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Abstract

Purpose – A core challenge in background subtraction (BGS) is handling videos with sudden illumination
changes in consecutive frames. In our pilot study published in, Sakkos:SKIMA 2019, we tackle the problem
from a data point-of-view using data augmentation. Our method performs data augmentation that not only
creates endless data on the fly but also features semantic transformations of illumination which enhance the
generalisation of the model.
Design/methodology/approach – In our pilot study published in SKIMA 2019, the proposed framework
successfully simulates flashes and shadows by applying the Euclidean distance transform over a binary mask
generated randomly. In this paper, we further enhance the data augmentation framework by proposing new
variations in image appearance both locally and globally.
Findings – Experimental results demonstrate the contribution of the synthetics in the ability of the models to
perform BGS even when significant illumination changes take place.
Originality/value – Such data augmentation allows us to effectively train an illumination-invariant deep
learning model for BGS. We further propose a post-processing method that removes noise from the output
binary map of segmentation, resulting in a cleaner, more accurate segmentation map that can generalise to
multiple scenes of different conditions.We show that it is possible to train deep learningmodels even with very
limited training samples. The source code of the project is made publicly available at https://github.com/
dksakkos/illumination_augmentation

Keywords Background subtraction, Convolutional neural networks, Synthetics, Data augmentation,

Illumination-invariant

Paper type Research paper

1. Introduction
The challenge in background subtraction (BGS) is to identify the pixels belonging to the
background, which comprises the static areas in image such as the sky and roads, from the
foreground, the areas that move against the background such as cars and humans (Barnich
and Van Droogenbroeck, 2011). A large number of real-world applications, such as person
re-identification (Bazzani et al., 2013), object tracking (Shen et al., 2016), gesture recognition
(Yeo et al., 2013), vehicle tracking (Sirikuntamat et al., 2015), video recognition (Li and Yue,
2019), action recognition (Ho et al., 2016), crowd analysis (Wang et al., 2017a) and even use
cases from the medical domain (Them et al., 2016; McCay et al., 2019, 2020), depend on
accurate and robust BGS as a first step in their pipelines.

Sudden illumination changes provide a particularly difficult challenge, since they cannot
be captured by a backgroundmodel. Such changes in lighting conditions can be caused either
by weather conditions or electric lights and result in colour changes involving a significant
number of pixels. Due to the difference in visual appearance in consecutive frames,
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BGS becomes inaccurate. The timing of these changes could be short, such as switching a
light on/off or a piece of cloud blocking the sun, making it tough for the system to adjust to the
new condition in a timely manner. In addition, a scene and the objects that appear in it will
drastically transform during the night. It is necessary for an algorithm to be able to adjust in
these kinds of conditions.

State-of-the-art deep learning algorithms allow adaptation to sudden illumination changes
if a huge amount of training data is provided. However, obtaining labelled data is very costly
and there are only limited datasets available in the community. As a solution, data
augmentation methods are proposed to perform image-based operations on the data, such as
mirroring or cropping, to synthesize a larger dataset. However, simple image tricks cannot
effectively generate images with realistic illumination changes. Another solution is adding a
small amount of noise to create a new, synthetic image that is similar than the original in
context but different in colour distribution. A major advantage is that each synthetic image
will be unique, due to the added noise being random. However, the downside is that the added
noise does not have any semantic meaning. Therefore, although the synthetic images do
increase the generalisation of themodel simply by obscuring pixels in the original image, they
do not offer any additional knowledge regarding differing lighting conditions in the same
scene. So the synthetic images only slightly increase the generalisation power of the model.

To overcome this challenge, we propose a new data augmentation technique which
synthesises the light-based effects of different degrees of brightness. Such effects include
shadows and halos of different size, placed in random locations of the input image.
In addition, global illumination changes are also included, in order to increase the
generalisation abilities of the model to scenes filmed at various times of the day and night.
Such augmented data allows us to provide extra semantic information to the BGS model in
terms of illumination for better generalisation performance. The pilot study, published
in (Sakkos et al., 2019a), demonstrated the effectiveness and feasibility of such an approach. In
this paper, we extend the work by introducing new data augmentation techniques to handle
additional variations to the input image locally and globally. A wide range of new
experiments are conducted to evaluate the effectiveness of the new framework. The results
show that the proposed technique is superior to regular augmentation methods and can
significantly boost the segmentation results even in scenes that feature illumination
conditions unseen to the model.

We further propose a post-processingmethod that can successfully remove noise from the
output binary map of segmentation. The method is based on the fact that contiguous frames
have minimal changes between them and thus, the potential areas of the output that include
foreground objects can be limited. Our experiments indicate that the proposed method
improves the BGS results in our quantitative and qualitative evaluations on the benchmark
dataset SABS (Brutzer et al., 2011).

The main contributions of this work can be summarized as follows:

(1) A novel synthetic image generation method which focuses on local and global image
effects for robust BGS under challenging illumination conditions.

(2) An illumination-invariant deep neural network for BGS.

(3) A post-processing technique based on temporal coherence for the refinement of the
segmentation results.

The rest of the paper is organised as follows. First, we review related work on BGS and
particularly focus on illumination-aware systems in Section 2. Second, we present how we
synthesize images by including local, global and combined illumination changes and present
our new post-processing technique, in Section 3. Third, we present the dataset we created and
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explain how we train the network in four. Next we present the experimental results and
discuss the performance of our proposedmethods in Section 5. Finally, we conclude the paper
and discuss future directions in Section 6.

2. Related work
In this section, we review works that are related to this paper. We first review traditional
approaches of BGS, which involves statistical models like Gaussian Mixture Models and
Principal Component Analysis (PCA). We then review BGS method that utilizes deep-
learning, with a particular focus on supervised methods that yield promising performance.
We finally look at the problem of illumination in BGS and existing solutions, which motivate
our research.

2.1 Traditional approaches
BGS in video is a popular research topic, and the manipulation of illumination to improve
accuracy has many researches. Siva et al. (2015) demonstrated that the pixel intensity values
affected by sudden local illumination change can be modelled by combining a GMM with a
conditional probabilistic function based on an extension of Zivkovic et al. (Zivkovic and
Heijden, 2006). Boulmerka and Allili (Boulmerka and Said Allili, 2018) combine a GMM with
inter-frame correlation analysis and histogram matching. Chen et al. (2018a) use a number of
GMMs to construct spanning trees for hierarchical superpixel segmentation. They report that
extending their model with optical flow for modelling temporal information increases the
segmentation accuracy. Shen et al. (2016) propose an efficient approach to BGS by reducing
the dimensionality of the input data with a random projection matrix. Finally, they apply a
GMM on the projected data.

PCA-related techniques are used for modelling the background of a video with an
eigenspace. Since PCA retains the most significant eigenvectors, the foreground of the input
image cannot be represented by the background model, as long as it is not static. The
foreground can then be recovered with a difference image between the output of the model
and the input frame (Oliver et al., 2000). Cand�es et al. (2011) developed an efficient algorithm
(RPCA) for decomposing the data into a low-rank matrix and a sparse matrix, which are
representing the background and foreground in the BGS scenario, respectively. Recently,
Ibadi and Isquierdo (Erfanian Ebadi and Izquierdo, 2018) extended RPCA by using a tree-
structured sparse matrix to represent the input images. Although their method performs well
on standard datasets, it fails in videos with sudden illumination changes like the Light Switch
sequence of the SABS dataset.

The major weakness of GMM-based illumination-aware methods is that it cannot model
significant illumination changes across consecutive frames as mentioned in Andrews and
Antoine (2014), which happens frequently in real-world environments such as switching on
and off the light. At the same time, while PCA methods have better robustness in modelling
illumination changes, it lacks the semantic knowledge of the scene, resulting in a sub-optimal
performance.

2.2 Deep-learning based approaches
Deep learning has improved system performance significantly in many areas. Here, we
review how deep learning techniques and how they have been used in BGS in the past.

Deep learning approaches use variants of the fully convolutional network (FCN)
proposed by Long et al. (2015). This is a special kind of convolutional neural networks with no
fully connected layers, specifically designed for dense prediction tasks such as image
segmentation. Most BGS methods follow the trend of recent generic image segmentation
networks (He et al., 2017; Chen et al., 2018b; Zhao et al., 2017; Yu et al., 2017; Wang et al., 2018)
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and treat videos as a collection of images while disregarding the temporal information.
Following the success of earlier approaches in object detection (Cai et al., 2016), image
dehazing (Ren et al., 2016), segmentation (Roy et al., 2016) etc., Lim and Keles (2018) and Zeng
and Zhu (2018) attempt to improve their binary maps by employing multi-scale feature
aggregation. While Zeng and Zhu (2018) realise this idea simply by concatenating features
from different layers, Lim and Keles (2018) employ multi-scale inputs, as previously done by
Lu (2014). Wang et al. (2017b) also adopt the same preprocessing, but they refine the original
CNN output by feeding it into another CNN.

A 3D convolution-based approached is proposed by Sakkos et al. Sakkos et al. (2018) to
exploit the relationship between a block of ten-frame for BGS tasks. In Berj�on et al. (2018), the
background model of the Kernel Density Estimation-based system is updated using
information from previous frames. Group property information is exploited in both spatial
and temporal domains in the sparse signal recovery-based approached proposed by Liu et al.
(2018). A recent work (Javed et al., 2018) further demonstrated incorporating spatio-temporal
constraints to improve (Erfanian Ebadi and Izquierdo, 2018) results in better performance.
We also employ deep-learning to perform BGS. However, we particularly focus on the
problem of poor performance in different illumination conditions and propose methods to
tackle it.

2.3 Dealing with illumination
A major challenge for BGS is the illumination conditions, in which pixels belonging to the
same object may look different under different illuminations. At the same time, deep-learning
requires a huge amount of training data and annotating the lighting condition could be
difficult and time-consuming. While existing deep-learning networks may automatically
predict illumination information (Gardner et al., 2017) and generate the illumination map
(Song and Funkhouser, 2019; Gardner et al., 2019), such approaches are typically used indoor
with a limited number of light sources.

To solve this problem, Sakkos et al. Sakkos et al. (2019b) trained a multi-task generative
adversarial network that modelled pairwise dark and bright images. The core idea is to apply
gamma correction (Poynton, 1993) to synthesize images under different illuminations, with a
generative adversarial network (Goodfellow et al., 2014) attempting to learn the data
probability distribution for generating such images. A major advantage is that the method
can synthesize pairwise images of different lighting conditions for effective training in both
indoor and outdoor scene. However, such amethod does not explicitly model the light sources
that consist of different properties (Goesele et al., 2003), and therefore generate images that
may not necessarily realistic. In this work, we solve the problem with a data augmentation
approach, in which we perform image-based modelling of the light sources to synthesize
different lighting conditions. Such a method create more realistic training images such that
even a simple VGG16 (Simonyan and Zisserman, 2015) network can perform highly
accurate BGS.

3. Methodology
In this section, we introduce the proposed data augmentation approaches and explain how a
wide range of local (Section 3.1) and global (Section 3.2) illumination change effects can be
synthesised using the proposed system. Our local illumination methods focus on editing a
local region to simulate lamp-post and shadow effects caused by light sources from different
angles (e.g. Plate 1 and Plate 2 (a) and (b)). For global illumination change effects, we propose
editing the entire image by altering the contrast, sharpness and image saturation (for
example, Plate 2 (c) and (d), and Plate 3). In addition, we present a post-processing output
refinement method (Section 3.4) that takes into account temporal information to further
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enhance segmentation results. Finally, we incorporate the data augmentation and output
refinement approaches into a unified deep neural network architecture 3.5 to perform BGS.
For the sake of clarity, all the symbols used in this paper are listed in Table 1.

3.1 Local changes
Light sources can roughly be divided into direct and indirect lights. A direct light refers to
light falling on a specific area or the surface of an object. In this research, we define this as a
local illumination change since only a small region in the image is being affected. Our pilot
study (Sakkos et al., 2019a) demonstrated the effectiveness of an efficient approach to
synthesize images with local illumination change. In this section, we first review the
technique proposed in Sakkos et al. (2019a). Next, we present a new local illumination
augmentation approach to simulate a direct light source from different angles, including
lamp-post and shadow effects.

3.1.1 Lamp-post and shadow effects. The shape of different light sources can vary
significantly. However, circular shapes, such as street lights and light bulbs are common.
In Sakkos et al. (2019a), we proposed to edit the intensity of a circular region on an image to
simulate a “lamppost” light source (i.e. by increasing the pixel value) or a shadow effect (i.e. by
decreasing the pixel value). Firstly, our method generates the centre i of the circular region
randomly:

i ¼ Iðw; hÞ;w∈W ; h∈H ; I ¼ W 3H (1)

where W, H the width and height of the input image I respectively.
Next, the diameter d of the circular region is again determined randomly in order to create

different illumination change effects. The range of the diameter size is defined as follow:

d ¼ k3minðW ;HÞ; k∈
�
1

5
;
1

2

�
: (2)

where k is the kernel size of the binary mask M1.
To replicate a realistic fading out effect near the edge of the circular region, we gradually

decrease the brightening/darkening effect from the centre to the edge (i.e. the attenuation of light).

The maskM 1 The maskM 2 Original image After effect

(a) (b) (c) (d)

Ellipsoid-shaped shadow Ellipsoid-shaped flash of
light

Low saturation High saturation

(a) (b) (c) (d)

Plate 1.
The application of the
mask for local changes.
Subfigure (a): the initial

binary mask M1 is
created by a circle of
diameter d ¼ 179 and

centre coordinates
ð322; 265Þ. Subfigure

(b): The mask M2 after
the application of the
Euclidean distance
transform on M1.

Subfigures (c) and (d)
depict the original

image and the lamp-
post light source effect
after the application of

the mask M2 on the
input image
respectively

Plate 2.
(a) and (b): With the use
of ellipsoid masks, we
can produce a larger
variety of effects. (c)
and (d): The effect of

colour saturation
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Specifically, we first calculate the binary maskM1 of the pixels to be altered using the following
formula:

M1ðx; yÞ ¼ 15ðx� wÞ2 þ ðy� hÞ2 ≤ d2 (3)

Consequently, all pixels inside the circular region on the mask image will have the value of 1
and zero everywhere else. The light attenuation effect can then be simulated by using the
Euclidean Distance Transform (EDT). Given a binary mask B, EDT is defined as:

EDTxðBÞ ¼ minb
�jjx� bjjL2

�
; ∀b∈B; (4)

where L2 is the Euclidean norm. By applying the EDT onM1, the mask for local changesM2

can be calculated as follows:

M2 ¼ EDTðM1Þ (5)

Having created the newmask for the local change, the intensity of the pixel inside the circular
region (i.e. the masking region) on the image will be edited using the formula:

Is ¼ I ± ðM2 3 zÞ; z∈ ½120; 160�; (6)

where I and Is are the original and new synthetic image, respectively. z a random integer to
further produce a wider variety of synthetic images, and ± is either pixel-wise addition or
subtraction, chosen with equal probability. In summary, a lamp-post effect can be simulated
by using the addition operation in Eq. (6). On the other hand, shadow effects can be created
when the subtraction operation is used. An example of the circular masks M1, M2 and the
image editing effect are illustrated in Plate 1.

3.1.2 Illumination angle effects. Although the method described above is very effective in
creating a very realistic “lamp-post” lighting effect, it does not cover all variations of flashes
and shadows. In reality, many lights often shine at an angle, resulting in a lit area that is not
perfectly circular. As a result, the circular-shaped lighting effect has to be distorted and
transformed in order to simulate the real-world effect. In computer graphics, such an effect
can be created by estimating the 3D position and orientation of the light source in the virtual
world, as well as the location and 3D shape of the objects in the scene. A realistically lit image
can be generated by rendering the scene using techniques such as ray-tracing (Glassner,
1989). However, the aforementioned approach is computationally costly and requires detailed
3D information about the scene which is not available in 2D video and images. On the other
hand, from our observation, the light effect closely resembles an ellipse rather than a circle in
most cases. This motivates us to improve the realism of the lighting effect by using different
mask shapes directly in the image space.

In particular, we propose using an ellipse-shaped mask in our simulation to cover these
cases. Such a light-weight approach can effectively improve the realism of the lighting effect
while minimizing the additional computation required for the framework in the training
stage. More specifically, the following formula is used instead:

M1ðx; yÞ ¼ 15
ðx� wÞ2

d2
þ ðy� hÞ2

d2
0

≤ 1 (7)

where d0 ¼ ad � d; ad ∈ ½0:3; 0:8�. We also randomly rotate the ellipse along its axis.

3.2 Global changes
In some cases, global illumination changes can occur. For example, lightning during a storm
may instantly increase brightness, and once the rain is over global illumination will change
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again. In order to model such illumination changes, we need to alter the pixels across the
whole image, rather than in a small patch.

We synthesize global illumination changes as:

Is ¼ I ± z; z∈ ½40; 80�; (8)

where I, z and ± are as previously defined. In this case the illumination noise z needs to be
slightly diminished, since the whole image is affected.

3.2.1 Contrast augmentation. In addition to image brightness augmentation, we further
enhance the variance of our global augmentation settings with contrast changes. The
contrast of an image plays an important role in highlighting different objects in the scene.
Low contrast images usually look softer and flatter, as well as lacking shadows and
highlights. In reality, various occurrences can result in low contrast images. One of the
common situations is lens flare in the image, where a bright light source scatters the light
directly into the lens. Inspired by this observation, we propose a new data augmentation
approach that varies the contrast of the image to improve the robustness of the framework.
Specifically, we alter the contrast of the original image by applying the following formula:

Is ¼ 128þ c*ðI � 128Þ (9)

where c is the contrast factor. For c < 1 the contrast is decreased; conversely we can increase
it by setting c > 1. In our experiments, we let c∈ ½0:2; 2�. Example images are shown in
Figure 2.

3.2.2 Sharpness augmentation. Finding the sharp borders between different objects in the
image will provide a clear separation between foreground and background and will certainly
contribute positively toward the BGS task. In contrast, the blurring effects caused by low
illumination as well as motion blur will have a negative impact. Inspired by this observation,
we propose incorporating sharpness/blurring in the data augmentation algorithm.

Blurring can be easily achieved by convolving the original image with a n3 n low-pass
filter, which is averaging the neighbouring pixels of the input image. Specifically, we
use Fb ¼ 1

253 ½1�5x5.
Sharpening an image can be done in the same manner, with the use of the filter

Fs ¼ 1

9

2
4 0 �1 0
�1 5 �1
0 �1 0

3
5 (10)

An example of the edited images is illustrated in Plate 3c and 3d.

Overview Decoder block

convolution Pooling Upsampling Decoder Block Sigmoid Concatenation Decoder Block Convolution Batch Norm ReLu

(a) (b)

Figure 1.
The CNN was used for
the experiments. The
encoder is initialised

from VGG16
(Simonyan and

Zisserman, 2015) and is
keep fixed during

training. ReLu layers
are used after every
convolution and are

omitted from Figure (a)
for clarity
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3.2.3 Colour saturation. The colour saturation of an image refers to the intensity of the
colour. The higher the saturation, themore colourful the image is. On the other hand, an image
resembles a grey-scale one when the saturation is very low. Such a difference in image
appearance is similar to the situation when illumination changes significantly. Here, we
propose to further incorporate colour saturation in the data augmentation process. This
improves the framework by enhancing its robustness against significant changes in the
colour of the image caused by illumination changes.

We edit the saturation of the whole image by converting it from the RGB to the HSV colour
space and directly changing the saturation attribute. Specifically, we scale the second
dimension of the HSV space which corresponds to saturation using a parameter s∈ ½0; 2�. For
s < 1, colour is diminished; conversely for s > 1 the colours become more saturated. An
example of the edited image is illustrated in Plate 2c and 2d.

3.3 Combined changes
To capture both local and global illumination changes in the scene, we combine Eq. (6) and
Eq. (8) into the following:

Is ¼ z1 ± ðI ± ðM2 3 z2Þ; z1 ∈ ½40; 80�; z2 ∈ ½120; 160� (11)

Sample images synthesised from our system can be found in Plate 4. Since both the
positioning and the intensity of the masks are random, this method can effectively cover all
kinds of illumination changes. Additionally, hundreds of different synthetic images can be
generated from a single frame. Therefore, given a small video, we can generate enough
unique synthetic images to train a very deep network.

3.4 Output refinement via temporal coherence
While the proposed augmentationmethodworks for still images and videos alike, in the latter
case we can exploit motion information to refine the segmentation results as follows:

Low contrast High contrast Blurring Sharpening

(a) (b) (c) (d)

GbL b GbL d GdL b GdL d
(a) (b) (c) (d)

Plate 3.
Global changes include
contrast augmentation,

blur and sharpness.
Examples of after

decreasing and
increasing the effects

are shown above

Plate 4.
Combination of global
and local illumination

changes. The
subfigures (a) and (b)

depict a combination of
a brightening global

filter with a bright and
dark local filter

respectively. On the
other hand, subfigures
(c) and (d) implement the
darkening global filter
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Lemma 3.1. Let ot ¼ ði; jÞ be a pixel of an object at time t. Then, the corresponding
otþ1 ∈ fði± δi; j± δjÞg, where δ is a small integer.

Based on this, we can create a refiningmap to highlight the areas of the input image that are
likely to contain pixels of the foreground in the next frame. Themap acts as a weight matrix
that refines the probabilities of each pixel of the model output. Essentially, this refining
map needs to be designed in a way that the predicted foreground probability of the next
frame is not scaled down. This is a desired property since the change between two
contiguous frames is minimal and most foreground pixels remain in the same class.
Secondly, those pixels of the refining mask that are adjacent to foreground pixels need to be
assigned with a probability value very close to 1, as it is highly possible for the foreground
object to move into this area. As the distance becomes larger, the values need to be
gradually scaled down. Eventually, the pixels that are furthest away from the foreground
have the smallest probability.

Given each timestamp t and a video frame Ft, we can construct the refining mask rt in the
following way: First, we obtain the model output pt, the pixels of which represent the
probability of them belonging to the foreground class. Then, rt can be generated by applying
the Euclidean distance transform on pt:

rt ¼ EDTðptÞ; (12)

where EDT is as defined in Eq. (4).
While this is a valid approach for existing moving objects, we need to account for new

objects entering the scene at any moment. As a result, we set the values of rt located around
the border to 1. Therefore, themask does not penalise new objects entering the frame. The end
result of the refining mask rt is depicted in Plate 5.

Having defined the process of creating the probabilitymap, the refinement is performed in
a post-processing manner. During testing, we obtain the model output of the current frame
and calculate the probability map, which is used to filter the model output on the next frame.
Thus, ptþ1 can be refined by scaling its probability values according to rt as follows:

ptþ1’ ¼ ptþ1 3 rt; (13)

where3 is the pixel-wise multiplication operator and ptþ1’ denotes the refined segmentation
result.

3.5 Illumination-invariant deep networks
In this work, we incorporate the proposed local and global data augmentation techniques into
a deep learning framework for BGS. To keep all other variables fixed, the same network
architecture is used for all experiments. We use a VGG16 backbone (Simonyan and
Zisserman, 2015), which is transformed to a fully convolutional network by removing the
fully connected layers and appending a decoder. As seen in Figure 1, the decoder mirrors the

Segmentation mask of the previous frame Probabilistic mask

Plate 5.
The (a) probability
mask that is used for
refining the output,
created from the (b)
segmentation mask of
the previous frame.
Bright colours indicate
high probability,
whereas dark colours
represent low
probability values
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encoder and has the same number of channels. Additionally, the encoder features are
concatenated with those of the decoder which are of the same size to enable information flow.
With the proposed illumination-focused data augmentation techniques, the proposed model
is more robust on inputs with significant illumination changes. The experimental results are
presented in Section 5.

4. Experiment settings
4.1 Dataset
In this work, a wide range of illumination-focus data augmentation techniques is proposed.
In order to evaluate the performance of the new methods on BGS tasks, a dataset
with significant illumination changes is needed. In particular, the Stuttgart Artificial
Background Subtraction dataset (SABS) (Brutzer et al., 2011) fulfil all the requirements
and it is used in other illumination-aware BGS approaches in the literature (Sakkos et al.,
2019a, 2019b).

The SABS dataset (Brutzer et al., 2011) contains videos with challenging illumination
conditions and makes the BGS difficult. There is a wide range of environmental lighting
conditions (such as day-time and night scenes), as well as other light sources (such as
switching on/off the lights inside the shops in the street scenes). Following our pilot study
(Sakkos et al., 2019a), the sequence Darkening is used for training our models in all of our
experiments. The Light Switch video is then used as the unseen testing sequence. In Plate 7,
a number of sample training and testing frames are illustrated. Note that we did not use the

Plate 6.
Default augmentation

techniques (from left to
right): imagemirroring,

centre cropping and
adding noise

Plate 7.
The SABSdataset used

for evaluating the
models. The first row
depicts the training
sequence Darkening,
while the second row

shows the testing video
LightSwitch. The

columns show frames
from the start, middle

and ending parts of the
video. Note that in the

middle of the
LightSwitch sequence

the store light switches
off, causing major

changes to the
background
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rest of the SABS dataset (Brutzer et al., 2011) since those videos do not contain any
significant illumination changes and thus not suitable for evaluating our method (see
Table 1).

Since the images are generated on-the-fly during training and are not saved on disk, the
training dataset is slightly different for each experiment. However, when the same
parameters are used, those differences become non-significant due to a large amount of
generated data. The list of experiments and their hyper-parameters is given in Table 2

Symbol Description

I Input image
W Width of I
H Height of I
i Centre of the local mask
d Diameter of the local mask
M1 Initial mask for local changes
K Kernel size of the mask M1

Z Illumination intensity in terms of pixel values
M2 Adjusted mask for local changes
c Contrast factor
Fb Blurring filter
Fs Sharpening filter
S Saturation parameter
C Contrast parameter
R Post-processing mask
P Model prediction
p0 Refined model prediction
N Number of pixels of all input frames

Name Description Threshold

Baseline No augmentation 0.8
Default Common augmentation: Mirror, crop and noise 0.7
La Local changes with z∈ ð80; 120Þ; k∈ ð1=2; 2=3Þ3G 0.7
Lb Local changes with z∈ ð80; 120Þ; k∈ ð1=5; 1=2Þ3G 0.7
Lc Local changes with z∈ ð120; 160Þ; k∈ ð1=5; 1=2Þ3G 0.6
Glow Global, low intensity changes with z∈ ð20; 60Þ 0.9
Gmed Global, medium intensity changes with z∈ ð40; 80Þ 0.6
Ghigh Global, high intensity changes with z∈ ð60; 100Þ 0.8
GL Global and local changes with zglobal ∈ ð40; 80Þ and zlocal ∈ ð120; 160Þ 0.7
GLrefine The GL model, after applying the post-processing method 0.6
GLsb GL plus sharpening and blurring augmentation 0.3
GLs GL plus colour saturation augmentation 0.3
GLc GL plus contrast augmentation 0.1
GLe GL with ellipsoid-shaped masks for local changes 0.3
GLall GL plus all the above 0.3
GLAD GL plus all the above plus default augmentation 0.2

Note(s): Parameters k, z and G denote the kernel size of the mask M1, the illumination intensity in terms of
pixel values and the resolution of the smallest dimension of the input image respectively. The last column
shows the threshold that maximised the F-Measure of the segmentation mask

Table 1.
Table of symbols

Table 2.
The different
augmentation settings
that were tested in our
experiments

JEIM



4.2 Training parameters
In this section, the parameters used in training the deep learning models are explained.
Firstly, a mini-batch approach with the batch size set to 1 is used. Next, we used the
Adam optimiser (Diederik, 2014) with betas b1 ¼ 0:9 and b2 ¼ 0:999. Thirdly, to avoid
overfitting, the training process is terminated if there is no improvement after 5 epochs. The
initial learning rate is lr ¼ 0:001 and is reduced by a factor of 0.1 if the model does not
improve for 2 epochs.

As anothermeasure against overfitting, we freeze the encoder of our network. Specifically,
the first five convolutional blocks of VGG16 are fixed and we only train the decoder.
Therefore, although the total number of parameters is around 19M, we only train 4.3M.

The optimal ratio between the unaltered, original images and the new, augmented training
samples is not the same for every problem. It can depend on the size of the training set and the
variance of the images’ appearance. In our case, we find that augmenting two-thirds of our
training set yields the best results.

We observe that most frames contain more pixels of the background than the foreground
– some frames might not even depict anymoving objects at all. Considering this, we conclude
that the loss function needs to balance the classes as to not allow the model to be biased
towards the background class. As a solution, we use theweighted cross-entropy loss, which is
formally defined as follows:

Gs ¼ wt½−logσðxÞ� þ ð1� tÞ½−logð1� σðxÞÞ�; (14)

where w is the weight coefficient, x is the predicted label, t is the target label and σðxÞ ¼ 1
1þe−x

is a sigmoid function. The weight w is calculated according to the ground truth frames with
the following formula:

w ¼ N

23 ½Nb;Nf �; (15)

where N denotes the number of pixels of all input frames and Nb, Nf are those pixels that
belong to the background and foreground respectively.

4.3 Implementation details
We use the Keras library (Chollet et al., 2015) for training our models. Furthermore, for the
quick deployment of the proposed model, the Segmentation models (Yakubovskiy, 2019)
library is used. The full code is uploaded on GitHub [1]. The Graphics Processing Unit (GPU)
that was used in all our experiments is a GeForce GTX TITAN X.

4.4 Evaluation metric
For evaluating our experiments, we use the following metrics: F-Measure (FM), Intersection
over Union (IoU), Matthews correlation (MC). We provide the formal definitions below:

Precision ¼ TP

TPþ FP
(16)

Recall ¼ TP

TPþ FN
(17)

FM ¼ 23 Precision 3 Recall

Precisionþ Recall
(18)

IoU ¼ TP

TPþ FPþ FN
(19)
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MC ¼ TP 3 TN� FP 3 FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp (20)

where TP, TN, FP, FN denote the true positive, true negative, false positive and false negative
pixels respectively.

5. Results
We perform extensive evaluations on the proposed method. In particular, a wide range of
different augmentation settings (Table 2) were evaluated. We also compare against the regular
augmentation techniques. We implement a “default” augmenter which performs the following
image transformations: horizontal flipping, random cropping and noise addition, as depicted in
Plate 6. The cropping operation performs centre croppingwith random image sizes, whereas the
noise option adds salt and pepper noise drawn from a Gaussian distribution. The amount of
noise is fixed to 0.05. To maximise the variance of the augmented data’s appearance, all
operations have a 50% probability of taking place.

In the following section, wewill evaluate the proposedmethod quantitatively to determine
the optimal settings.

5.1 Quantitative evaluations
To quantitatively evaluate the performance of the proposed data augmentation techniques as
well as the new post-processing method, we follow the commonly used metrics as in the
previous work on the SABS dataset. The details are stated in section 4.4.

The results of our experiments are presented in Table 3 and 4. We first review the
performance of the basic local and global data augmentation approaches presented in
our pilot study (Sakkos et al., 2019a). In Table 3, the common augmentation approach
achieved a 7% improvement in the main evaluation metric F-Measure (FM) over the
baseline which does not employ any data augmentation, which indicates that general
augmentation methods can improve results significantly. We further presented the
results obtained by our combined (global and local) data augmentation, namely GL,

Settings Recall ↑ Sp ↑ FPR ↓ FNR ↓ PWC ↓ FM ↑ Precision ↑ IoU ↑ Matthews ↑

No augm 0.4606 0.9933 0.0067 0.5394 1.9172 0.5288 0.6207 0.3594 0.5253
Common augm 0.5440 0.9937 0.0063 0.4560 1.6767 0.6025 0.6750 0.4311 0.5976
GL (Sakkos
et al., 2019a)

0.7687 0.9941 0.0059 0.2313 1.1189 0.7624 0.7562 0.6161 0.7567

Settings Recall ↑ Sp ↑ FPR ↓ FNR ↓ PWC ↓ FM ↑ Precision ↑ IoU ↑ Matthews ↑

Ellipsoid masks 0.7806 0.9942 0.0058 0.2194 1.0836 0.7709 0.7614 0.6272 0.7654
Sharp/Blur 0.7925 0.9941 0.0059 0.2075 1.0587 0.7776 0.7633 0.6361 0.7723
Saturation 0.7813 0.9945 0.0055 0.2187 1.0515 0.7763 0.7714 0.6344 0.7710
Contrast 0.7752 0.9955 0.0045 0.2248 0.9601 0.7904 0.8062 0.6535 0.7857
All 0.8097 0.9948 0.0052 0.1903 0.9478 0.7996 0.7898 0.6661 0.7948
All þ Default 0.8191 0.9949 0.0051 0.1809 0.9211 0.8060 0.7932 0.6750 0.8014

Table 3.
Comparison between
no augmentation,
common augmentation
and method proposed
in our pilot study
(Sakkos et al., 2019a)
which covers global
and local illumination
changes

Table 4.
Individual
contributions of new
augmentation methods
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proposed in our pilot study (Sakkos et al., 2019a). Our method achieved an outstanding
76.24%, which is significantly higher than the common augmentation approach by
16% and the baseline by 23%. Our method also outperformed other methods in every
single metric. These results highlight the importance of targeted, task-specific data
augmentation and demonstrate the superiority of the proposed method against
illumination-agnostic augmentation.

Next, we focus on the new data augmentation approaches proposed in this work. The
results, which are depicted in Table 4, show that all four of the newly proposed methods
further improve the model performance in segmenting the foreground objects. The
F-Measure values are ranging from 77.09% to 79.04%, a very good performance which is
further increased to 79.96% when we combine all new methods. Finally, when the proposed
augmentation methods are combined with the default ones, the model accuracy reaches an
excellent 80.6%. That is an improvement of 4.36% FM score than GL proposed in our pilot
study (Sakkos et al., 2019a). Therefore, we can deduce that each new method introduces
modifications to the training data that offer improvements in different areas, and also all
methods complement each other.

We further evaluate the performance of the proposed post-processing method and the
results are presented inTable 5. Evidently, ourmethod improves the result of all experiments.
This improvement fluctuates between 0.1 and 0.84% with an average of 0.65%. Our best
model reaches an F-Measure score of 81.27%. This shows that the post-processing can
further boost the performance even the new augmentation techniques have already achieved
a high accuracy level.

5.2 Qualitative evaluations
In this section, we visualize the segmentation results to evaluate the proposed augmentation
methods qualitatively. We picked three representative frames from the start, middle and end
in the testing video sequence for a fair comparison. The selected frames have different
illumination conditions which allow us to evaluate the performance of the methods in all
situations. The BGS results depicted in Plates 8 and 9 show that the proposed augmentation
approaches generated higher quality segmentation masks. In particular, local illumination
augmentation leads to masks with much fewer false positives, effectively suppressing noise.
On the other hand, global augmentation offers significant improvement on the true positives,
while discarding some noise as well. However, the results are further improved when
combining global and local augmentation, with the model predictions showingminimal noise
and being accurate even when the foreground is very dark. In this case, the contrast and
colour/brightness difference between the foreground and background objects is very low,
therefore our contrast and blurring augmentation helps the model segment the foreground
more accurately.

Method FM Post-processed

Baseline (GL) (Sakkos et al., 2019a) 0.7624 0.7697
Sharp/Blur 0.7776 0.78527
Saturation 0.7763 0.7846
Contrast 0.7904 0.7988
Ellipsoid masks 0.7709 0.7719
All 0.7996 0.8055
All þ Default 0.8060 0.8127

Table 5.
Accuracy

improvements of our
post-processing

method. Numbers
represent FM scores
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5.3 Ablation studies
In this section, we justify the selection of hyperparameters used in this work. A comprehensive
list of the experiments and the corresponding settings are presented in Table 2. In general,
we investigate the kernel size used for local augmentation, in addition to the range of the pixel
intensity change. Furthermore, we provide the optimal threshold which maximises the model
performance. The quantitative results of ablation testing can be found in Table 6, while the
performance of each model under different threshold is depicted in Figure 2.

6. Conclusion and future work
In this paper, we have proposed a data augmentation framework to generate structured
training data for BGS on videoswith significant lighting changes. Specifically, to improve the
realism of image synthesis, we have proposed to separate the illumination changes into local
and global components, and we proposed some novel designs to effectively model the
respective illumination effects. We have further proposed a post-process technique to refine
the backgroundmask for generatingmore accurate results. Our framework has improved the
training process and generalisation of a deep neural network for BGS, as it can provide an
unlimited amount of training data that represents challenging illumination conditions.
Experimental results have shown our method outperforming existing work, and achieving
the highest score of 81.27% in all comparative setups.

There are several interesting future directions for this research.
Firstly, the geometric information of the objects in the scenes directly affects the

illuminations. While we currently model the effects by adjusting the intensity of the pixels,
the results can potentially be improved if we explicitly model the geometry and deduce the
occlusion information between objects. This will allow us to generate more realistic lighting
and shadowing effects.

Secondly, the location of applying the local effects is randomly selected in our current
design. This has the advantage of improving the robustness of the system. However, this also
has the disadvantage of creating scenes that may be semantically incorrect. We would like
to learn the correlations between illumination effects and the locations to apply them from
real-world images.

Finally, under the current design, the data augmentation is used as a pre-processing
method for creatingmore training data. On one hand, this is advantageous as the computation
cost of training the deep network becomes independent of that of the data augmentation
process. Therefore, the augmented data can be pre-computed and reused repeatedly. However,
it is likely that the generated training datamight not be themost effective samples for training
the network and maximising its generalisation capabilities. From this point of view, coupling
image generation with training and optimising both tasks makes sense. Hence, in the future,
we would like to explore methods like adversarial training and measure their impact on data
augmentation.

(a) Ablation studies for global changes
Settings Recall ↑ Sp ↑ FPR ↓ FNR ↓ PWC ↓ FM ↑ Precision ↑ IoU ↑ Matthews ↑

La 0.5467 0.9962 0.0038 0.4533 1.4290 0.6412 0.7752 0.4719 0.6442
Lb 0.5958 0.9951 0.0049 0.4042 1.4219 0.6619 0.7444 0.4946 0.6589
Lc 0.6294 0.9954 0.0046 0.3706 1.3189 0.6903 0.7643 0.5271 0.6870

(b) Ablation studies for local and global changes
Glow 0.7103 0.9927 0.0073 0.2897 1.3877 0.7051 0.6999 0.5445 0.6980
Gmed 0.7082 0.9942 0.0058 0.2918 1.2464 0.7263 0.7454 0.5703 0.7202
Ghigh 0.6679 0.9952 0.0048 0.3321 1.2405 0.7155 0.7704 0.5570 0.7111

Table 6.
Ablation studies for
local changes

JEIM



Note

1 https://github.com/dksakkos/illumination_augmentation
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