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ABSTRACT 
Finding repetitive patterns is important to many applications such 
as bioinformatics, finance and speech processing, etc. Repetitive 
patterns can be either cyclic or acyclic such that the patterns are 
continuous and distributed respectively. In this paper, we are 
going to find repetitive patterns in a given motion signal without 
prior knowledge about the type of motion. It is relatively easier to 
find repetitive patterns in discrete signal that contains a limited 
number of states by dynamic programming. However, it is 
impractical to identify exactly matched states in a continuous 
signal such as captured human motion data. A point cloud 
similarity of the input motion signal itself is considered and the 
longest similar patterns are located by tracing and extending 
matched posture pairs. Through pattern alignment and auto-
clustering, cyclic and acyclic patterns are identified. Experiment 
results show that our approach can locate repetitive movements 
with small error rates. 

Keywords 
3D human motion capture, pattern discovery, repetitive pattern, 
cyclic and acyclic patterns, point cloud similarity. 

1. Introduction 
Repetitive patterns are frequently appearing units commonly 
found in daily life, for example, keywords in a text paragraph or 
repetitive logos on the clothes. They can be either cyclic or 
acyclic. A cyclic pattern repeats continuously while an acyclic 
pattern is non-continuous and distributed over the time or region. 
Finding repetitive patterns in either discrete or continuous signals 
leads to  the development of many important applications such as 
detection of the motifs in DNA sequence, prediction of the trend 
of the stock price, and mining for desirable segments in speech or 
motion signals. 

Repetitive patterns in discrete signals such as text paragraphs, 
DNA sequence and music data can be found by exact string 
matching techniques [1][2][3] or inexact matching with dynamic 

programming [4][5]. Researchers believe that repetitive tandems 
in DNA sequence associated with disease syndromes [6]. It has 
been a popular topic for bioinformatics researchers to repetitive 
tandems in DNA sequences. Gilbert et al. [7][8] discover repeated 
patterns by extending matched sub-strings. To find repetitive 
patterns in music data, Hsu and Liu [9] consider exact string 
matching through the correlation matrix of the music notes in 
sequence. 

Some researchers attempt to match for similar segments in 
continuous signal such as financial, speech, and motion data. 
Since continuous signal does not contain exactly matched states, 
the problem is harder than that in discrete signal for finding 
similar segments. Wu et al. [10] predict the trend of stock price 
by matching for history signals of similar shapes in a continuous 
financial data curve. In speech processing, Park [11] considers a 
point cloud similarity between an input signal and a known 
template in order to identify some spoken keywords. More 
specific to human motion studies, Kovar and Gleicher [12] 
consider the point cloud similarity between a query and the 
motion data sequence and extract logically related motions for 
motion blending. They approximate the optimal matching paths 
by line tracing techniques. However, they focus in motion 
retrieval so a known template should be provided and the length 
of result pattern is confined. Forbes and Fiume [13] attempt to 
improve the work by Kover et al. by indexing the point cloud by 
manually defining key postures in order to speed up the searching. 
However, the number of available motion database is growing 
rapidly and it is impractical to spend a lot of manpower to do such 
pre-processing. Some researchers attempt to detect cyclic patterns 
in captured human motion. Li and Holstein [14] detect cyclic 
motion by constructing motion templates of standard movements 
like walking in frequency domain. Meng et al. [15] extend the 
work by Li and Holstein. However, this approach requires the 
user to know about the types of input motion in advance. Laptev 
et al. [16] detect cyclic movement by aligning a sequence of 
space-time corresponding points in video frames. Given a known 
cyclic motion, Ormoneit et al. [17] detect the cycles by folding 
and overlapping the input motion until the minimal signal-to-
noise error is attained. However, detection of acyclic repetitive 
patterns has received much less attention in the literature.  

To break through the limitations of existing template matching 
approaches, it motivates us to solve an unsupervised pattern 
discovery problem in which repetitive patterns in 3D human 
motion captured data are automatically detected without knowing 
the types of input patterns. A point cloud matrix of posture 
similarity is considered and the longest similar motion segment 
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pairs are located through tracing for the diagonal patterns. Cyclic 
and acyclic patterns are then identified by automatic alignment 
and clustering. Finally, the duration of each cycle is estimated by 
the auto correlation method. The robustness of our algorithm will 
be shown in the experiment results. Challenging cases that can be 
handled by our algorithm will also be demonstrated. 

2. Proposed algorithm 
In this paper, repetitive patterns including both cyclic and acyclic 
patterns are discovered in an unsupervised way in which no 
template query is needed. The input is a 3D human motion 
captured data, which is a high dimensional continuous signal. The 
point cloud similarity approach, which has been used for 
matching similar regions on a continuous signal, is adopted to 
deal with the problem. Our algorithm aims to relax the 
assumption in existing methods that require a known template 
query in order to search for similar patterns. 

Figure 1 shows the overview of our algorithm. First, a grayscale 
point cloud matrix of posture similarity values is generated. 
Similar postures are then clustered by turning the point cloud into 
a binary representation. The local minima of each cluster are 
traced diagonally to form feature points that approximate the 
duration of each similar motion segments. The longest possible 
matching paths are obtained by merging feature points with the 
least dynamic time warping (DTW) cost. Finally, the cyclic and 
acyclic patterns are identified by pattern alignment and auto-
clustering techniques. The period in each cycle pattern will then 
be estimated by the auto correlation method.  

 

 

 

 

Figure 1. The overview of our proposed algorithm. 

2.1 Data acquisition and normalization 
The motion data is captured by an optical motion capture system 
as shown in Figure 2. The capturing area is covered by seven 
cameras from different view points. During the capture, the actor 
as shown in Figure 3 should wear a suit with 35 optical markers 
attached to different body parts such as the head, the torso and the 
limbs. The 3D motion of the actor is captured as a time sequence 
of frames, while each frame contains the time stamp and the 
corresponding 3D posture data in terms of 3D marker coordinates. 

 
Figure 2. The motion capture area. 

(a) Optical markers adhered 
to the body 

(b) Captured 3D posture 
represented by a skeleton 

Figure 3. The actor and corresponding captured skeleton. 

The actor is free to move around the capture area thus global 
translation and rotation are incorporated into the 3D coordinates 
of the captured motion.  Normalization of horizontal translation 
and frontal orientation is thus needed to facilitate the posture 
comparison. The positions of the markers pi are first translated in 
order to make the marker of the body center (Mid-back) invariant 
to the origin of the horizontal plain. The vertical displacement is 
allowed hence the y coordinate is not normalized. The translation 
function is given by Equation (1): 
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A rotation function is defined to ensure that the actor is always 
facing the front (the positive z direction) as shown in Figure 4(b). 
Three markers defining the major orientation of the body is 
shown in Figure 4(a) and the unit vector N normal to the resulting 
plane is calculated. The rotation angles θz and θx are obtained 
by the dot product between N with the z-axis and with the x-axis 
respectively. The coordinates of each marker pi are then rotated 
byθz andθx accordingly. 

 
(a) Normalization of frontal orientation 

 
(b) Normalized posture 

Figure 4. Normalization of a 3D posture. 
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2.2 Generating a posture similarity matrix 
A point cloud similarity matrix locates similar postures in clusters. 
The similarity between every pair of postures is computed by a 
similarity cost function. 

2.2.1 Posture similarity cost 
The perceptual similarity between a pair of postures is modeled 
by their spatial difference. A pair of perceptually similar postures 
show a similar concept (e.g. the right hand is up-lifted), and 
similar normalized coordinates in the 3D space. Figure 5 shows 
two pairs of spatially similar and dissimilar postures. 

    
(a) Spatially similar postures (b) Spatially dissimilar 

postures 

Figure 5. Similar and dissimilar postures. 

Let pi(xm, ym, zm) and pj(xm, ym, zm) be the m-th marker coordinates 
of the posture pair (i, j) respectively, the similarity cost C(i ,j) is 
defined by averaging the Euclidean distances between the 3D 
coordinates of M pairs of corresponding markers as shown in 
Equation (2). In our setting, M=35 markers are considered. The 
more similar the posture pair, the smaller the similarity cost. 
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2.2.2 The point cloud similarity matrix 
Given a motion signal that contains n frames, a n×n point cloud 
matrix of posture similarity costs is constructed. The similarity 
costs are normalized to a range between 0 and 1, which is easier 
to be compared and visualized by a grayscale bitmap. Figure 6 
shows a grayscale point cloud similarity matrix of a motion. A 
point with a darker color exhibits a higher similarity between the 
corresponding pair of postures. Only the lower half of the matrix 
is considered because the matrix is symmetric along the diagonal 
axis (x = y). 

 
Figure 6. The similarity matrix is visualized by a grayscale 

point cloud bitmap. 

In the point cloud similarity matrix, five types of dark pattern are 
observed: (a) diagonal, (b) anti-diagonal, (c) crossing, (d) V-shape, 
and (e) horizontal / vertical. Diagonal pattern is running from 
bottom-left to top-right in which the corresponding signal 
segment pairs are mapped along time sequence. Anti-diagonal 
pattern is invalid because one segment of the matched pair is 
time-reversed. Cross and V-shape patterns are just valid for the 
diagonal portion. Horizontal or vertical pattern is more or less a 
one-to-many mapping of postures such as a stationary posture. 

   
(a) diagonal (b) anti-diagonal (c) crossing 

              

(d) V-shape (e) horizontal / vertical 

Figure 7. Dark patterns observed in the point cloud. 

 

2.3 Tracing for the longest similar segment 
pairs 
It is non-trivial to search for similar signal pairs from the 
grayscale point cloud because some regions are quite ambiguous. 
Hence, as the first step, a binary point cloud is obtained by 
filtering dissimilar posture pairs. Start points of the valid patterns 
described in section 2.2.2 are then located. The possible 
continuation of each start point is determined by dynamic time 
warping (DTW) with a shrinking window technique, which will 
be described in later paragraphs. 

2.3.1 Obtaining the binary point cloud 
To obtain the binary point cloud, only similar posture pairs are 
kept as pattern points. A classifier is trained to determine whether 
a pair of input postures is perceptually similar. The ground truth 
similar and dissimilar pairs are determined by some users through 
subjective evaluation. Equal number of samples in each class is 
selected randomly and a total of 100 ground truth 
similar/dissimilar pairs are obtained. From the distribution of 
matching costs exhibited by similar and dissimilar pairs, the false 
matched rate and false non-matched rate can be observed. The 
equal error rate, with which the false matched rate is equal to the 
false non-matched rate, is used to determine the threshold of the 
similarity cost to classify between similar/dissimilar pairs. 

2.3.2 Locating start points of valid patterns 
After the binary point cloud is obtained, the start points of all 
valid patterns are then estimated. The binary point cloud is 
thinned by considering the vertical local minima in terms of 
similarity cost. For each frame, the local minima are identified as 
shown in Figure 8(a). The dark thin lines illustrate the thinned 
patterns. However, we only chose the valid portion as described 
in section 2.2.2. Therefore, there are a few constraints for the 
selection of start points as shown in Figure 8(b). First, a start 
point should be the bottom-leftmost point of the pattern and hence 
has no minima points appearing in the preceding time (region B). 
Also, it should have neighboring points in next frames (region A). 



2.3.3 Tracing patterns 
The pattern tracing starts from the bottom-left corner of the point 
cloud. Figure 8(c) shows the procedures of tracing a diagonal 
pattern of a selected region of the point cloud. Suppose that the 
start point (in circle) near to the bottom-left corner is considered, 
possible continuations of a pattern are determined by DTW. A 
window of certain size slides across the horizontal axis without 
overlapping is used to locate candidate of continuation points by 
cutting across the vertical axis for minima points. A valid 
candidate should make a slope with the start point no greater than 
2 and no smaller than 1/2. There are some possible cases: (1) cuts 
exactly one point, (2) cuts more than one points, and (3) cuts no 
points. For the first case, the candidate is obviously the 
continuation point. If more than one candidate is obtained, the one 
with the minimal DTW cost is selected. If the window cuts no 
points, the window shrinks progressively until a valid candidate is 
found. Once a candidate is found, it becomes the new start point 
for next iteration until no further continuation points are found. 
The DTW path is safeguarded by a threshold of 0.5 (note that the 
DTW cost is normalized by the length of the optimal path and 
falls into the range [0, 1]). When the DTW cost is greater than the 
threshold, the candidate will be ignored and this ensures the 

continuation of pattern is valid. In our setting, an initial window 
size of 30 frames is used as we assume that a valid pattern should 
have at least 30 frames. A more aggressive window size of 50 
frames will be tried for next iterations. Although there may have 
some gaps between pattern lines, our algorithm can verify 
whether the gaps are acceptable for a longer pattern. If yes, the 
start point of the pattern next to the gap is simply bypassed. 
Figure 8(d) shows the optimal path determined by DTW after the 
pattern tracing steps. 

2.4 Identifying cyclic and acyclic patterns 
Repetitive patterns can be either cyclic or acyclic and sometimes 
both of them may appear in the input motion. Figure 9 shows the 
character sequences that demonstrate the modes of repetitive 
patterns. Existing approaches assume that the input motion should 
be cyclic only and they cannot detect cycles in the mixed mode 
because the signal-to-noise ratio is too small. 
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(a) A cyclic 
pattern 

(b) An acyclic 
pattern 

(c) Mixed cyclic and 
acyclic patterns 

Figure 9. Modes of repetitive patterns. 

(a) Obtaining the local minima (b) Connectivity for diagonal pattern 

(c) Pattern tracing (d) The optimal path of the  traced pattern 

Figure 8. Pattern tracing procedures. 



The property of cyclic pattern can be observed through the 
optimal paths located on the point cloud. Figure 10(a) shows the 
result of a sample dance motion, which consists of a continuous 
sequence of waltz steps. This motion consists of cyclic motion 
only that makes the problem simpler to be illustrated. Each 
diagonal line Pi represents a pair of similar segments. Because our 
algorithm obtains the segment pairs as long as possible, for a 
cyclic motion there exists certain degree of pattern overlapping. 
Moreover, the patterns form a right-angled triangular region and 
these patterns belong to the same family of cyclic pattern. 

Suppose the patterns are transformed from 2D domain into 1D 
time line as shown in Figure 10(b). The durations of each pair of 
segments can be observed. It is clear that for each pair of 
segments, the minimum of the start points (Smin) and the 
maximum of end points (Emax) are likely to be aligned together. It 
gives us a good classification feature to distinguish whether a 
pattern belongs to the same family as others. 

An auto-clustering method is introduced to classify cyclic and 
acyclic patterns based on the alignment feature. The procedure is 
shown in Figure 11. Suppose there are three resulting patterns P1, 
P2, and P3 and their relationship is unknown. One of the patterns 
is picked as the initial set, say P2. Next, each remaining pattern is 
aligned with the patterns in the existing sets. Suppose P1 is 
considered, its Smin and Emax values will be compared with the set 
in P2. A clustering cost Cc is defined in Equation (3) to quantify 
the measurement, in which N represent the total number of 
patterns in each set to be examined. If Cc is smaller than 5% of 
the average pattern duration D (Equation (4)) in each set, the 
pattern is put into the set. If there is more than one set, the set 
with the minimal Cc is chosen to enter.  
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After the clustering, it is ready to distinguish between cyclic and 
acyclic patterns. A cyclic set contains more than one patterns 
(N>1) while an acyclic set contains one pattern (N=1) only. 

 
Figure 11. Auto-clustering into cyclic and acyclic patterns. 

2.5 Obtaining the period of each cycle 
By observation, there should be N+1 cycles for a family having N 
patterns, assumed that there are no missing patterns and wrong 
patterns included. However, it is not reliable to simply count the 
number of patterns in each family because the assumption may 
not hold all the time. Consider a sinusoidal signal of period P, the 
signal can perfectly overlap to itself with a phase difference of the 
multiples of P. Similarly, the movement of each marker can be 
resolved into x, y, and z displacements. If the displacement signal 
is cyclic, it can overlap with itself at particular phase differences. 
An auto correlation method is used to detect the boundaries of 
each cycle. 

Recall the 1D alignment of patterns as shown in Figure 10(b), the 
cyclic patterns are overlapped at different time. The duration of 
each cyclic family is hence obtained from the alignment result.  
Next, the duration is selected as an independent motion sequence 
{xi} of length L that contains only one kind of cyclic movement. 
The correlation coefficient rm(x) of the sequence {xi} with itself at 
different lags without warping {xi+lag} is computed as equation (5). 
The correlation-lag information of x, y and z coordinates of all 35 
markers m are combined linearly into r with equal weighting. 

  

(a) A family of cyclic patterns (b) Illustration of the aligned patterns 

Figure 10. Alignment of patterns. 
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In cyclic motion segment, the input signals {xi} and {xi+lag} can 
overlap with each other somewhere, and hence a peak will be 
obtained in the correlation-lag graph. Figure 12 shows the 
correlation-lag graph of a motion data with eight waltz dance 
steps only. Imagine that a motion trajectory slides to the left and 
overlaps with a motion trajectory without lag. The correlation 
coefficient decreases and then reaches a peak again after certain 
lag value. The peaks with sufficiently high correlation 
coefficients are the boundaries between every two adjacent cycles, 
and the number of peaks plus one is hence the number of 
estimated cycles. As future work, the start / end points of the 
member patterns in a cyclic family will be also considered, which 
approximates the period of each cycle and enhances the searching 
for best cutting point of each cycle. 

Finally, the cyclic patterns are cut accordingly and the period of 
each cycle is determined. They are grouped together as the same 
repetitive patterns. The distributed acyclic patterns are then 
grouped according to the overall similarity of the motion 
segments and their durations. 

 
Figure 12. Similarity of stating frame and the frames in the 

whole cyclic duration. 

3. Experiments and results 
Our experiment data contains 22 motion clips with 4 types of 
dances: Waltz, Pop dance, Hip hop dance and House dance as 
shown in Table 1. 

Table 1.  Experiment dataset. 

Motion type Number of 
samples 

Average number of 
frames 

Waltz dance 1 1975 

Pop dance 1 1397 

Hip hop dance 10 2505.6 

House dance 10 2109.3 

The dance motions are performed by two dancers containing 
both cyclic and acyclic movements. The motion data contains 
complicated movements and with long duration which can test the 
robustness of our algorithm. To evaluate the performance of our 
algorithm, both type I and type II errors will be checked. Type I 
error is the false positive rate that measures how many repetitive 
patterns located by our algorithm are actually not repetitive 
according to human perception. Type II error is the false negative 
rate that measures how many missing repetitive patterns that are 
not detected by our algorithm. 

 
Figure 13. Training result of the threshold value. 

Figure 13 shows the training result of similarity threshold. The 
value 0.26 that yields the equal error rate (EER) is chosen as the 
threshold T to distinguish similar and dissimilar postures because 
at this point both the false matched rate and false non-matched 
rate are low. The pairs with similarity cost smaller than T are 
classified as similar pair, otherwise are dissimilar. This result is 
used in the binary point cloud formation and pattern tracing. 

In our experiment, U pairs of similar motion segments are first 
identified by our algorithm. The animation of each pair of motion 
segments is played at the same time and evaluated by some 
observers subjectively. By the human judgment, u out of U pairs 
may be considered as false positive. The remaining frames that 
are regarded as non-repetitive by our algorithm are then collected 
into a new sequence R. It is then segmented into sr segments of 
window size w. A window size of w = 30 frames has been chosen 
because we only accept valid repetitive patterns of more than 30 
frames. Each window slides across the entire sequence R and the 
cross correlation coefficient rR is computed by Equation (6). The 
correlation coefficient of each segment pair is given by the 
average of correlation coefficients rx, ry, and rz of x, y, and z axis 
respectively. We set a rather loose condition that the pairs with 
correlation higher than 0.5 are accepted as candidate false 
negative pairs. Finally, the candidate false negative pairs are 
evaluated subjectively by some observers and a total of v false 
negative pairs are obtained. 
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There are U-u+v pairs of ground truth repetitive pairs obtained 
per observer. Hence, the type I error rate is given by u/(U-u+v) 
while the type II error is given by v/(U-u+v). Table 2 shows the 
experiment result. The false negative rates are 0% for all input 
dance motions. It shows that our algorithm can locate all possible 
repetitive patterns without prior knowledge of the input motion. 
In our experiment, only segment pairs with cross correlation 
coefficient greater than 0.5 are considered as missing cases. This 
value is sufficiently low for a missing similar pair because similar 
motion segment always has a correlation coefficient higher than 
0.6. The 0% false negative rate shows that our algorithm is 
capable to detect all possible repetitive patterns without missing. 

On the other hand, a relatively low average false positive rate 
(7.7%) is obtained. Table 2 also shows the false positive rates of 
each type of dance motion. Our algorithm gives the best 
estimation in waltz dance (0% in both false positive and false 
negative rates) while the worse in hip-hop dance (12.8% in false 
positive rate and 0% in false negative rate). According to the 
comments from the observer, the hip-hop dance is the most 
complicated while the waltz dance is quite straight forward. It 
shows that complicated movements are likely to have observable 
differences. In most of the erroneous cases, the motion pairs may 
look alike with difference in positions of a particular limb. It 
shows that averaging the Euclidean distances of joint positions is 
not enough because it is unfair to treat the displacement of the 
joints of end effectors equally to relatively static joints such as the 
shoulders. Moreover, variation in body size and limb lengths for 
different dancers may lower the accuracy. To be more generic, 
joint angles could be considered as a feature in the similarity 
function in the future. Also, the movements of more active limbs 
could be boasted by a larger weight in order to make the 
comparison more conformed to the human perception. Our 
experiment is ongoing and more motion data of different types 
will be studied later. 

Table 2.  The experiment results. 

Motion type Type I error 

(False positive 
rate) 

Type II error 

(False negative 
rate) 

Waltz dance 0.0% 0.0% 

Pop dance 12.5% 0.0% 

Hip hop dance 12.8% 0.0% 

House dance 5.5% 0.0% 

Figure 14 shows a pair of similar motion with difficult 
movements, which is a challenging case that our algorithm is able 
to handle. The movement is relatively fast and it involves 
movements of the whole body. It shows that our algorithm is 
robust enough to catch such difficult movement with rapid change. 

4. Conclusion 
We proposed a method to locate repetitive patterns in captured 3D 
human motion without prior knowledge about the input pattern. 
Patterns of different lengths can be discovered by considering the 
input signal alone without a query. Repetitive patterns are traced 
from a point cloud of similar postures. Complete pattern is 
obtained by joining points according to their connectivity along 
the diagonal. Finally, cyclic and acyclic patterns are identified by 
pattern alignment and auto-clustering. The period of each cycle is 
also estimated successfully. Experiment result shows that our 
method has low false positive and false negative rates and is able 
to handle complicated cases. 

As future work, the repetitive patterns discovered by our proposed 
method can be used for summarizing a piece of captured motion. 
By the way, the discovered repetitive patterns can be applied to 
generate dance lesson automatically. The ubiquitous dance 
education system developed by our group [18] required teachers 
to design dance courses manually. Our algorithm can group 
repetitive movements that are likely the theme movements of the 
captured motion performed by teacher. The student can learn 
frequently appearing movements first and then their variations. 
Our proposed method can also be applied in motion data retrieval 
by considering the repetitive pattern and periodicity etc. as index 
features that may uniquely define a motion clip. 
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