
Simulating Interactions of Characters

Taku Komura, Hubert P.H. Shum, and Edmond S.L. Ho

Institute of Perception, Action and Behaviour
School of Informatics, University of Edinburgh

Abstract. It is difficult to create scenes where multiple characters
densely interact with each other. Manually creating the motions of char-
acters is time consuming due to the correlation of the movements between
the characters. Capturing the motions of multiple characters is also dif-
ficult as it requires a huge amount of post-processing of the data. In
this paper, we explain the methods we have proposed to simulate close
interactions of characters based on singly captured motions. We pro-
pose methods to (1) control characters intelligently to cooperatively /
competitively interact with the other characters, and (2) generate move-
ments that include close interactions such as tangling the segments with
the others by taking into account the topological relationship of the
characters.

Keywords: character animation, motion capture, crowd simulation.

1 Introduction

Scenes that multiple characters densely interact with each other are common in
daily life. Such scenes include multiple people carrying luggage together, one per-
son holding the shoulder of another injured person and helping him/her walk, a
group of people fighting or playing sports such as wrestling, rugby, or ice hockey,
and people dancing in a densely crowded hall sticking their body together. Con-
trolling each character under such environment is difficult as the motion of one
character affects the motions of all the people in the scene.

(a) (b) (c)

Fig. 1. The close interactions of human characters that we cover in this paper: (a) A
character chasing another character taking into account the benefits in the future, (b)
two characters carrying luggage together, and (c) two characters wrestling

A. Egges, A. Kamphuis, and M. Overmars (Eds.): MIG 2008, LNCS 5277, pp. 94–103, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Simulating Interactions of Characters 95

Currently, the cost and time required to create such scenes are enormous. Such
motions need to be either created manually or using the motion capture system.

Manually creating a scene of multiple characters is time consuming as each
movement of the characters is correlated with those of the others. One amend-
ment results in a number of updates in the scene. Suppose an animator is editing
a scene where one character is knocking down another character. If we need to
edit the punching motion of the attacker, by changing the position and timing of
the punch landing onto the opponent, then we also need to edit the motion of the
opponent being knocked down, by changing the way it gets hit and falls down
onto the ground. If the two characters are repeatedly attacking / defensing, the
amount of work becomes enormous.

Capturing the motions of multiple persons in the scene at the same time
using a motion capture system is another solution to create such an animation;
however, for scenes as fighting, this is difficult due to the intrusiveness of the
motion capture system, occlusions, and the intensive interactions that affect
the performance of capturing. Think of using an optical motion capture system
to capture two boxers seriously sparring. In the beginning, they actually never
seriously hit each other as markers are attached to various parts of their bodies.
Athletes are sensitive to such an unusual condition and they cannot perform in
the way they usually do. Although it is difficult, suppose the boxers overcome
such pressure and start to spar at close distance seriously. A lot of markers are
occluded by the arms, head and torso of each boxer as they are hitting each other
in a very close distance. And finally it will be found out capturing serious intense
sparring is almost impossible as the markers are flying away from their bodies
when one fighter’s arm hits/rubs the surface of the other’s body. The situation
will be similar or even worse when magnetic / mechanical motion capture systems
are used, as they are even more intrusive than the optical system.

Therefore, we take a more practical approach; we capture the motion data
individually, and simulate the interactions by controlling the characters using AI
techniques. In that case, the problems of occlusions and post-processing become
much easier to handle. We can also produce combinations of actions which are
difficult to be captured due to safety. In this paper, we introduce our previous
work to generate animation of multiple characters closely interacting with each
other. We simulate competitive interactions such as chasing, fighting and playing
sports, as well as cooperative interactions such as carrying luggage together.
Three methodologies are presented:

1. Simulating Competitive Interactions using Singly Captured Mo-
tions (Section 2). First we explain a method to generate a realistic scene
of characters interacting in a competitive environment with a method simi-
lar to controlling computer-based players in chess. We expand the game tree
and evaluate the interactions of characters taking into account the rewards
in the future. This method is effective to simulate scenes such as fighting
and chasing.

2. Simulating Interactions of Avatars in High Dimensional State
Space (Section 3). Although the above approach is effective to simulate

96 T. Komura, H.P.H. Shum, and E.S.L. Ho

realistic interactions between the characters, it is difficult to apply it to
real-time applications such as 3D computer games. This is because game-
tree expansion requires exponential computational time. Here we explain
a method to create and utilize a finite state machine which is effective to
control computer-controlled characters in real-time.

3. Creating tangled motions (Section 4). In the previous approaches, we
mainly focused on instantaneous and impulsive interactions. In some cases,
we need to handle interactions where a character tangles its body segments
to those of the others, such as when piggy-backing another person, giving
shoulder to an injured person to walk, or playing wrestling. Here we explain
a method to create such motions by taking into account the topological
relationships of the characters.

2 Simulating Competitive Interactions Using Singly
Captured Motions

In this section, we explain the overview of our method to simulate interactions
of characters by expanding the game-tree and evaluating the status of the char-
acters in the future. For the details of the techniques, the reader is referred to
[8]. By using this method, the characters make intelligent choices taking into
account their rewards in the future. As a result, the interactions between the
characters appear more realistic than when using emergent approaches such as
flocking.

The outline of the method is shown in Figure 2. We first capture the motions
of subjects individually using optical motion capture systems (Figure 2, left-
most). The captured motions are segmented and classified into semantic groups
such as “straight punch”, “kick” or “parry” automatically. Using the annotated
motions, we generate a data-structure called action-level motion graph (Figure
2, left middle), which is a motion graph structure whose actions are annotated.
In order to control the characters in an intelligent way, it is necessary to make
the character predict how the opponent will react to its action, and decide the
next action based on its benefits in the future. In order to do this, we expand
the game tree, and assess the status in the future using an evaluation function
(Figure 2, right middle). Finally, the character selects an action that maximizes
its rewards in the future, and launches its action (Figure 2, right most).

We propose a new algorithm called the temporal expansion approach which
maps the continuous action planning to a discrete space so that turn-based
evaluation methods such as min-max algorithms and α−β pruning can be used.

In order to simulate realistic interactions of the characters, we propose to use
a table that pairs actions. In this table, the appropriate actions that need to be
launched when the opponent character is undergoing some specific actions are
listed. For example, for each entry of the attack, the appropriate defense motions
together with the best timing to launch them are listed.

The users can easily specify how the scene should appear by tuning param-
eters. Every character is guided by an objective function, and it is possible to

Simulating Interactions of Characters 97

Fig. 2. The outline of the proposed method to simulate competitive interactions: (1)
capture the motions of characters individually (2) generate the action level motion
graph (3) evaluate the interaction by expanding the game tree (4) simulate the com-
petition by physically-based animation

set up a scenario of the competition, or control the way the character competes
by tuning the parameters of its objective function. For example, in case of fight-
ing, it is possible to simulate various fighting styles, such as being more passive,
aggressive, or preferring kicks than punches by changing the scores given to the
characters when they successfully attack or defend. By giving higher scores to
both characters when they follow a path while fighting, both the characters will
tend to do so.

2.1 Experimental Results

We have simulated various competitive interactions of the characters to show
the effectiveness of our method. We have created examples of boxing matches.
The strength of each fighter can be adjusted by changing the depth of the game
tree expanded. We can also adjust the parameters of the characters to simulate
different styles of fights, including outboxing and infighting (Figure 3 (a),(b)).

(a) (b) (c) (d)

Fig. 3. Some of the screen shots of the simulated fights: (a) Infighters fighting at very
close distance, (b) outboxers at long-range distance, (c) the fighters following a path
while fighting, and (d) one avatar chasing another

Next, a scene two fighters moving along a predefined path while fighting was
simulated (Figure 3 (c)). The path is modeled as a series of check points.

Finally, a scene where an avatar chases another was simulated (Figure 3 (d)).
The movements of both avatars are based on the running-around motion. The
preferred distance of the chaser is set short and that of the avatar who is running
away long. Moreover, based on the scoring function, high score is given to the

98 T. Komura, H.P.H. Shum, and E.S.L. Ho

Fig. 4. Two green avatars chasing the blue avatar. The green avatars cooperate with
each other to catch the blue avatar.

chaser when it catches the other avatar. As a result, the chaser tries to approach
its opponent while the opponent tries to get away. We also simulated a scene
where two avatars chase one avatar. In this case, the game tree is composed
of nodes and edges which represent the actions of three avatars. The chasers
cooperate with each other to catch the avatar who is running away (Figure 4).

3 Simulating Interactions of Avatars in High Dimensional
State Space

In this section, we explain our method to control non-player-characters (NPCs)
of 3D computer games to intelligently interact with human-controlled characters
in real-time. For the details of the techniques, the reader is referred to [7].

The method based on game-tree expansion explained in the previous section
requires exponential computational cost. As a result, it is difficult that method
for controlling NPCs in 3D computer games.

Reinforcement learning enables real-time optimal control of characters. It has
been used to control pedestrians to avoid other obstacles/characters walking
in the streets [3,10], control a boxer to approach and hit the target [4], make
the transition of actions by the user-controlled character smooth [5] and train
a computer-controlled fighter in computer games [1]. However, there are two
problems that we face when we try to use reinforcement learning to control
human characters intelligently when they are interacting with another character.

First of all, the state space is too large. The state space increases exponentially
proportional to the number of parameters. Parameters such as the action the
character is undertaking, its body position and orientation, and the timing to
launch the action are going to form the state space. The number of parameters is
going to double if there are two characters. As a result, it is difficult for existing
adaptive learning techniques such as Q-learning [11] to explore the whole state
space to search for optimal policies.

Another problem is that the way the people behave change according to vari-
ous factors such as their mood, habits, and preferences of actions; however, pre-
vious animation techniques used “on-policy” [9] reinforcement learning methods,
which require the system to be retrained in case the reward function is changed.
For example, in boxing, there are boxers called infighters who prefer to fight
aggressively in short distance, and use punches such as upper cuts and hooks
more. On the contrary, there are outboxers, who prefer to stay away from the

Simulating Interactions of Characters 99

(a) (b)

Fig. 5. The interactions of articulated characters are generated by maximizing the
reward function defined by the relative pose between characters, the effectiveness of
actions, and/or user-defined constraints. This framework of synthesizing character an-
imation is efficient and flexible enough to make a variety of practical applications
including (a) interactive character control using high-level motion descriptions such as
punches, kicks, avoids and dodges and (b) real-time massive character interactions by
a large number of automated characters

opponent and as a result, prefer to use straight punches which are effective in
long distance. If we train a virtual boxer by an on-policy reinforcement learn-
ing approach, it will not be able to compete well with other fighters who have
different styles of fighting. The system needs to be pre-trained for various types
of fighters, and the policy needs to be switched according to the type of the
opponent, which will be very computationally costly.

Here we make use of the fact that the subspace of meaningful interactions is
much smaller than the whole state space of two characters. We efficiently collect
samples by exploring the subspace where dense interactions of the characters
exist and favoring samples which have high connectivity with other samples.
Using the samples collected, a finite state machine (FSM) called Interaction
Graph is composed. The Interaction Graph is a Motion Graph of two characters.
In order to control the character in an optimal way, a min-max search / dynamic
programming is conducted on the Interaction Graph.

We can simulate various activities by two characters such as fighting, chas-
ing, playing sports, or carrying luggage together. Our method can plan strategic
movements for Non-Player Characters (NPCs) in 3D computer games. For ex-
ample, we can control virtual fighters in boxing games (Figure 5(a)), or the
background crowd moving or fighting with each other in computer animations
(Figure 5(b)), or characters collaboratively working, such as carrying a box
(Figure 1(b)).

3.1 Outline of the Method

The procedure of our method can be divided into the preprocessing stage and
run-time stage. The preprocessing stage proceeds as follows:

1. Capture the motions of a single person conducting the target motion and
generate the action level motion graph structure out of the motion data

100 T. Komura, H.P.H. Shum, and E.S.L. Ho

Fig. 6. The outline of the preprocessing stage: (left) exploring the state space by fa-
voring states with more interactions and transitions to existing samples (right) an
Interaction Graph created from the collected samples

2. Explore the combined state space of two characters by simulating the in-
teractions of the two characters and expanding the motion tree (Figure 6
left)

3. Generate the Interaction Graph of the two characters and find the most
appropriate movements of the characters at each node by dynamic program-
ming or min-max search. (Figure 6 right)

Then during run-time:

1. At each state, the corresponding character selects the precomputed optimal
action

2. If the animator/user wants to change the policy/strategy of the control,
the information in the lookup-table is recomputed by re-running dynamic
programming or min-max search. This can be done in a few seconds, and
can be run in background while simulating the interactions

3.2 Experimental Results

We have simulated scenes of fighting as examples of competitive interactions and
scenes of carrying luggage together as examples of collaborative interactions.

In order to show the real-time performance of our system, we have imple-
mented a game-style interface which the user can control an avatar to fight with
the computer-controlled avatar (Figure 7 (a)).

For the example of carrying luggage, another interface to move the avatars
to arbitrary directions to avoid being hit by the ball was implemented. Screen
shots of this example are shown in Figure 7 (b),(c).

4 Creating Tangled Motions

In this section, we explain our method to simulate close interactions that requires
human characters to tangle its limbs with those of the others. We propose a
method to use Gauss Integrals (GI), which is a concept proposed in knot theory.
For the details of the techniques, the reader is referred to [2].

Simulating Interactions of Characters 101

(a) (b) (c)

Fig. 7. (a) Using the game style interface, the user can control an avatar to fight with
the computer-controlled avatar by the Interaction Graph. (b),(c) Screen shots of the
avatars controlled to avoid the ball while holding a box.

Individually captured
 motions

Topological relationship Tangled motions

Fig. 8. The outline of the proposed method to simulate interactions of characters that
involve tangling

Animations of two characters tangled with each other often appear in battle
or fighting scenes in films or games. However, creating such scenes is difficult
due to the limitations of the tracking devices and the complex interactions of
the characters during such motions. Here we propose a new method to gener-
ate animations of two persons tangled with each other based on individually
captured motions. We use wrestling as an example.

We propose to use GI to calculate the tangled status of bodies. Since GI
can only calculate the relationship of two strands, we propose a method to ap-
ply it to express the tangled status of multibody structures such as humans.
Once the relationship is specified, the motions of the characters are imported
and edited automatically, so that constraints due to penetration or geometrical
constraints such as keeping the support feet onto the ground are satisfied. The
tangle relationships are also monitored so that the segments do not get untan-
gled. As a result, a scene of two characters interacting with each other can be
generated.

Our method can be used to create motions such as holds and chokes in
wrestling, a helper holding a shoulder of an injured person to walk or a per-
son piggy-backing another person. The motions created using this method can
be used for applications such as computer games and 3D computer animation.

102 T. Komura, H.P.H. Shum, and E.S.L. Ho

4.1 Methodology

The overview of our methodology is as follows:

1. The user captures the motions of the two characters individually using a
motion capture system

2. The user specifies the topological relationship of the characters by composing
a template posture with our 3D character posing interface. The postures are
examined by the system and the segments composing the tangles are detected
by calculating the GLI of the segments.

3. The motion data of both characters are edited according to the topological
relationship specified in Step 2.

The flowchart of the algorithm is shown in Figure 8.

4.2 Experimental Results

We have simulated a number of wrestling motions including the Argentine Back-
Breaker (Figure 9 (a)), the Rear-Chokehold (Figure 9 (b)), and the Octopus Hold
(Figure 9 (c)).

(a) (b) (c)

Fig. 9. (a) Argentine Back Breaker, (b) The Rear-Chokehold and (c) the Octopus Hold
simulated using our method

5 Summary and Future Work

In this paper, we introduced methods that we have previously proposed to sim-
ulate the close interactions of multiple characters. We have covered interactions
such as chasing, fighting, carrying luggage, and wrestling. We believe the follow-
ing topics are the important areas to further explore:

Simulating scenes where a large number of characters interact, such as one per-
son fighting with many background characters, characters fall onto others like
domino in panic, and multiple characters pass luggage to the person standing
next to it.

Creating a motion graph based on topology: In motion graphs, usually the Eu-
clidean distances of the state vectors based on joint angles or the joint positions

Simulating Interactions of Characters 103

are used to evaluate the similarity of different postures. Such kind of distance
measures can cause troubles when we animate motions such as wrestling. We can
make use of the topological relationship of the bodies in evaluating the similarity
of postures of two characters, and compose a motion graph based on this distance
measure. It is expected that less penetration of the segments will occur.

Parameterizing the interactions: Currently, we select the actions from a large
set of motions. This increases the state space as there can be a set of similar
motions which are have the same effect to the scene. We can parameterize the
actions [6] from a small set of actions by using interpolation and produce various
interactions out of them.

References

1. Graepel, T., Herbrich, R., Gold, J.: Learning to fight. In: Proceedings of Computer
Games: Artificial Intelligence Design and Education (CGAIDE 2004), pp. 193–200
(2004)

2. Ho, E.S.L., Komur, T.: Wrestle alone: Creating tangled motions of multiple avatars
from individually captured motions. In: Proceedings of Pacific Graphics 2007, pp.
427–430 (2007)

3. Ikemoto, L., Arikan, O., Forsyth, D.: Learning to move autonomously in a hostile
world. Technical Report No. UCB/CSD-5-1395, University of California, Berkeley
(2005)

4. Lee, J., Lee, K.H.: Precomputing avatar behavior from human motion data. In:
Proceedings of 2004 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pp. 79–87 (2004)

5. McCann, J., Pollard, N.S.: Responsive characters from motion fragments. ACM
Transactions on Graphics (SIGGRAPH 2007) 26(3) (August 2007)

6. Mukai, T., Kuriyama, S.: Geostatistical motion interpolation. ACM Trans.
Graph. 24(3), 1062–1070 (2005)

7. Shum, H.P.H., Komura, T., Yamazaki, S.: Simulating interactions of avatars in
high dimensional state space. In: ACM SIGGRAPH Symposium on Interactive 3D
Graphics (i3D) 2008 (2008)

8. Shum, H.P.H., Komura, T., Yamazaki, S.: Simulating competitive interactions us-
ing singly captured motions. In: Proceeedings of ACM Virtual Reality Software
Technology 2007 (2007)

9. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

10. Treuille, A., Lee, Y., Popovic, Z.: Near-optimal character animation with continu-
ous control. ACM Transactions on Graphics 26(3) (2007)

11. Watkins, C.: Learning from Delayed Rewards. PhD thesis, Cambridge University
(1989)

	Simulating Interactions of Characters
	Introduction
	Simulating Competitive Interactions Using Singly Captured Motions
	Experimental Results

	Simulating Interactions of Avatars in High Dimensional State Space
	Outline of the Method
	Experimental Results

	Creating Tangled Motions
	Methodology
	Experimental Results

	Summary and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

