations
for shape interpolation algorithms such as [1]. [26] constructed
compatible meshes based on link paths, which requires a small
number of Steiner points, but at a high computational cost that is
prohibitive.

We observed that the majority of existing compatible triangula-
tion approaches either create a large number of skinny triangles
or are too complex for real-time shape morphing. In this paper,
we propose an efficient framework for computing compatible
triangulation of two simple polygons, which are defined as planar
shapes with non-intersecting edges that form a closed path. Our
method produces compatible meshes with fewer long thin triangles
and a smaller number of Steiner points, which enables smooth
transformations from one shape to another.



The major contributions of this paper are summarized as follows:
First, we propose a new algorithm to calculate compatible polygon
decomposition based on common valid vertex pairs, which results in
flexible decompositions of the source and target polygons. Second,
for each iteration, we choose one common valid vertex pair that
can maximize the minimum interior angle to compatibly partition
the source and target polygons, which increases mesh quality.
The increase in the ratio of regular triangles leads to a smoother
transition during shape morphing and texture mapping.

A preliminary research was presented in [19], in which a basic
system to construct the compatible triangulations for two simple
polygons was presented. Compared with such a work, our new
compatible polygon decomposition algorithm is more flexible and
leads to a better mesh quality with a lower number of Steiner
points, as illustrated in Fig. 4 and Table 2. The method of [19]
generates different triangulation results if we start the convex
decomposition from the source or target polygon. However, our
method always produces the same triangulation results even if start
from different directions. This is because we consider the source
and target polygon at the same time using common valid vertex
pairs. Generally, our algorithm is faster than that of [19], please
refer to Section 4 for more details. We have conducted extensive
experiments to analyze the influence of the mesh quality on shape
morphing.

2 RELATEDWORK
Planar shape morphing involves two sub-problems: vertex
correspondence and vertex path computation [23]. Vertex cor-
respondence determines how the vertex u of source polygon
P matches the vertex v of target polygon Q . The vertex path
determines the trajectory along which vertex u will travel to vertex
v . In this paper, we concentrate on the vertex correspondence
problem, i.e. computing compatible meshes.

Previous methods for computing compatible triangulations
usually fall into two categories: (1) Transforming source and target
polygons into another common space [1, 2, 17]. (2) Iteratively
partitioning the source and the target polygons until both inputs
become a set of triangles [4, 14, 26, 27].

[2] constructed the compatible triangulations by overlaying
the triangulations of the source and target polygons in a convex
polygon. The intersections of the two triangulations built a
piecewise-linear homeomorphism, which introduced a large
number of Steiner points. To solve this problem, [1] employed
Delaunay triangulations to reduce the Steiner points. [17] proposed
another method by which the number of Steiner points can be
determined by the number of inflection vertices.While their method
can reduce the number of Steiner points, the algorithm sometimes
results in Steiner points on the edge of a polygon. Furthermore,
although these methods are conceptually simple, they require high
computational cost and are not suitable for real-time applications.

[14] used the divide-and-conquer method to iteratively partition
the source and target polygons. Their algorithm introduced a small
number of Steiner points by using link paths. However, theirmethod
is not suitable for polygons with a small number of vertices. [26]
simplified the algorithm of [14] and they proposed a new remeshing
method to greatly improve the mesh quality by adding a few

Steiner points. Their algorithm requires the implementation of
many data structures and algorithms in [27] that makes their
method algorithmically complex. [4] proposed a newway of finding
compatible link paths. Based on this new link path generation
algorithm, they used a similar scheme as in [26] to compatibly
partition two polygons. Although their algorithm for computing
link paths is faster than that of [26], the proportion of regular-
shaped triangles (as opposed to long thin triangles) still needs to
be improved.

A lot of work has been proposed for interpolating two shapes. [1]
proposed a method that attempted to preserve rigidity. They
separately interpolated the rotation and scale/shear components
of an affine transformation matrix, which generated pleasing
results with small rotations for most of cases. Inspired by [1], [30]
presented a 3D morphing method based on Poisson’s equation that
generated visually pleasing morphing sequences. However, their
method suffered from the inherited problem of rigid interpolation
methods that the rotations may be incorrectly interpolated. In
order to fix this problem, [3] proposed a method to consistently
assign rotations. [24] proposed a method that transferred the 3D
deformation of a source triangle mesh onto a different target
triangle mesh. However, their algorithm is designed for the case
where there is a clear semantic correspondence between the
source and target. [18] introduced a new type of coordinates for
Hermite interpolation that can be applied to shape deformation.
Other methods such as [5] try to preserve certain properties like
smoothness and distortion for 2D shape interpolation.

In this paper, we propose a new method to construct the
compatible meshes of two simple polygons. Our method draws
inspiration from [9], which uses barycentric coordinates to map a
spatial surface triangulation to planar triangulation. However, [9]
demands that every Steiner point of the target polygon Q must
be a strict convex combination of its neighbors, which cannot
always be satisfied in practice. As a solution, we propose an efficient
compatible polygon decomposition algorithm that simultaneously
partitions the source and target polygons into a set of sub-polygon
pairs such that we can solve the compatible mapping from a sparse
linear system for each sub-polygon pair. On the other hand, the
resulted initial triangulation may still contain some long thin
triangles that need to be improved. We propose some efficient
schemes to further improve the mesh quality.

3 COMPATIBLE TRIANGULATIONS
As illustrated in Fig. 1 (a-b), the input data of our system are two
simple polygons P and Q with corresponding vertices ordered in
counter-clockwise. We denote P = {U ,EP } and Q = {V ,EQ } as
the source and target polygons with point set u ∈ U and v ∈ V ,
together with the edge set EP , EQ respectively. P andQ are assumed
to be simple polygons without holes, in which the edges do not
cross each other and form a closed contour enclosing each polygon.
We define TP and TQ as the triangulations of polygon P and Q .
TP and TQ are compatible if they have equivalent topology that is
defined as:

(1) There is an one-to-one correspondence between the vertices
of TP and that of TQ .
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Figure 1: Overview of the proposed framework to compatibly triangulate two simple polygons. (a) The target polygon Q . (b)
The source polygon P . (c)We compute the valid vertex pairs for both the source and target polygons. (d)We collect the common
valid vertex pairs. (e) We use the common valid vertex pair for compatible decomposition if the common vertex pair exists;
otherwise we calculate the link path, e.g. the 2-link path between vertex u2 and u5 with blue color shown in (h). (f-h) We use
the polyline found in (e) that maximizes the minimum angle to decompose the source and target polygons. (i) We triangulate
each sub-polygon pi of source polygon P using Delaunay triangulation. (j) We may need to add some Steiner points on the
edge of sub-polygon qi to keep equivalent topology. (k) We solve a linear system to map the triangulation of sub-polygon pi
onto the corresponding sub-polygon qi of target polygonQ . (l-m) We finally refine the compatible meshes by operations such
as splitting long edges and flipping interior edges so as to improve the interior angles of the mesh.

(2) There is an one-to-one correspondence between the edges
of TP and TQ , meaning that if there is an edge connecting
two vertices of TP , then there is an edge connecting the
corresponding vertices of TQ and vice versa.

(3) The boundary vertices of both TP and TQ are traversed in
the same clockwise or counter-clockwise order.

The core of our framework is that we propose a new algorithm
for partitioning the source and target polygon pairs, which is more
flexible to increase the mesh quality. Given two simple polygons
P and Q with a boundary vertex correspondence as illustrated in
Fig. 1 (a-b), our algorithmworks in three stages. First, we compatibly
decompose the source polygon P and the target polygon Q into
sub-polygon pairs (p,q) =

⋃
(pi ,qi ) as shown in Fig. 1 (c-g), where

either the target sub-polygon qi or the corresponding source sub-
polygon pi is convex. Considering a sub-polygon, e.g. pi of P , we
triangulatepi using Delaunay triangulation as illustrated in Fig. 1 (h-
i). Second, we map the triangulation Tpi of source sub-polygon pi
onto corresponding target sub-polygon qi using a sparse linear
system as shown in Fig. 1 (j-k). Third, we refine the compatible
mesh to improve the mesh quality shown in Fig. 1 (l-m), which
is important for high quality morphing in 2D animation, special
effects for movies and texture mapping.

3.1 Compatible Decomposition of the Target
and Source Polygons

In the first phase, we compatibly decompose the source and target
polygons, P and Q , into pairs of sub-polygons. In a simple polygon,
a vertex u ∈ U is convex if the angle α formed by two edges at u is
less than π radians; otherwise u is considered to be concave. Our
goal is to turn some concave vertices into convex ones through the

decomposition and construct pairs of sub-polygons from the source
and target polygons such that each of a sub-polygon pair contains
at least one convex sub-polygon.

Without loss of generality, we assume the source and target
polygons P and Q each to be a simple polygon with N
vertices arranged in counter-clockwise order. Here, we label
the concave vertices of Q as v1, ...,vC and the convex vertices
vC+1 , ...,vN . Similarly, we label u1, ...,uC′ as the concave vertices
and uC′+1 , ...,uN as the convex vertices of P . We call a vertex pair
(i, j) of P valid if ui is visible from uj and at least one of the two
vertices is a concave vertex, e.g. (1, 4) is valid as shown in Fig. 2. If
two vertices are visible to each other but they are not a valid pair,
then it implies that both vertices are convex such as vertex pair (2,
4) as illustrated in Fig. 2. A diagonaluaub of P is a line segment that
joins vertexua andub of P and remains strictly inside P . A diagonal
such as u2u4 shown in Fig. 2 that connects two convex vertices is
redundant in our compatible decomposition algorithm because it
can be removed and the two convex sub-polygons on its sides can
be merged into a convex polygon. Therefore, for the construction
of a compatible decomposition, we consider only the diagonals that
connect two vertices that belong to valid vertex pairs.

In some cases, compatible triangulation can only be constructed
if Steiner points are added. In order to introduce the minimum
number of Steiner points, we need to search for all the potential
decomposition combinations in the solution space. Thus, there can
be an exponential number of ways of decomposing a simple polygon
into convex sub-polygons using the valid vertex pair, which forbids
the practical use of the algorithm. Previous work converted the
compatible triangulation problem into a common base domain [1, 2]
or used a divide-and-conquer methods [4, 19, 25] to iteratively
partition the source and target polygons. However, these methods
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Figure 2: A valid vertex pair (1, 4)used to partition the source
polygon, which yields four interior angles between vertexu1
and u4.

may either be too complex for real-time application or produce
a mesh with poor quality. Therefore, we want to find an efficient
compatible triangulation algorithm with an improved mesh quality
compared with the existing work.

We start from the source polygon P and find all the valid vertex
pairs VPP for P , similarly, we find the valid vertex pairs VPQ for
the target polygon Q . Among all the valid vertex pairs in VPP and
VPQ , we collect the common valid vertex pairs VP = VPP ∩VPQ
that appear in both VPP and VPQ . The best partition for P and
Q is the common valid vertex pair that generates the maximum
minimum interior angle IntAnд by:

(a,b) = arg max
va ,vb ∈V

;
ua ,ub ∈U

a,b

min{IntAnдP (a,b) , IntAnдQ (a,b)} (1)

where the IntAnдP (a,b) contains four angles formed by the
intersection of the source polygon P and the diagonal uaub that
connects a valid vertex pair (a,b). For example, IntAnдP (1, 4)
contains ∠α , ∠β , ∠γ and ∠δ in Fig. 2.

Decomposing polygons with Equation 1 generates a balanced
angle partition for both the source and target polygons, which
maximizes the interior angle for both the source and target sub-
polygons in the current iteration. [19] only considered a balanced
angle partition for the target polygon; however, the source polygon
may still generate small interior angles. [4, 26] only considered
balanced index partition of the source and target polygons, which
is likely to decrease the mesh quality in terms of the proportion of
small angles of compatible meshes discussed in Section 5.2.

In practice, the common valid vertex pair may not always
be available in some cases. For example, as shown in Fig. 1(c-
d), the intersection of two valid vertex pair sets {(2, 4), (2, 5)} ∩
{(3, 1), (3, 5)} is empty. Here, we apply link path to determine the
partition line between two vertices instead of using common valid
vertex pair. A link path between vertex ua and ub is a polyline
within the polygon that joins the vertex pair (a,b) such as vertex
pairs (2, 6) and (6, 5) in Figure 1(h) that defines a 2-link path between
vertex u2 and u5. A minimum link distance for vertex pair (a,b),
linkDist(ua ,ub ), is the minimum number of line segments in a
polyline, for example, the minimum link distance for vertex pair
(2, 5) in Figure 1(h) is 2. We follow [4] to compute the link path with
minimum link distance for all vertex pairs inO(H ·N 3

i ), where H is
the number of sub-polygon pairs and Ni is the number of vertices
for the i-th sub-polygon. Algorithm 1 summarizes our polygon
decomposition algorithm in an iterative sense.

Algorithm 1: Compatible decomposition of the source and the
target polygons
1 Input: The source and target polygons, P and Q
2 Output: A decomposition of P , p =

⋃
pi , and Q , q =

⋃
qi ,

where either pi or qi is a convex sub-polygon
3 convexDecomposition(P , Q)
4 if P or Q is convex then
5 exit
6 end
7 Compute valid vertex pairs VPP and VPQ
8 Find common valid vertex pairs
9 VP = VPP ∩VPQ

10 if VP is not empty then
11 Calculate the best partition by:
12 (a,b) =

arg max
va,vb ∈V
ua,ub ∈U

a,b

min{IntAnдP (a,b) , IntAnдQ (a,b)}

13 Decompose P and Q using (a,b) that creates two
sets of sub-polygons:

14 {pi , pi+1}, {qi , qi+1}
15 else
16 Decompose P or Q using link path that creates two

sets of sub-polygons:
17 {pi , pi+1}, {qi , qi+1}
18 end
19 convexDecomposition(pi , qi )
20 convexDecomposition(pi+1, qi+1)

By this stage, we have compatibly decomposed the source
polygon P and target polygon Q into sub-polygons {pi =
(U pi ,Epi )} and {qi = (V qi ,Eqi )} , where (pi ,qi ) is a pair of
sub-polygons and either pi or qi is convex. We apply Delaunay
triangulation as the initial triangulation of a sub-polygon, which
can maximize the minimum interior angle with no extra Steiner
points inO(Ni loдNi ) [11]. Here, we denote Tpi as the triangulation
of the sub-polygonpi and aim to construct compatible triangulation
Tqi of qi based on Tpi .

3.2 Compatible Triangulations Mapping
The compatible decomposition process may introduce Steiner
points on the link path of either the source polygon P and target
polygon Q . In addition, in order to improve the mesh quality, the
mesh refinement process detailed in Section 3.3 will create Steiner
points within each sub-polygon. Therefore, we have two types of
Steiner points: (1) Steiner points that lie on the link path of source
sub-polygon pi , and (2) Steiner points that lie within pi . For (1),
we map the Steiner points onto the corresponding edges of target
sub-polygon qi based on the simple line-segment-length proportion
principle. For (2), we solve the mapping by a sparse linear system.

3.2.1 Mapping Steiner Points on the Link Path of Source Polygon.
We denote us as a Steiner point that lies on the link path between
vertex ua and ub in the source sub-polygon pi such as the vertex
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u6 for vertex pair (u2,u5) in Figure 1(h). We add a Steiner point vs
for the target sub-polygon qi on the corresponding line segment
vavb based on the linear ratio with the following equation:

vs =
polylineLenдth(ub ,us )

polylineLenдth(ua ,ub )
va +

polylineLenдth(us ,ua )

polylineLenдth(ua ,ub )
vb (2)

where polylineLenдth(ua ,ub ) is the summation of the length of all
line segments on the link path between ua and ub .

As shown in Figure 1(h), the length of the polyline for vertex
pair (u2,u5) is polylineLenдth(u2,u5) = polylineLenдth(u2,u6) +
polylineLenдth(u6,u5). We would place the vertex v6 on the line
segment v2v5 based on the Equation (2).

3.2.2 Mapping Steiner Points Within the Source Polygon. In this
section, we will explain how to map the Steiner points inside the
source polygon onto the corresponding locations inside the target
polygon. As shown in Figure 3, we have to decide how to map the
Steiner point u1 and u2 onto v1 and v2 inside the target polygon.
Here, we calculate the barycentric coordinates of u1 and u2. We
then compute the proper locations for Steiner pointv1 andv2 using
the barycentric coordinates found in the source polygon.

1u

2u

3u

4u
5u

6u

7u

2v

1v

3v

4v

5v 6v

7v

(a) Source Polygon with Steiner 
points u1 and u2

(b) Target Polygon with unknown 
Steiner points v1 and v2

(a) (b)

Figure 3: Mapping Steiner points within the source sub-
polygon onto the target sub-polygon. (a) The source sub-
polygonwith Steiner pointsu1 andu2. (b) The corresponding
target sub-polygon with unknown Steiner points v1 and v2.

Denoting uj , j ∈ {1, ..., Si } as a Steiner point that lies within
the source sub-polygon pi , where Si is the number of Steiner
points within pi . We use barycentric coordinates λ to map the
Steiner point uj of source sub-polygon pi onto the Steiner point
vj of target sub-polygon qi . Here, we employ Floater’s mean value
coordinates [10] to calculate the barycentric coordinates λ. The
barycentric coordinates λ of vertex uj can be seen as a weight of
its neighboring vertices, which allows us to generate continuous
data from these adjacent vertices. We represent the Steiner point
uj as a weighted average of its neighboring vertices:

uj =
M∑
k=1

λj,kuk ,
M∑
k=1

λj,k = 1 (3)

whereM is the total number of points including boundary vertices
and Steiner points for source sub-polygon pi , i.e.M = Ni + Si .

We now explain how to map the Steiner point uj ∈ U pi , j ∈

{1, ..., Si } of source sub-polygon pi onto the corresponding Steiner
point vj ∈ V qi of target sub-polygon qi , where Si is the number of

Steiner points within pi . We define v1, ...,vSi to be the solutions of
linear equations with Si variables.

vj =
M∑
k=1

λj,kvk ,
M∑
k=1

λj,k = 1 (4)

where

λj,k = 0, (j,k) < Eqi

λj,k > 0, (j,k) ∈ Eqi

Note that the barycentric coordinates λj,k can be uniquely
determined by Equation (3).

We rewrite Equation (4) by breaking the summation term into
two sub-terms:

vj =
Si∑
k=1

λj,kvk +
Si+Ni∑
k=Si+1

λj,kvk , j ∈ {1, ..., Si }

vj −
Si∑
k=1

λj,kvk =
Si+Ni∑
k=Si+1

λj,kvk (5)

where Si is the number of Steiner points within the target sub-
polygon qi and Ni is the number of boundary vertices of qi .

Denoting vj = (x j ,yj ) to be a Steiner point within target sub-
polygon qi that we want to solve, Equation (5) is equivalent to the
following form:

Ax = b1, Ay = b2 (6)
where x = (x1, ...,xSi )

T , y = (y1, ...,ySi )
T , and matrix ASi×Si is in

the form:

aj, j = 1, j ∈ {1, ..., Si }
aj1, j2 = −λj1, j2 (j1, j2 ∈ {1, ..., Si }, j1 , j2).

This linear system in Equation 6 has Si unknown variables and
Si equations. The solution to Equation (6) is unique as the matrix A
is non-singular. We apply LU decomposition to solve Equation (6)
inO(S3i ) [20], where Si is the number of Steiner points within target
sub-polygon qi .

3.3 Compatible Mesh Refining
While the compatible meshes generated by our method introduce a
very small number of Steiner points, there may still be some long
thin triangles such as the second row in Figure 5(a). In practice, we
found that these long thin triangles can cause numerical problems
such as inconsistent rotations for shape morphing. Therefore, we
have to refine the compatible meshes to avoid numerical problems.

To refine the compatible meshes, we apply a variation of the
remeshing method in [26]. We only smooth those triangles with
small interior angles and long edges. Specifically, we smooth the
mesh using area and angle based remeshing, splitting long edges,
and flipping interior edges to improve the interior angles. The
smoothed results can be found in Figure 5(b).

4 METHOD COMPLEXITY
In this section, we will analyze the computational complexity of
our method. It takes O(N ) time to determine the concave vertices
and O(N ) time to find a valid vertex pair using visibility polygon
algorithm [16], where N is the number of vertices of a polygon.
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Finding common valid vertex pairs using methods like hash table
usually requires O(1) time. Thus, the time cost of decomposing the
source and target polygons into pairs of sub-polygons is O(N 2).
Finding a corresponding link path for a sub-polygon, e.g. pi in
source polygon P , is O(N 3

i ), where Ni is the number of vertices
of a source sub-polygon pi . The Delaunay triangulation can be
finished inO(Ni loдNi ). Compatible mapping between a pair of sub-
polygons requires solving a linear equation using LU decomposition
that leads to O(S3i ) operations, where Si is the number of Steiner
points of sub-polygon pi .

Table 1 compares the computational complexity between our
method and alternative approaches. The main computation of our
algorithm is dominated by computing link paths and solving a
linear system, i.e. O(H ·max(N 3

i , S
3
i )), where H is the number of

sub-polygon pairs. In practice, the most time consuming part of
our algorithm is building the link path as Si is often smaller than
Ni . Generally, our algorithm is faster than that of [19]. This is
because our method simultaneously decomposes the source and
target polygon and we will stop partitioning a polygon pair if one of
them is convex. However, [19] keeps partitioning the target polygon
until all the target sub-polygons are convex. Our method is much
faster than that of [4, 26] as we solve a small linear sparse system
within each sub-polygon pair.

Table 1: Computational complexity: the main computa-
tional cost of ourmethod is computing the link paths, where
N is the total number of boundary vertices of source polygon
P , CP is the number of concave vertices of P , L and H are
the number of sub-polygon pairs created by Liu et al. and
our method, Ni and Si are the number of boundary vertices
and the number of Steiner points of the i-th sub-polygon
respectively.
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The matrix A in Equation (6) is sparse and non-symmetric,
thus, we further speed it up by using iterative methods such as
Bi-CGSTAB [28]. Here, we apply an open library Eigen [13] to
solve the sparse linear system. The compatible mapping process
of a sub-polygon pair can be even faster before mesh refinement
operations and it can be completed in O(Si ). This is because the
Delaunay triangulation can triangulate the sub-polygon pi with no
Steiner points such that we only need to map the Steiner points on
the link path as discussed in Section 3.2.1.

5 EXPERIMENTAL RESULTS
In this section, we will show the experimental results and present
the comparisons between alternative approaches including [26], [4]

and [19]. Qualitative analysis is conducted to evaluate the mesh
quality between the proposed method and other alternatives. The
experiments are conducted on a Intel Core i3-2350M 2.3 GHZ PC
with 4GB RAM.

5.1 Compatible Triangulations
To demonstrate the effectiveness of our method, we implemented
the as-rigid-as-possible shape interpolation method introduced
in [1]. Figure 4 and 5 show some compatible triangulation results
and some challenging polygon pairs that are quite different such as
the shark and sea horse in the third row of Figure 5.

Figure 5(a) shows that our initial compatible triangulation
contains few long thin triangles and we may only need to flip
some edges of triangles to enlarge the minimum interior angles.
Figure 5(b) shows that our compatible meshes can be further refined
by methods such as splitting long edges and averaging the area of
adjacent triangles.

Given the compatible triangulations of two input polygons,
shape interpolation can be applied to create animations showing
the transitions from one shape to another. Figure 5(b) shows
some interpolation results using our compatible meshes. For more
transformations, please see our supplemental demo video or go to
the next url: https://youtu.be/DrkzPDqySNg.

5.2 Mesh Quality Evaluation
The quality of the compatible meshes greatly influences the
intermediate shapes generated by morphing techniques. In
particular, meshes with those long and skinny triangles would
suffer from the inconsistent rotation problem [1, 3].

We employ the following criteria to measure the mesh quality:
(1) minimum interior angle of a given mesh; and (2) the proportion
of angles that are smaller than a certain constant value, which are
known to be reasonable mesh quality criteria [21]. We would like
to increase the minimum interior angle of a mesh and decrease the
percentage of small angles.

Table 2 shows a quantitative comparison between our algorithm
and three other alternative methods. [26] tends to create more
long thin triangles than the others. Compared with the results
of [26], [4] improves the minimum interior angle. [19] enhances
the proportion of regular triangles but sometimes introduces a
few more Steiner points than [26]. While our results are similar
to [26] in terms of the number of Steiner points, our algorithm
creates a much smaller percentage of small angles than [4, 26].
Compared with [4, 19, 26], the minimum angle of our method has
been improved greatly while we generally add a fewer number of
Steiner points than the alternative methods.

6 CONCLUSIONS
We propose a new method for computing compatible triangulation
of two simple polygons and apply them to 2D shape morphing . Our
method compatibly decomposes the source and target polygons
into sub-polygon pairs and maps the triangulation between a pair
of sub-polygons with a sparse linear system.

As an improvement on previous methods, our compatible
polygon decomposition algorithm offers a more flexible way
of decomposing the source and target polygons such that the
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Figure 4: Compatible triangulations comparisons. We compare our results with those of [26], [4] and [19]. While we generally
use less Steiner points than the others, our algorithm creates high quality compatible mesh in terms of the proportion of long
thin triangles.
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Figure 5: Compatible triangulation results. (a) The initial
tessellations of two polygons. (b) mesh refinement and
morphing. Note that our compatible mesh can be used to
blend shapes with large rotations, e.g. shapes in the third
row.

minimum interior angle can be maximized in each iteration.
This leads to compatible triangulations with more regular-shaped
triangles (as opposed to long thin triangles) as illustrated by
the fact that there are fewer triangles whose minimum angles
are small under our approach compared with other methods
in [4, 19, 26]. Second, compared with our preliminarily work [19],
our method generates the same compatible mesh no matter if we
start the decomposition from the source or target polygon. Another
advantage is the simplicity of the three stages that all we need is
to decompose a polygon, calculate link paths, and solve a sparse
linear system, which enables real-time morphing.

While our method well handles the mapping between shapes,
the morphing results need to be further improved. As we focus
on generating a compatible mesh, we simply crossfade between
textures in image space. More sophisticated texture blending or
image warping algorithms such as [22] could be incorporated into
our method. Currently, the intermediate images interpolated are
uniquely determined by rigid interpolationmethod [1], which offers
no means of control. It would be desirable to modify some parts
of the intermediate shapes if the users are not satisfied with them.
We could explore possible solutions such as the linear constraints
proposed in [3] to increase user creativity.

Another drawback of our method is that we cannot deal with
polygons with holes. One possible solution is that we add a bridge
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Table 2: Quantitative comparisons between triangulation
quality

Shape Method 
#Steiner 

Point 

Minimum 

angle 

Angles 

≤10° 

Angles 

≤15° 

Angles 

≤20° 

 

 

Surazhsky-

Gotsman, 04 
0 1.6730° 11.57% 16.12% 31.27% 

Baxter et al., 09 0 3.3052° 10.61% 14.39% 30.30% 

Liu et al., 15 3 3.7557° 5.35% 11.90% 22.02% 

Ours 0 6.4161° 8.75% 12.87% 26.93% 

 

Surazhsky-

Gotsman, 04 
2 0.0441° 27.43% 36.81% 42.36% 

Baxter et al., 09 5 0.9779° 21.91% 29.32% 37.96% 

Liu et al., 15 2 0.9913° 15.27% 22.91% 32.29% 

Ours 1 1.3653° 12.49% 21.08% 26.37% 

 

Surazhsky-

Gotsman, 04 
6 0.4837° 8.60% 13.03% 20.59% 

Baxter et al., 09 4 0.5849° 6.49% 12.42% 18.64% 

Liu et al., 15 3 0.6120° 5.29% 11.64% 17.46% 

Ours 1 1.6855° 5.18% 9.11% 15.72% 

 

 

Surazhsky-

Gotsman, 04 
0 0.0347° 28.96% 35.47% 44.88% 

Baxter et al., 09 0 0.0229° 21.45% 29.21% 35.48% 

Liu et al., 15 0 0.3294° 16.01% 23.77% 29.54% 

Ours 0 5.6835° 3.99% 7.63% 12.11% 

 

Surazhsky-

Gotsman, 04 
0 0.8893° 12.43% 19.16% 24.13% 

Baxter et al., 09 0 2.1933° 10.95% 14.68% 21.89% 

Liu et al., 15 0 2.6746° 9.95% 14.18% 20.15% 

Ours 0 2.9338° 6.21% 10.94% 15.92% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

between the outer polygon and inner polygons (i.e. the holes). We
connect the outer polygon with all the holes such that we can treat
a polygon with holes as a single polygon. We can then apply our
previous method to compatibly decompose the source and target
polygons. While we have shown many examples of compatible
triangulation both in the paper and supplemental video, we also
want to test our algorithm on shapes with complex structure or
completely different topology in the future.
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