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Abstract—This paper presents a new method to synthesize
full body motion for controlling humanoid robots in highly
constrained environments. Given a reference motion of the robot
and the corresponding environment configuration, the spatial
relationships between the robot body parts and the environment
objects are extracted as a representation called the Interaction

Mesh. Such a representation is then used in adapting the refer-
ence motion to an altered environment. By preserving the spatial
relationships while satisfying physical constraints, collision-free
and well balanced motions can be generated automatically and
efficiently. Experimental results show that the proposed method
can adapt different full body motions in significantly modified
environments. Our method can be applied in precise robotic
controls under complicated environments, such as rescue robots
in accident scenes and searching robots in highly constrained
spaces.

I. INTRODUCTION

Controlling humanoid robots to work in constrained en-

vironments is a challenging task. Imagine scenarios such as

searching for survivors in a ruin or navigating in a factory after

an explosion, the movements of the robot must be precisely

controlled due to the potential collision with surrounding

obstacles. Global path planning is one of the most commonly

used motion synthesis algorithms for controlling humanoid

robots nowadays. Given the start and goal configurations of

a robot, such as the 3D locations or joint angles of the body

parts, a collision-free motion is computed in the configuration

space. In early works [1], Rapidly-exploring Random Tress

(RRT) had been applied for solving various problems including

2D path planning and a 6-DOF PUMA arm motion planning.

Since then, researchers successfully extended RRT to create

collision-free motions for controlling humanoid robots [2],

[3], [4]. Yamane et al. [5] synthesized character motions like

moving objects in a 3D virtual environment.

While the effectiveness of RRT has been verified by numer-

ous researches, its major shortcoming lies in the computational

complexity. With the increase of the number of DOF, the

computation cost rises exponentially. This drawback becomes

more significant when planning the full body motion of a

humanoid robot in constrained environments, because the

randomly sampled configurations are likely to cause collisions

and will be discarded.

The fundamental problem lies in the representation of the

robot and the surrounding objects in the configuration space.
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In traditional motion planning algorithms, the configuration

space separately encodes the information of the robot and the

objects, such as their respective positions and orientations,

instead of their relative relationships. Sampling movements

in such a representation usually results in a large number of

collisions, as there is no explicit quantity to describe how close

the robot’s parts are to the surroundings. For the same reason,

it is also very difficult for the robot to maintain a relative

distance with the surrounding objects throughout a movement,

especially in complex environments.

In order to reduce the dimensionality of the configuration

space for efficient encoding of the spatial relationships be-

tween the robot and the environment, Ho et al. [6] proposed

to use Topology Coordinates [7] for synthesizing close interac-

tions such as twisting the limbs between two Nao robots [8] in

real-time. Topology Coordinates is an abstract representation

and has been applied to efficiently synthesize various kinds of

complex motions and manipulations such as interacting with

non-rigid materials like a t-shirt [9], [10] and regrasping move-

ments [11]. The major limitation of the Topology Coordinates

is that it can only represent the spatial relationships of motions

that involve tangles. In addition, the volume information of the

robot’s body segments is not considered, making it unable to

guarantee collision-free movements.

To tackle this problem, Ho et al. [12] proposed the Interac-

tion Mesh to represent the spatial relationships of a character

with its surrounding environment or another character. It is,

however, unclear how the method can be extended to create

physically valid movements for robotic controls. Zarubin et al.

[13] attempted to combine topological representation including

Topology Coordinates and Interaction Mesh, as well as low-

level information such as the location of the end-effector, for

robotic planning. The method had been successfully applied

for planning the motion for reaching tasks on the KUKA LWR

4 robotic arm in a dynamic environment. In this research,

we focus on adapting full-body motions to the changes of

constrained environments.

In this paper, we propose a new method to synthesize full

body motion of humanoid robots adapting to the changes

of the environment (Fig. 4 and 5). To facilitate efficient

planning, we utilize Interaction Mesh [12] to encode the

spatial relationship between body segments and nearby objects

into the configuration space representation. Given a reference

motion of a robot and its corresponding environment, we

can synthesize a new motion in an altered environment by

minimizing the distortion of the Interaction Mesh. Planning



Fig. 1. The overview of our proposed method.

with the Interaction Mesh is superior to traditional algorithms

in many aspects. First, operators do not have to define/guide

the target trajectories of the joints, as the mesh extracts

implicit relationships from examples automatically. Second,

it reduces the complexity of the motion synthesizing problem

by abstracting major relationships.

We demonstrate our algorithm by controlling the Nao robot

under highly constrained situations. We show that our system

can automatically extract implicit relationship between the

robot and the environment from an example, and synthesize

dynamically stable movement in altered environments without

guidance from the operator. Our method can be applied in

precise robotic controls, especially for humanoid robots that

have high Degree of Freedom, in complicated environments

such as accident scenes and complex spaces.

Here are the major contributions of this paper:

• We redesign the energy functions proposed to enable

the Interaction Mesh framework to compute joint angles

directly, as oppose to joint positions in the Cartesian

coordinates shown in [12]. This allows direct control over

the joints of the humanoid robots.

• We propose additional physical constraints on top of

the kinematic constraints designed in [12] in the motion

adaptation process to preserve physical correctness of

the synthesized motions. This ensures that the humanoid

robots controlled by the resultant motion maintain bal-

ance throughout the movement.

II. OVERVIEW

The overview of our proposed method is shown in Fig. 1.

In the preprocessing stage, given a reference motion of the

humanoid robot and the configurations of the objects in the

environment, our method extracts their spatial relationships

as an Interaction Mesh (Section III). During run-time, when

the environment has changed, the Interaction Mesh will be

used in the motion adaptation process (Section IV) to preserve

the context of the motion subject to various dynamics and

kinematics constraints (Section V). The adapted motion is a

physically valid motion that fits into the new environment.

III. SPATIAL RELATIONSHIPS EXTRACTION

In this section, we explain how we extract the relationship

between the robot and its surrounding environment.

Fig. 2. An example of the Interaction Mesh computed from the vertices
sampled from the robot and the objects in the environment. (a) The sampled
vertices. (b) The Interaction Mesh computed.

During the pre-processing stage, we compute the Interaction

Mesh based on a reference robot motion and the corresponding

configuration of the environment. The Interaction Mesh is a

volumetric mesh composed of vertices and edges. The vertices

consist of (1) the locations of the robot’s joints, which are

directly obtained from the robot’s kinematic configuration, and

(2) the points sampled from the surfaces of the objects in

the environment. To facilitate efficient computation during the

motion adaptation process, the number of vertices representing

the object should be minimal. In our implementation, we

sample the vertices at the corners of the objects, which are

assumed to be the extreme positions. Surfaces are sampled

with a uniform grid. Empirically, we found that a resolution

of 20cm results in sufficiently accurate representation. We

then apply Delaunay Tetrahedralization [14] to compute a

volumetric mesh by considering all vertices as a single point

cloud. Since the vertices close to each other are connected

by edges, the body segments and the objects that are closely

interacting with each other can be modelled. Fig. 2 (a) shows

the sampled vertices computed from a given scenario, and Fig.

2 (b) shows the corresponding Interaction Mesh.

We use the joints as the vertexes of the robot based on

the assumption that the body parts can be well represented

by the joints. In case the body parts contain unusual shapes

or dimensions, we may sample vertexes on the surface of the

parts. On the other hand, if the environment contains a large

number of objects in irregular shapes, the sampling process

can be performed automatically with mesh simplification tech-

niques such as Triangular Mesh Decimation [15]. Given the

3D geometry mesh of the environment, mesh simplification

techniques simplify the environment by removing redundant

vertices while preserving the underlying features. The reduced

set of vertices can be used to compute the Interaction Mesh

efficiently.

IV. ENVIRONMENT CHANGES ADAPTATION

In this section, we present the method for editing the motion

of the humanoid robot to adapt the changes of the environment.

Our goal is to adjust the reference motion to produce

collision-free motion in the updated environment, while pre-

serving the spatial relationships between the robot’s body

parts and the objects in the environment. By maintaining the



topology of the Interaction Mesh and minimizing its distortion,

such relationships can be preserved in the motion adaptation

process. We formulate this motion adaptation process as an

optimization problem, which is modelled as an overdetermined

system of linear equations with linear constraints. Similar

idea has shown to be effective in editing multiple characters

interaction [16].

The whole motion is adapted in a single spacetime con-

straints optimization. The major advantage of this approach,

as oppose to per-frame motion editing methods, such as inverse

kinematics, is the ability to avoid high frequency movements.

In addition, physically-valid motions can be synthesized by

incorporating balance-related constraints.

In the following, we will first define different energy func-

tions, and then explain how to optimize the movements. We

assume m to be the number of 3D vertices in the interaction

mesh, pij where 1 ≤ j ≤ m to be the vertices at frame i and

index j, Vi to be a vector of size 3m that composed of all pij
such that Vi = (pi1

⊺

, · · · , pim
⊺

), pij
′

and V ′
i to be the updated

vectors after the deformation, qi and q̇i to be the set of the

joint angles of the robot and its derivatives respectively.

A. Deformation Energy

The purpose of introducing the deformation energy is to

maintain the spatial relationships between the body parts of the

robot and the environment by minimizing the distortion of the

Interaction Mesh in the motion adaptation process. Although

the deformation energy term has been proposed in [12], it is

not applicable for controlling humanoid robots as we have to

manipulate the joint angles in this research. For this reason,

the modified deformation energy function is defined as:

EL(q̇i) =
∑

j

‖δj − L(Jj
pos,iq̇i + pij

′
)‖2 (1)

where δj is the original Laplacian coordinate, J
j
pos,i is the

Jacobian of the position derivative for vertex pij
′

with respect

to the joint angle derivatives. The Laplacian coordinates are

calculated as:

L(pj) = pj −
∑

l∈Nj

w
j
l pl (2)

where Nj is the one-ring neighbourhood of pj , w
j
l representing

the normalized weights that are set to be inversely proportional

to the distance between the vertices. As a result, farther apart

vertices have less influence on each other.

B. Velocity Energy

Interaction Mesh is a frame-based representation. The mo-

tion adapted based on a series of Interaction Mesh may contain

jittery movements across frames, which affect the stability of

the robot. To tackle the problem, the velocity energy term

EV is introduced to imposes temporal relationships between

corresponding vertices in adjacent frames. Specifically, we

minimize the movement of the corresponding vertices in

current and previous frame to reduce sudden acceleration:

EV (q̇i, ˙Vrobot,i−1) = ‖Jvel,iq̇i − ˙Vrobot,i−1‖
2 (3)

where ˙Vrobot,i−1 is the set of derivatives of the positions of the

vertices sampled from the robot at previous frame, Jvel,i is the

Jacobian of the position derivatives for the vertices sampled

from the robot at current frame with respect to the joint angle

derivatives.

C. Constraint Energy

One common shortcoming of Spacetime optimization is the

possibility of over-constrained, in which the optimizer may

fail to find a suitable posture that fits into all requirements.

To remedy this, we allow the operators to specify the con-

straints can be violated based on their needs. This class of

constraints is known as soft constraints, for which we design

an energy function to minimize the amount of violation. On

the other hand, those must be satisfied are considered as hard

constraints and are enforced during the optimization loop as

explained in the Section V.

Given a system of linear equations representing the soft

constraints, Fiq̇i = fi, the energy term to represent the amount

of violation is defined as:

EC(q̇i) =
1

2
q̇i

⊺Fi
⊺WFiq̇i − fi

⊺WFiq̇i +
1

2
fi

⊺Wfi. (4)

where W is a square diagonal matrix that assigns a different

weight to each constraint.

We use constraints to maintain physical stability and kine-

matics features. We design four constraints to represent the

requirements on collision avoidance, position control, balance

and stepping pattern. All of them can be switched to soft or

hard during synthesis. The implemented details of individual

constraint will be presented in Section V.

D. Iterative Morphing

At every morph step, the positions of the vertices sampled

from the environment are gradually updated to the target

configuration by linear interpolation as follows:

V int
pos =

k

r
(V target

pos − V ref
pos ) + V ref

pos (5)

where V ref
pos and V target

pos are the sets of vertices sampled

from the reference and altered environment respectively, r

is the total number of morph steps, and V int
pos contains the

interpolated positions of the vertices in the k-th morph step.

The poses of the robot are adapted by minimizing the sum of

the deformation (Eq. 1), velocity (Eq. 3) and constraint energy

(Eq. 4), subject to the set of hard constraints Hiq̇i = hi. The

adapted motion is computed by solving

argminq̇i,λi(1≤i≤n)EL + w∆EV + EC + λ
⊺

i (Hiq̇i − hi)
(6)

where q̇i is the set of joint angle derivatives at the current

frame, λi are the Lagrange multipliers and w∆ is a constant

weight set as 0.2. The optimization problem in Eq. 6 can be

solved by differentiating it with respect to q̇i and λi, and

solving a linear equation. The reader is referred to [12] for

further details.

Since we have to gradually change the positions of the ver-

tices sampled from the reference environment to those sampled



from the altered environment, we require a correspondence

between the vertices sampled from the two environments.

In our implementation, the number of vertices sampled in

the two environments is the same, and the operator designs

the correspondence manually. In more complex scenarios, we

can model the correspondence problem as a mass transport

problem [17] and optimize the correspondence by minimizing

the sum of distances between all matched vertex pairs.

V. CONSTRAINTS

In this section, we explain the constraints that can either

be used as soft constraints in Section IV-C or hard constraints

in Section IV-D. We first introduce the collision and posi-

tional constraint adapted from the original Interaction Mesh

framework [12]. We then propose the additional balancing and

stepping pattern constraint in order to synthesize physically

valid motion for robotic controls.

A. Collision Constraints

The collision constraints prevent penetration between the

bounding volumes of the skeleton and the objects in the

environment. Using the Open Dynamics Engine (ODE) [18],

we detect collision of the robot in the updated environment

configuration. As in [12], when a penetration is detected, we

compute the point pair that penetrates each other the farthest,

the penetration depth and direction. We define the collision

constraint as:

CC(q̇i) = Jcollide,iq̇i − di (7)

where Jcollide,i is the Jacobian of the position derivatives of

the colliding parts with respect to the joint angle derivatives,

and di is the penetration depth multiplied to the normal vectors

of the penetrated surface. The Jacobian is computed by finite

differencing. The joint angles are changed and the locations of

the penetrating points are recomputed according to the posture.

B. Positional Constraints

In order to enable precise control such as reaching the arms

to a particular location, positional constraints can be added

by anchoring some joints or a linear combination of their

locations. In addition, contact constraints can also be handled

as positional constraints once the body parts in contact were

detected or specified. We compute the target locations of these

parts, Pi, and define the positional constraints as:

CP (q̇i) = (V ′
P,i + Jpos,iq̇i)− Pi (8)

where Jpos,i is the Jacobian of the position derivative of each

joint with respect to the joint angle derivatives, and V ′
P,i is the

set of positions of the constrained joints at current frame.

C. Balancing Constraints

To keep the balance of the humanoid robot, a subset of

physical constraints proposed in the Dynamics Filter [19] is

enforced in the optimization. Specifically, the balance of the

robot is maintained by controlling the full body posture such

Fig. 3. The Center of Gravity projected on the ground and the Center
of Pressure under (left) a balanced configuration, and (right) a potentially
unbalanced configuration.

that the Center of Gravity (CoG) lies within the supporting

surface on the ground.

Here, we define the vertical projection of the CoG on the

ground as CoGground. The supporting surface is evaluated

as the area bounded by the planted foot/feet. The position of

the closest point from the supporting surface to CoGground is

assumed to be the Center of Pressure, CoP . Fig. 3 illustrates

the relationship of CoGground and CoP . To maintain the

stability of a motions, CoP is set as the target location of

CoGground:

CCoP (q̇i) = (CoGground,i + JCoGground,iq̇i)− CoPi (9)

where JCoGground,i is the Jacobian of the position derivative

of CoGground with respect to the joint angle derivatives, CoPi

is CoP at frame i.

D. Stepping Pattern Constraints

To avoid artifacts such as foot-sliding in the synthesized

motion, as well as producing the stable gaits presented in the

reference motion, we further introduce an additional constraint

to enforce the stepping pattern in the reference motion. This

is formulated as positional constraints for the joint vertices on

the feet:

CF (q̇i) = (V ′
feet,i + Jstep,iq̇i)− V

ref
feet,i (10)

where Jstep,i is the Jacobian of the position derivative of each

joint on the feet with respect to the joint angle derivatives,

V
ref
feet,i and V ′

feet,i are the position of each joint on the feet in

the reference motion and the synthesized motion, respectively.

E. Constraint Type Decision

While it is possible to enforce all constraints in the optimiza-

tion loop as the hard constraints explained in Section IV-D, the

system may become over-constrained and result in unexpected

behaviours. Our system allows the operator to switch some

constraints into soft ones and use the energy term explained

in Section IV-C to guide the optimization process.

In our system, we set the stepping pattern constraints hard,

such that stable locomotion can be created and artifacts such as

foot-sliding can be avoided. We also set collision constraints

hard to avoid self-collisions and robot-environment collisions.

The rest of the constraints are set as soft, such that they

stabilize the motion while avoiding over-constrained. The

weights W in Eq.4 are set 4.0 and 0.4 for the balancing and

positional constraints respectively.



Fig. 4. The results to adapt the walking forward motion in a constrained environment.

Fig. 5. The results to adapt the side stepping motion in a constrained environment.

VI. EXPERIMENTAL RESULTS

In this section, we present the experiment results obtained

from synthesizing humanoid robot movements by the proposed

method. We simulate the movement of the Nao H21 V4.0

robot using the robot simulation software Webots [20]. The

reference motions used in the experiments are edited based

on the dynamically stable motions provided by Webots 6.4.4.

The experiments were running on a computer with Intel Core-

i7 Processor 3.40 GHz using single core. UMFPACK [21] is

used as the linear solver.

A. Walking into Constrained Environment

In the first experiment, a walking forward motion of the

Nao robot was designed as the reference motion. We set up

a constrained environment for the Nao to pass through with

its arms outstretched (Fig. 4 (a)). The spatial relationships

between the Nao robot and the environment were extracted

by the method explained in Section III. The Interaction Mesh

consisted of 42 and 32 vertices sampled from the Nao robot

and the objects in the environment respectively. To evaluate the

effectiveness of the proposed method, we adjusted the size and

shape of the objects in the environment so that the reference

motion must be edited to avoid collisions.

Using our method, collision-free motions were produced

automatically. In Test-A1 (Fig. 4 (b)), the height of the ceiling

was lowered from 60cm to 51cm, which was equivalent to

85% of the original height. The edited motion adapted to the

changes of the environment by bending the knees to lower the

body.

In Test-A2 (Fig. 4 (c)) and Test-A3 (Fig. 4 (d)), we modified

the sizes of the boxes around the arms from Test-A1 such

that the Nao robot had to raise and lower the arms by 15cm
in order to pass through the aperture respectively. In Test-A4

(Fig. 4 (e)), we rearranged the boxes near to the arms based on

the environment configurations in Test-A1 such that one arm

needed to be raised and the other lowered to avoid collision.

For the stability of the synthesized motions, the CoG of the

Nao robot is kept over the supporting surface in 98.46% of

the synthesized postures. Because of the high percentage of

stable postures, the Nao robot successfully kept the balance

when walking through the constrained environments in the

simulations. In terms of computational efficiency, the motion

in each test contained 170 frames and required 32 seconds

on average to synthesize the motion based on the altered

environment. The computation cost is significantly smaller

when comparing with other global path planning algorithms

such as RRT, especially when the number of DOF is high.

B. Side Stepping into Constrained Environment

In the second experiment, a side stepping motion was

designed for the Nao robot as the reference motion. The screen

shot of the reference motion and the original environment

configuration is shown in Fig. 5 (a). The Interaction Mesh

consisted of 42 and 26 vertices sampled from the Nao robot

and the objects in the environment respectively. Again, the

size and shape of the objects in the environment were altered

and the motion of the Nao robot was adapted accordingly.

In Test-B1 (Fig. 5 (b)), the height of the ceiling was lowered

from 60cm to 52.9cm, which was equivalent to 88% of the

original height. The edited motion adapted to the changes in

the environment by bending the knees and coordinating the

body. In Test-B2 (Fig. 5 (c)), we modified the environment

configurations from Test-B1 by raising the aperture around

the arms by 10cm. In Test-B3 (Fig. 5 (d)) and Test-B4 (Fig.

5 (e)), we further edited the shapes and sizes of the objects

near to the arms based on the environment configurations in

Test-B1, such that the arms needed to be bended downwards

and upwards accordingly.

For the stability of the synthesized motions, the CoG of

the Nao robot is kept over the supporting surface in 100%

of the synthesized postures. For the computational cost, the

motion in each test contained 720 frames and required 130

seconds on average to synthesize the motion based on the



altered environment. The readers are referred to the attachment

video for the resulting motions.

Notice that while the height of the ceiling was reduced to

85% and 88% of the original height in the two experiments,

the movement of the lower body had to be modified signifi-

cantly. This was because the upper body had to maintain an

upright position during the movements for better balancing. In

particular, the height of the Nao robot’s hip was reduced to

72.1% and 83.5% of its original value.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we presented a spatial relationship based

method to synthesize motions for controlling humanoid robots.

Our method takes a reference motion and the configuration

of a highly constrained environment as inputs, and produces

collision-free and dynamically stable motion that adapts to the

changes of the environment automatically. Experimental re-

sults show that our method can efficiently adapt the humanoid

robot motions in significantly changed environments.

While we have successfully adapted the dynamically stable

motion to different situations, there are some limitations. One

of the assumptions in our method is that there is no external

force applied to the robot except the ground reaction force. In

case that there is any unexpected collision between the robot

and the environment, the robot may lose balance and fall. One

future direction is to incorporate a feedback system to deal

with external perturbations and improve the robustness of the

system.

Another limitation is that our method maintains the original

stepping pattern. In case there are changes at the landscape,

such as obstacles appearing on the floor, the strides have to

be edited or even re-planned accordingly. This limitation also

applies to adapting motions to non-flat terrains. Using the

simplified balancing control in our method, it is difficult to

produce physically stable motion on non-flat terrains without

editing the stepping pattern of the robot.

For the future works, we are interested in designing a more

dedicated foot step planner to manipulate the robot under

complex terrains by changing the stepping pattern. In this

research, we have only demonstrated the control of the Nao

robot in our experiments. It would be interesting to extend

our method for retargetting the reference motion to different

humanoid robots with different joint configurations according

to an altered environment. We did not experiment with real

humanoid robots due to the limitation of research resources.

Controlling real robots requires the consideration of run-time

errors such as motor noises and unexpected collision. We

would like to implement a feedback loop such that the system

can re-plan the movement when unexpected situation occurs

in the future. Finally, we would like to carry out in-depth

comparisons on the performance of our proposed method with

respect to global path planning algorithms.
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