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One of the challenges in developing a Brain Computer Interface (BCI) is dealing with the high dimension- 

ality of the data when extracting features from EEG signals. Different feature selection algorithms have 

been proposed to overcome this problem but most of them involve complex transformed features, which 

require high computation and also result in increasing size of the feature set. In this paper, we present a 

new hybrid method to select features that involves a Differential Evolution (DE) optimization algorithm 

for searching the feature space to generate the optimal feature subset, with performance evaluated by a 

classifier. We provide a comprehensive study of the significance of evolutionary algorithm in selecting the 

best features for EEG signals. The BCI competition III, dataset IVa has been used to evaluate the method. 

Experimental results demonstrate that the proposed method performs well with Support Vector Machine 

(SVM) classifier, with an average classification accuracy of above 95% with a minimum of just 10 features. 

We also present a comparison of Differential Evolution (DE) with other evolutionary algorithms, and the 

results show the superiority of DE which implies that, with the selection of a good searching algorithm, 

a simple Common Spatial Pattern filter features can produce good results. 

© 2017 Published by Elsevier Ltd. 
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1. Introduction 

Brain computer interface (BCI) is a device that permits an

alternative channel of communication by sending signals directly

from brain to computer. The computer analyses brain activity

and converts it into decision signals. In the last two decades,

due to its numerous benefits and characteristics, BCI has been

progressively significant among industries and scientific institutes.

BCI has been categorized mainly into two types, namely invasive

BCI and non-invasive BCI ( Sitaram et al., 2007 ). In invasive BCI,

signals are extracted by placing electrodes into the brain skin

(requires surgery). In non-invasive BCI, placement of electrodes is

on the surface of the scalp. Due to its wide range of application,

the BCI system has been used to provide assistance to paralysis,

quadriplegic and amyotrophic lateral sclerosis patients to con-

trol computers and machines, without physical movement using

nerves and muscles, directly by brain signals. At the same time, it

is equally useful for non-disabled individuals to control a hardware

system in a convenient way. A BCI system can also be applied in
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ifferent areas including robotics, biomedical technologies, surgery,

tc. ( Coyle, Ward, & Markham, 2007 ). 

Multiple invasive and non-invasive sources are available to

ecord brain activities. For invasive BCIs electrocorticography

ECoG), single micro-electrode (ME), micro-electrode array (MEA)

nd local field potentials (LFPs) have been used. For non-invasive

CIs, electroencephalography (EEG), magnetoencephalography

MEG), Functional magnetic resonance imaging (fMRI) and Near

nfrared Spectroscopy (NIRS) have been utilized. One of the most

opular choices of BCI system is considered to be EEG due to the

on-invasive EEG electrodes, low hardware cost and transferability.

EG signals also exhibit high temporal resolution ( Hill et al., 2006 ).

hey can be acquired through different ways over different posi-

ions on the brain. The method that requires a subject to imagine

 motor movement is known as Motor Imagery (MI) EEG signals.

I-based EEG signals have been applied to many BCI applications

here these signals have been controlled to open an interface

ith the external environment ( Pineda, 2005 ). 

In the last decade, the use of BCI has increased. Many re-

earchers utilize single trial EEG signals for developing BCI applica-

ions ( Hsu, 2012; Parra et al., 2002 ). Some studies are specific to MI

ata to discriminate between left and right hand movement using

vent related synchronization (ERS)/desynchronization (ERD) ( Hsu,

011 ). However, many studies have been done on multichannel

ata without any feature selection. Not applying feature selection
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Fig. 1. Schematic diagram of brain computer interface with feedback. 
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esults in a reduction of the performance and practicality of the

ystem and also increases the overall computation ( Hsu, 2012 ). 

The fuzzy logic theory is also gaining importance in decision-

aking applications and put challenges to the feasibility of

raditional techniques for EEG signals analysis, recognition, and

lassification ( Nauck & Kruse, 1999 ). Yang, Wang, and Ouyang

2014) presented a study based on adaptive neuro-fuzzy inference

ystem (ANFIS) to classify background EEG from electrical status

pilepticus slow wave sleep (ESES) syndrome patients and controls

sing permutation and sample entropy as features. The average

ccuracy of 89% was recorded. In another study, Herman, Prasad,

nd McGinnity (2017) utilizes interval type-2 fuzzy logic system

IT2FLS) to handle the uncertainties of non-stationary EEG signals

nd presented a method suitable for online BCI development. The

ethod surpasses other state-of-the-art classification methods and

chieved a classification accuracy of 71.2% plus minus 8.4 with

-fold cross validation. Jiang et al. (2017) applied Takagi–Sugeno–

ang fuzzy system (TSK-FS) to detect epileptic EEG signals. They

ntroduced a multi-view learning framework and combine it with

SK-FS to get a better generalization and interpret-ability. The pro-

osed method achieved a Friedman Rank of 3.65 with TSK-FS and

 with multiview TSK-FS. In a study by Datta, Khasnobish, Konar,

nd Tibarewala (2015) , classification of cognitive activities by IT2FS

as been proposed. Hurst Exponents, Approximate Entropy, Adap-

ive Autoregressive and Hjorth Parameters are used as features.

he algorithm generates a classification accuracy of 85.33%. 

Feature selection techniques have been used in the literature

o improve classification accuracy. Some of the most common

eature selection and dimensionality reduction algorithms include

rincipal component analysis (PCA) ( Yu, Chum, & Sim, 2014 ),

ndependent component analysis (ICA) ( Guo, Wu, Gong, & Zhang,

013 ), sequential forward and backward searches ( Chandrashekar

 Sahin, 2014 ). Recently, researchers are exploring the applications

f evolutionary algorithms such as particle swarm optimization

 Kennedy, 2011 ), differential evolution (DE) ( Qin, Huang, & Sug-

nthan, 2009 ), artificial bee colony (ABC) optimization ( Karaboga,

005 ) in BCI applications. 

Typical feature selection techniques have few drawbacks: the

lassification is poor even if the variance is good, which may be

ecause of the redundant features that simple feature selection

lgorithm failed to remove. Simple features extraction techniques

sually transform features linearly to reduce dimensionality with-

ut considering the classifier stage. If the linear transformation

f the original features reduces the dimensionality, we still need

o consider the original features for transformation. Evolutionary

lgorithms. on the other hand, has shown some success in a task

hat has large search space of features. The optimal features subset

s only employed for classification not the all features and this

ethod also optimizes the classifier performance. 

It is still a hard problem to find optimal feature set using fea-

ures selection algorithms. Different studies have been performed

hat applied evolutionary algorithms to reduce the feature set.

o the best of our knowledge, this is the first work that uses a

ifferential evolution (DE) based technique to select discriminating

eatures in MI-based EEG ( Price, Storn, & Lampinen, 2006 ). To

valuate the proposed method, different potential feature selection

lgorithms have been implemented with a set of classifiers. Our

ethod can effectively increase the accuracy, decrease the number

f features and reduce the computation complexity. 

In this paper, features are extracted through common spatial

attern (CSP) filters and, to generate the optimized feature subset

or each subject, the DE optimization algorithm has been used, a

ype of evolutionary algorithm. The objective function for DE is

lassification accuracy. For establishing a comparison, other evo-

utionary algorithms like simulated annealing (SA), artificial bee

olony (ABC), ant colony optimization (ACO) and particle swarm
ptimization (PSO) are also implemented and the results of these

lgorithms have been compared. For classifying data, five different

lassifiers have been used to generate balanced and generalized

esults. 

The rest of the paper is organized as follows. Section 2 contains

etails about related methods and techniques used in BCIs along

ith brief details of evolutionary algorithms. Section 3 is about the

esults, analysis and a comparison with the results of techniques

hat have not used any feature selection algorithm. In Section 4 ,

e conclude the paper and provide details about future work

irections. 

. Materials and methods 

A typical BCI system contains a signal acquisition part, followed

y pre-processing, feature extraction and a selection algorithm; the

ast part is to classify the selected features and generate decision

ignals for control or communication as shown in Fig. 1 . Different

eature extracting techniques have been used in the literature

o convert the raw EEG signal into useful features, e.g. common

patial pattern (CSP) ( Ramoser, Muller-Gerking, & Pfurtscheller,

0 0 0 ), AAR parameters ( Guger, Edlinger, Harkam, Niedermayer, &

furtscheller, 2003 ), Wavelet coefficients ( Baig et al., 2014; Güler &

beyli, 2005 ), power spectral density ( Trejo, Rosipal, & Matthews,

006 ), etc. In this study, we have implemented common spatial

attern (CSP) filters for extracting features. For subset generation,

 Differential Evolution based evolutionary algorithm has been

sed in off-line training, and different classifiers have been used

o classify the features. 

.1. Data acquisition and pre-processing 

The dataset used in this experiment is from BCI competition

II, dataset IVa provided by the Fraunhofer FIRST, Intelligent Data

nalysis Group ( Dornhege, Blankertz, Curio, & Mller, 2004 ). The

EG signal was recorded from five healthy subjects sitting in

 chair, with arms in the rest position. The data was captured

ithout any feedback from the initial 4 sessions. The visual stim-

li became active from 3.5 s. The task is to generate the motor

magery signals related to left and right hand movement or foot

ovement based on the clues shown. The data were acquired

rom 118 channels, and a total of 280 trials for each subject

as recorded. A BrainAmp amplifier was used to record data

rom 128-channel Ag/AgCl electrodes placed using the extended

nternational 10/20 position system. The signals were then filtered

sing a Band-pass filter of 0.05–200 Hz. The sampling rate of the

ata is 10 0 0 Hz, which was down-sampled to 10 0 Hz for analysis

urposes. EEG signal pre-processing is important to remove arte-

acts as well as to extract frequencies of interest. To get the μ and

bands of the EEG signals a fifth-order Butter worth band-pass

lter of pass band 8–30 Hz was used. All 118 channels have been

ltered and used for further processing. 
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2.2. Feature extraction 

After processing the acquired EEG data, the next step is to

extract features from that data. The purpose of feature extraction

is to enhance the variance between classes and improve the

classification. Feature extraction favorably affects the classification

process, as better features directly contribute to classification

accuracy. To improve classification, different feature selection algo-

rithms are available in the literature; for extracting features from

motor imagery EEG signals, the best algorithm is a CSP ( Ramoser

et al., 20 0 0 ). In this paper, we use CSP to extract features from all

118 EEG channels. Details of the CSP algorithm are given below: 

2.2.1. Common spatial pattern 

Motor Imagery EEG signals are generated because motor

movement, practical or imaginary, causes an increase or decrease

in neural activities called event-related synchronization (ERS)

or de-synchronization (ERD) ( Pfurtscheller & Da Silva, 1999 ). To

differentiate between ERS and ERD, CSP has been used widely

because it has the ability to maximize the difference in variance

between the two classes ( Koles, Lazar, & Zhou, 1990 ). 

Let X l and X r be the left and right hand MI EEG matrix with a

dimension of NxM , where N is the total number of channels used

and M is the number of samples per channel. The normalized spa-

tial co-variance of left and right EEG signals can be calculated as: 

 l = 

X l X 

T 

l 

trace 

(
X l X 

T 

l 

) C r = 

X r X 

T 

r 

trace 

(
X r X 

T 

r 

) (1)

where X 

T represents the transpose of X and trace is the sum

of all the diagonal entries of a matrix. The average normalized

co-variance matrices C l and C r can be obtained by averaging

over all trials for each group. The combined average normalized

co-variance matrix can be given as 

 = C l + C r = V 0 �V 

T 
0 (2)

where V 0 is the eigenvector matrix and � is the corresponding

diagonal matrix of eigenvalues. The whitening transformation

matrix P = �− 1 
2 V 

T 
0 

converts the average normalized covariance

matrices as follows: 

S l = P C l P 
T (3)

S r = P C r P 
T (4)

where S l and S r have common eigenvectors and the sum of their

diagonal matrix is an identity matrix, 

S l = V �l V 

T S r = V �r V 

T �l + �r = I (5)

The eigenvector with the largest eigenvalue corresponds to one

class and the eigenvector with smallest eigenvalue corresponds

to the other class. The whitening transformation of EEG onto the

eigenvectors of largest eigenvalues is optimal for separating the

variance in the two signal matrices. The projection matrix can be

computed as: 

 = V 

T P (6)

where W is the projection matrix, and the original EEG can be

transformed into uncorrelated components by multiplying EEG

with the projection matrix W: 

Z = W X (7)

where Z is the EEG source component including common and

specific component of different tasks. The original EEG can be

reconstructed by multiplying the inverse of W with Z: 

X = W 

−1 Z (8)
he columns of W 

−1 are known as spatial patterns that are con-

idered to be the EEG source distribution vector. The first column

f W 

−1 shows the largest variance of one task and the last column

hows the smallest variance of the other task. A time window of

.5 s has been selected for CSP and all data samples were used.

he window of 3.5 s is selected because the visual stimulus is

ctive for 3.5 s and we have used all the samples in the active

ime window for CSP. As the sampling rate is 100 Hz, so a total of

50 samples were used to calculate CSP for each trial. 

.3. Feature selection 

The features extracted from EEG signals are usually large in size

or a single channel and increase proportionally for multiple chan-

els. Classifying a large number of features requires more time

nd computation. To overcome this problem, there is a need for

 feature selection algorithm to generate a subset of features that

re more closely related to the mental task than other features. 

The feature selection algorithms may generally be classified

nto three categories, Filtering, Wrapper and Hybrid techniques.

n the filtering technique, an independent evaluation criterion

uch as distance or information measure has been used to rank

eatures. Most of the filtering techniques are high speed, provide

ndependence from the classifier and stability, but they are of

ow accuracy ( Alotaiby, El-Samie, Alshebeili, & Ahmad, 2015 ).

rapper Techniques use a classification algorithm to evaluate the

eature subset. The Wrapper uses a predictor and its output as

n objective function to evaluate the subset. The advantages of

sing wrapper techniques are the accuracy, as wrappers generally

chieve better recognition rates than filters since they are tuned

o the specific interactions between the classifier and the dataset. 

Wrappers have a mechanism to avoid over-fitting, as they typi-

ally use cross-validation measures of predictive accuracy. The dis-

dvantages are slow execution and the lack of generality: the solu-

ion lacks generality since it is tied to the bias of the classifier used

n the evaluation function. The optimal feature subset will be spe-

ific to the classifier under consideration ( Chandrashekar & Sahin,

014 ). The hybrid feature selection method uses a combination of

ltering and wrapper techniques to select features. Some of the

lgorithms used for EEG data are discussed in the next subsection.

.3.1. Feature selection methods for EEG 

Different f eature selection algorithms have been used in lit-

rature to generate an optimal feature subset so that the overall

omputational complexity is reduced and the classification accu-

acy is improved. A genetic algorithm (GA) based feature selection

lgorithm along with SVM, neural network and LDA as classifiers

as been suggested by Garrett, Peterson, Anderson, and Thaut

2003) . The method used GA to search the feature space and

enerate an optimal feature subset, SVM, was used to evaluate

he fitness of the generated feature subset. The results suggested

hat 72% of the test data had been correctly classified using SVM.

ohonen’s learning vector quantization (LVQ), commonly known

s distinction sensitive learning vector quantization (DSLVQ),

as used to overcome the problem of feature dependency us-

ng a weighted distance function. The results demonstrated a

lassification accuracy of 80%. The major problem with LVQ is

tatic preselection which cannot be updated with additional data

 Pregenzer, Pfurtscheller, & Flotzinger, 1996 ). 

A technique for feature selection of an EEG signal using an

ntelligent genetic search process had been presented for epileptic

eizure prediction. The features used in this experiment were curve

ength, energy, spectral entropy, sixth power, non-linear energy,

nergy of wavelet packets, second and third-level features. For

valuating the subset performance, a probabilistic neural network
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Fig. 2. System diagram for dividing the EEG feature space. The feature space is searched in a wrapper fashion directed by classifier performance. 
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PNN) was used as a classifier and managed to restrict the classi-

cation error to 0.09 ( D’Alessandro et al., 2003 ). Another wrapper

ethod based on genetic algorithm and SVM was proposed for

utomated feature selection on two different datasets, recorded

ith the TTD system ( Birbaumer et al., 1999 ) and neural informa-

ion processing systems (NIPS) 2001 ( Blankertz, Curio, & Muller,

002 ). The results displayed an average improvement of 8.11% in

lassification accuracy for the TTD dataset and 3.15% for the NIPS

ataset ( Schroder, Bogdan, Hinterberger, & Birbaumer, 2003 ). 

Gupta, Agrawal, and Kaur (2015) implemented a multivariate

eature selection algorithm to increase the classification accuracy

f the LDA and SVM for mental tasks using EEG signals. Atkinson

nd Campos (2016) proposed feature selection technique for emo-

ion recognition from EEG signals. Their method utilizes mutual

nformation for feature selection and SVM for classification. In

nother experiment, Lee, Anaraki, Ahn, and An (2015) proposed

 feature selection algorithm based on fuzzy rough theory and

ulti-tree genetic programming to improve the classification

ccuracy of brain signals data measured by fNIRS. Adam et al.

2016) implemented angle modulated simulated Kalman filter to 

elect features along with neural network as a classifier. They

ound the detection performance of the method is better than

he other feature selection method with random weight neural

etwork classifier. In another study, a wrapper technique based on

ultiobjective optimization using deep belief networks (DBN) clas-

ifier for feature selection application has been studied. The results

howed that performance of DBN decreases with a large number

f features and they suggest that it is necessary to determine the

uitable number of hidden layer units for efficient classification. 

In the literature, Genetic algorithms have been widely used for

earching feature space. The effectiveness and searching power for

eature selection of other evolutionary algorithms has not been

tudied in detail for EEG data. In this paper, we have implemented

 novel hybrid method that uses CSP to extract feature space, then

sed Differential Evolution with a classifier (Wrapper) to discover

he optimized feature subset. An architecture of the system is pre-

ented in Fig. 2 . The feature selection part has two main modules,

he first module is the feature subset generation using differential

lgorithm and the second module is the classification algorithm

sed to evaluate the credibility of a subset towards classification

ccuracy. 

.4. Evolutionary feature selection methods 

Evolutionary algorithms gained a lot of interest for their ap-

lications in feature selection. Differential evolution (DE) is the

ain focus of this work, as well as a comparison with other

volutionary algorithms like simulated annealing (SA), particle

warm optimization (PSO), artificial bee colony (ABC) and ant

olony optimization (ACO). We have implemented a modified
ersion of DE based on a float optimizer, as no well-known binary

ersion of DE is currently available that can yield results as sound

s generated by the above mentioned nature-inspired algorithms.

o give a comparative study, other evolutionary algorithms have

een implemented in MATLAB and their results are compared.

etails of these algorithms are given below: 

.4.1. Differential evolution 

Differential evolution (DE) is a vector-based search algorithm

imilar to a pattern search or genetic algorithm and has a good

onvergence property. It is a stochastic search algorithm with an

bility of self-organization without using derivative information.

ike GA, DE also uses the crossover and mutation concepts as

ifferential operators, but it has explicit updating equations ( Qin

t al., 2009 ). The process of DE is shown in Fig. 3 . The algorithm

tarts with a randomly selected solution x i , where i = 1, 2, 3, ... , n.

nd 3 randomly selected distinct vectors x p , x q , x r to generate a

ew donor vector v by mutation 

 

t+1 
i 

= x t p + F 
(
x t q − x t r 

)
(9) 

here F ε[0, 2] is the differential weight and t denotes the cur-

ent iteration. The crossover is controlled by Cr ε [0, 1]. The j th

omponent of each v i , update: 

 

t+1 
j,i 

= 

{
v j,i i f r i ≤ C r or j = J r , 

x t 
j,i 

r i > C r and j � = J r , 
(10) 

The solution is selected and updated by minimizing the

bjective function by the following equation: 

 

t+1 
i 

= 

{
u 

t+1 
i 

i f f 
(
u 

t+1 
i 

)
≤ f (x t 

i 
) , 

x t 
i 

otherwise. 
(11) 

here f() is the objective function; in our case is the classification

ccuracy ( Khushaba, Al-Ani, & Al-Jumaily, 2011 ). The Population

ize has been set to 50 and a total of 100 iterations has been used.

he crossover probability Cr used in our experiment is 0.5 and

he initial and final inertia weights are 0.95 and 0.35 respectively.

he other population-based algorithms used in this study are

iscussed briefly below. 

.5. Particle swarm optimization 

Particle swarm optimization (PSO) is one of the most popular

volutionary algorithms and has been applied to almost every

eld of research where there is a need for optimization. PSO

lgorithms regulate the velocities and trajectories of individual

lements called particles in order to move through the space to

nd the objective function. The particle movement is based on

 stochastic and a deterministic component. Each particle in a

warm is attracted to the position of the current global best and
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Fig. 3. Flowchart of differential evolution algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Block diagram of particle swarm optimization. 
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its own best location. When a particle finds a better location, it

updates the current location and considers the current best for

all n particles at any time. The main goal is to search for the

global best among all current best solutions until the objective

function does not improve further ( Kennedy, 2011 ). The update in

a particle’s velocity can be calculated as 

v t+1 
i 

= θv t i + αε1 

[
g ∗ − s t i 

]
+ βε2 

[
x 

∗( t ) 
i 

− x t i 
]
, (12)

where x i and v i are the position and velocity vectors for particle

i , respectively. ε1 and ε2 are two random vectors with each entry

between 0 and 1. α and β are the learning parameters, g ∗ is the

current global best and x 
∗( t ) 
i 

is the current best for particle i at

time t. θ is the inertia function used to stabilize particle motion.

The updated position can be calculated as 

x t+1 
i 

= x t i + v t+1 
i 

(13)

The flowchart for PSO is given in Fig. 4 . In our experiment, the

swarm size is 20, the inertia weight is 0.72, damping ratio is 1,

individual learning coefficient and global learning coefficient have

been set to 1.4962. 

2.5.1. Simulated annealing 

Simulated annealing (SA) is a trajectory-based technique that

uses a random search to find the global optimization, and is one

of the earliest nature-inspired algorithms. 

The basic theme of SA is to use random-search algorithms like

a Markov chain and keep accepting those changes that improve
he objective function ( Szu & Hartley, 1987 ). The SA algorithm can

e summarized as pseudo code in Algorithm 1 ( Yang, 2014 ) . 

.5.2. Ant colony optimization 

Ant colony optimization (ACO) utilizes the behavior of ants to

nd the optimal solution. Ants live in colonies and communicate

ith the environment in groups or swarms. The optimization is

chieved based on the way ants communicate indirectly the di-

ection to each other while searching for food. The first algorithm

as presented by Marco Dorigo in his PhD thesis ( Dorigo, Birattari,

 Stutzle, 2006 ) and after that many variants have been presented.

he main point to follow in this algorithm is the probability of

hoosing the route and evaporation rate of a pheromone. 

The probability of selection of a particular node i to choose the

oute from node i to j can be calculated as 

p i j = 

φα
i j 

d 
β
i j ∑ n 

i, j=1 φ
α
i j 

d 
β
i j 

(14)
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Algorithm 1: Simulated annealing. 

Data : Initial temperature T 0 and initial guess x 0 
Result : Best guess x ∗ and best function f ∗
Objective function f (x ) Initialization of T 0 and x 0 ; 

Set the final temperature T f and max number of iterations N; 

Define αε(0 < α < 1) ; 

while T > T f and t < N do 

Select ε from Gaussian distribution; 

Randomly shift to a new location: x t+1 = x t + ε; 

Compute � f = f t+1 (x t+1 ) − f t (x t ) ; 

Select new solution if better; 

if solution not improved then 

Select a random number r; 

Select if p = exp[ −�/T ] > r; 

Update best x ∗ and f ∗; 

t = t + 1 ; 
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Fig. 5. Ant colony optimization algorithm. 
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here α and β are the influence parameters and must be greater

han zero, typically 2. φij is the concentration of pheromone on

oute i to j and d ij is the desirability of the route. The pheromone

oncentration usually varies with time as 

( t ) = φ0 e 
−γ t (15) 

here φ0 is the initial concentration and γ is the constant rate

f pheromone evaporation ( Dorigo et al., 2008 ). The flowchart of a

imple ACO is shown in Fig. 5 . A total of 20 iterations has been

sed in this experiment with an ant population size of 10 and

vaporation rate of 0.05. α, β and initial pheromone were set to

. 

.5.3. Artificial bee colony 

The artificial bee colony (ABC) algorithm was proposed by

araboga in 2005 and is an optimization algorithm utilizing the

oraging behavior of a honey bee swarm ( Karaboga, 2005 ). In

he ABC algorithm, the swarm or colonies are divided into three

ifferent categories of bees: employed, onlookers and scout bees.

he assumption is that, for every food source there is only one

rtificial employed bee, i.e. the number of employed artificial bees

n a colony is equal to the number of food sources around a hive.

he area between hive and food source becomes the dancing area

hat can be explored by employed bees. A scout is an employed

ee whose food source has been abandoned; they start searching

or new food sources. Onlookers select the food source based on

n employed bees dance. A simple explanation of the different

teps involved in the ABC algorithm is given below: 

1. Initialize food source for all employed bees. 

2. Repeat Step 3 to Step 6. 

3. Every employed bee calculates nectar of food source and dances

in the hive after going to a food source and determining a

neighbor source. 

4. The onlooker watches the dance of employed bees to choose a

source based on their dance and goes to that source and evalu-

ates its nectar amount. 

5. Scout bees determine and replace new food sources for aban-

doned food sources. 

6. Output the best food source found so far. 

In the ABC algorithm, the possible solutions are the positions

f food sources, and the fitness of this solution is related to the

ectar amount. The first step is to initialize the population using

andomly distributed values. After initialization the search process

f employed, onlooker and scout bees starts. The employed bees
enerate a modification of a source in their memory and mem-

rize it if the amount of nectar is greater than the current food

ource. After each iteration, the employed bees share the position

ith the onlookers on the dance area. The onlooker evaluates

he amount of nectar at a new food source position and selects

ccordingly. The scout bees replace the abandoned sources with

ew sources produced randomly ( Karaboga, 2010 ). 

.6. Classification 

The selection of a classification algorithm is of vital impor-

ance in some scenarios. In this study, we utilize five different

lassifiers to get a generalized view of the hybrid method. The

ethods include linear discriminant analysis (LDA) that attempts
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Fig. 6. Plot of mean square error against number of features selected by different evolutionary algorithms using SVM as a classifier for 5 subjects: (a) subject aa; (b) subject 

al; (c) subject av; (d) subject aw; (e) subject ay. 
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to transform one dependent variable as a linear combination of

other features ( Mika, Ratsch, Weston, Scholkopf, & Mullers, 1999 ),

Support Vector Machine (SVM) which constructs a hyper-plane in

a high-dimensional space to separate the classes ( Hearst, Dumais,

Osman, Platt, & Scholkopf, 1998 ), K-nearest neighbors (k-NN)

which utilizes a voting-based mechanism based on neighbors

with the sample being assigned to the class most appear in its

k nearest neighbors ( Fukunaga & Narendra, 1975 ), Naive Bayes

(NB) classifiers, simple probabilistic classifiers, based on Bayes’

theorem with an assumption of naive independence between
 a  
eatures ( Leung, 2007 ), Regression Tress which generates decisions

sing a tree-like graph or model and their possible consequences

 Breiman, Friedman, Stone, & Olshen, 1984 ). 

. Results and discussion 

To evaluate and compare the performance of the presented

E feature selection method, some well-known population-based

eature selection algorithms were also implemented. Each of the

lgorithms was tested on the same dataset. In the experiment,
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Fig. 7. Average Classification accuracy plot of 5 subjects using differential evolution algorithm for feature selection using different classifiers: (a) k-NN; (b) LDA; (c) Naive 

Bayes; (d) Regression tree; (e) SVM. 
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b  
ve different classifiers were used to evaluate the classification

ccuracy of DE feature selection method including LDA, SVM,

-NN, Naive Bayes and regression trees. For other feature selection

lgorithms, only SVM and LDA were implemented. 

Data from all five subjects in BCI competition III dataset IVa

ave been used for training and testing purposes. The dataset

ontains a total of 280 samples for each subject with 118 channels.

fter applying CSP, 236 features were extracted from all five sub-

ects. A 10-fold cross-validation has been used to get an average

lassification accuracy. 
The results in Fig. 6 shows the mean square classification error

f five subjects with different f eature selection techniques with re-

pect to the number of features selected, using SVM as a classifier.

fter a certain number of features, the mean square error (MSE)

emains almost steady. For example, the subject aa maintains an

verage of 10% MSE with 9 features or more. Simulated annealing

hows the worst classification compared to other algorithms, and

ifferential evolution (DE) and artificial bee colony (ABC) generate

aximum classification accuracy for all five subjects with DE

eating ABC in some cases. The subject av shows a high mean
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Fig. 8. Mean square error against number of features selected by different evolutionary algorithms using LDA as a classifier for 5 subjects: (a) subject aa; (b) subject al; (c) 

subject av; (d) subject aw; (e) subject ay. 
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square error compared to other subjects with an average 15 to

20%. The best MSE is of 0% with the number of features 18 and 19

for the subject aw. 

Different classifiers have been used to evaluate the perfor-

mance of the proposed method and the results are recorded in

Fig. 7 . SVM and LDA perform well compared to kNN, Naive Bayes

and Regression Trees for all the five subjects, with an average

classification of around 90%. The best results are obtained for

feature subset sizes of 8 or more. LDA and SVM classifiers generate

the maximum classification accuracy. The lowest classification rate
s shown by subject av followed by subject aa and the maximum

lassification accuracy has been achieved by subject aw for all

lassifiers. For subject av, the possible reason not to generate a

etter classification can be due to weak brain signals or lack of

nterest in the experiment by the subject. 

In Fig. 8 , LDA has been used for classification. The graph shows

hat ABC results are stable compared to other classification algo-

ithms for LDA, with a lowest mean square error for subjects al

nd ay. It can be seen that the second-best algorithm for feature

election is DE whose classification accuracy is approximately
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Table 1 

Number of features selected for 5 subjects and 5 evolutionary algorithms along with average classification accuracy of individual subjects using all features and a feature 

subset generated by evolutionary algorithms, reduction of features using DEFS and gain in accuracy. 

Subject aa al av aw ay Subset selection technique 

Number of features selected 13 19 20 18 18 DEFS 

14 19 14 12 6 PSO 

17 14 18 19 17 ABC 

12 19 18 13 15 ACO 

19 7 6 5 13 SA 

Average accuracy using all features 82 ± 3.94% 94 ± 2.38% 70 ± 4.11% 87 ± 1.91% 87 ± 3.23% –

Average accuracy using selected feature 95.8 ± 2.40 98.8 ± 0.79 89.8 ± 3.36 99.2 ± 0.72 96.5 ± 1.11 DEFS 

90.8 ± 2.74 96.9 ± 1.32 73.5 ± 5.22 96.7 ± 1.13 94.1 ± 2.27 PSO 

91.9 ± 1.77 97.2 ± 2.54 87.8 ± 2.91 98.9 ± 0.50 96.6 ± 1.47 ABC 

82.4 ± 3.43 91.5 ± 3.06 70.8 ± 3.52 94.3 ± 2.95 83.7 ± 2.23 ACO 

86.0 ± 2.82 94.9 ± 1.60 67.0 ± 4.21 94.8 ± 2.25 94.5 ± 1.63 SA 

Features reduction ratio (DEFS) 94% 91% 91% 92% 92% –

Increase in accuracy (DEFS) 13.8% 4.8% 19.8% 12.2% 9.5% –

Fig. 9. Box plot of average classification accuracy for the 5 subjects using DEFS and 

SVM. 
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Fig. 10. Box plot of average classification accuracy by different classifiers using 

DEFS. 
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qual to that of ABC. The MSE becomes stable after the feature

ubset size becomes 12 or more for almost all cases. 

Table 1 shows the number of features that generates the maxi-

um classification accuracy along with the corresponding classifi-

ation rate and subset generation algorithm. DE generates the best

esults with an average of 19 features and a classification accuracy

f above 90%. The results show a reduction of 90% in the features

ith an improvement of 8 to 10% in classification results. 

The box plot in Fig. 10 shows the average classification accuracy

f all five subjects through different classifiers while using DE for

eature subset generation. The results show that SVM is the best

lassifier for this problem with an average classification accuracy

f 97%, and the variation is in between 88 and 100%. Regression

ree shows a minimum accuracy of 86% with a swing between

5 and 95%. The LDA performs well with a performance measure

pproximately the same as SVM. 

The individual subject performance has been shown in

ig. 9 with the help of a box plot. The plot shows that the sub-

ects al and aw achieved the maximum classification accuracy of

00% for most of the cases. There is a slight reduction in accuracy

or subject ay, which swings around 98%. Subject aa has the ability

o generate an accuracy of 95% for most of the cross-validations,

nd the lowest performance has been recorded for subject av with

n average of 85%. 

Table 2 shows a comparison of previously published techniques 

or classification of motor imagery EEG signals. The references
entioned applied their proposed method on the same dataset

sed in our experiment. Wang et al. used CSP and Auto-regressive

AR) models for feature extraction to achieve an accuracy of

4.17%. The subjects al, aw and ay showed almost 100% of classi-

cation accuracy, but this method used a bootstrap aggregation to

ake the final decision which makes the method computationally

xpensive. CSP was applied for subjects al, aw and ay whereas CSP

long with AR and LDA were used for subjects aa and av, which

akes the algorithm complex and adaptive ( Wang, Gao, & Gao,

006 ). With the implementation of discriminant filter CSP for all

hannels, Thomas ∗, Guan, Lau, Vinod, and Ang (2009) managed

o produce a classification accuracy of 91.57%. Ang, Chin, Zhang,

nd Guan (2008) applied filter-bank CSP for feature extraction and

chieved an accuracy of 88%. 

Lu et al. (2015) maximized the classification accuracy to 68.94%

y applying structure constrained semi-non-negative matrix fac-

orization. Zhang, Zhou, Jin, Wang, and Cichocki (2015) generated

eatures using sparse filter-band CSP and got a classification ac-

uracy of 92.05%. Das, Suresh, and Sundararajan (2016) proposed

 method for subject specific filter selection using cognitive fuzzy

nference system of type 2 (SS-CFIS). The method has gain an in-

rease in performance by 15–18% compared to CSP algorithm. They

ave achieved a classification accuracy of 77.75% with a standard

eviation of more than 16% with the SS CFIS approach. In another

tudy, Das, Sundaram, and Sundararajan (2016) presented a robust

SP algorithm for motor imagery EEG signals. The algorithm uti-
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Table 2 

Comparison of feature selection method with proposed technique. 

Contributor Accuracy Technique aa al av aw ay 

Wang et al. (2006) 94.17% CSP and Auto-regressive models 95.5% 100% 80.6% 100% 97.6% 

Thomas et al. (2009) 91.75% Discriminant Filter CSP 90.21% 98.68% 77.80% 97.85% 94.23% 

Ang et al. (2008) 88% Filter bank CSP 94% 97% 86% 93% 93% 

Lu et al. (2015) 68.94% Structure constrained semi-non-negative matrix factorization 64.21% 92.67% 60.00% 72.58% 55.56% 

Zhang et al. (2015) 92.05% Sparse Filter bands CSP 91.64% 98.67% 77.43% 98.03% 94.69% 

Das et al. (2016) 77.75% Subject-specific CFIS 82.14% 100% 63.27% 83.04% 60.32% 

Proposed method 96.02% CSP with DE for feature selection 95.8% 98.8% 89.8% 99.2% 96.5% 

Table 3 

Summary of channel selection method for motor imagery EEG evaluated on BCI competition III dataset IVa. 

Techniques Channel selection strategy Classifier Performance metrics 

(Average) 

No of channels selected/Total 

no. of channels (Average) 

Yong, Ward, and Birch (2008) Maximizing variance of CSP Linear discriminant analysis (LDA) 73.5% 13/118 

Meng, Liu, Huang, and Zhu (2009) Heuristic algorithm based on L1 

norm 

SVM with Gaussian RBF 89.68% 20/118 

Arvaneh, Guan, Ang, and Quek (2011) Recursive feature elimination using 

Sparse CSP 

SVM 82.28% (SCSP1) 22.6/118 

79.28% (SCSP2) 7.6/118 

Shenoy and Vinod (2014) Minimum redundancy maximum 

relevancy (mRMR) 

SVM 90.77% 10/118 

Das and Suresh (2015) Cohen’s d effect size SVM 85.85% 9.20/118 
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lizes a self regulated interval type 2 neuro fuzzy inference system

in for handling EEG signals. The mean classification accuracy

has increased with these proposed techniques, also the standard

deviation which is more than 10% in each case. In comparison,

the proposed method utilizes the DE algorithm to generate an

optimal features subset and the subset is then made available to

the classifier to achieve maximum results. The features have been

extracted by applying CSP to EEG data from all the channels. The

results showed that subjects al and aw have a maximum accuracy

of almost 100%, almost the same as other algorithms. Subjects aa

and ay displayed an accuracy of above 95% and most importantly

the classification accuracy for subject av is averaged around 90%

which is better than for all other algorithms. 

Table 3 shows a summary of channel selection algorithm for

motor imagery EEG signals. The classification accuracy after apply-

ing channel selection 90% (maximum). With the proposed feature

selection method, the classification accuracy is of 96% with a

variance of less than 3%. 

Subject variability is observed to have a notable affect the

performance as seen in Table 2 . We observe that the classification

accuracy of subject aa, al, aw and ay are much higher than av. This

trend (effect) can also be seen in feature selection using evolution-

ary algorithm. Because we choose wrapper techniques, the effect

has been minimized (as seen from the results). The difference in

patterns of different subjects cannot be seen from the naked eye. 

4. Conclusion 

The benefit of applying a feature selection algorithm is that

it reduces computational complexity and increases feature set

effectiveness by selecting relevant features. Once a feature subset

is selected, it requires a classifier to generate control signals. This

paper presents a new hybrid method for feature selection of an

EEG signal for the MI-related task. The proposed DE-based EEG

feature selection successfully generates the optimal feature subset

based on the maximum classification accuracy of a subset feature.

The method uses a simple feature extraction technique i.e. CSP

and produces promising results. The dataset used to evaluate the

proposed method is dataset IVa from BCI competition III and the

method successfully enhances the classification accuracy of the

dataset. The results showed that the average of 96.02% classifica-

tion accuracy was achieved with an increase of 2% in classification
ccuracy compared to other methods in the literature. SVM and

DA prove to be the best classifiers for DE-based feature selection;

oth classifiers showed an accuracy of 95% with a deviation of 0.1.

ubjects al and av produced an average accuracy of almost 100%,

a and ay showed a mean classification accuracy of 95% and av

howed an average of 88%. Preliminary results of the presented

ethod show a simple feature extraction technique can produce

emarkable results. The proposed algorithm is slow compared

o the typical feature selection algorithms and the classifier of

he wrapper technique make it even more slower. However, we

rgue that it has significant benefit that over-weigh the limitation

f slow operation. A notable benefit of using the evolutionary

lgorithm is that it is applied only once to select the best features

elated to an application. Once the set of optimal features is

btained, then it is simply a classification problem which can

e processed in much efficient manner. The results show the

ffectiveness of the presented feature selection method, and future

ork includes more extensive testing of evolutionary algorithms

nd its application to an on-line BCI system. 
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