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In this paper, we propose an accurate and robust approach to salient region detection for 3D polygonal 

surface meshes. The salient regions of a mesh are those that geometrically stand out from their con- 

texts and therefore are semantically important for geometry processing and shape analysis. However, a 

suitable definition of region contexts for saliency detection remains elusive in the field, and the previ- 

ous methods fail to produce saliency maps that agree well with human annotations. We address these 

issues by computing saliency in a global manner and enforcing sparsity for more accurate saliency de- 

tection. Specifically, we represent the geometry of a mesh using a metric that globally encodes the shape 

distances between every pair of local regions. We then propose a sparsity-enforcing rarity optimization 

problem, solving which allows us to obtain a compact set of salient regions globally distinct from each 

other. We build a perceptually motivated 3D eye fixation dataset and use a large-scale Schelling saliency 

dataset for extensive benchmarking of saliency detection methods. The results show that our computed 

saliency maps are closer to the ground-truth. To showcase the usefulness of our saliency maps for ge- 

ometry processing, we apply them to feature point localization and achieve higher accuracy compared to 

established feature detectors. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

The human visual system has a remarkable ability to quickly

nd effortlessly identify a small number of interesting objects in

 visual field. This ability appears mainly stimulus-driven and is

ommonly referred to as visual attention , which helps suppress the

ast amount of visual inputs that are not essential to subsequent

ognitive processing tasks [1] . 

In computer vision, numerous computational methods have

een proposed to mimic the visual attention mechanism for effi-

ient image understanding [2–5] . Inspired by the idea of saliency-

uided image processing, Lee et al. [6] introduced the concept

f mesh saliency to computer graphics, highlighting its advantages

ver traditional geometric quantities (e.g. curvatures) for assessing

he perceptual importance of mesh regions. By prioritizing the pro-

essing of mesh regions according to their saliency values, the per-

eptual quality of processed meshes can be largely retained and

he processing time can be effectively reduced. Such examples in-

lude shape simplification [6–9] , shape matching [7,10] , realistic
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endering [11–14] , shape segmentation [9,15] , shape reconstruction

9] , and crowd modeling [16] . 

Despite the vast use of mesh saliency in geometry processing

nd computer graphics, the definition of what constitutes saliency

emains elusive in the field. The fundamental challenge is that the

ttention mechanism of human vision is far from being fully un-

erstood [1] . Regarding this, many effort s have been devoted to

and-crafting some computational methods that take a 3D polyg-

nal mesh as input and produce a saliency map as output. For ex-

mple, the local contrast methods of [6,10,17] compute the saliency

f a local region as the difference of its differential properties from

ts surroundings. The global rarity methods of [8,9,18,19] compute

he saliency of regions in wider surroundings and are able to high-

ight more distinct shape features. However, the former mainly re-

pond to local geometric variations and suffer from surface noises

nd bumps, while the latter are sensitive to topological flaws due

o the use of mesh connectivity for saliency computation. 

There are also methods using high-level semantic annota-

ions for saliency computation. One example is the method of

7] that detects salient regions effective at distinguishing shapes

f different object categories. The other example is the tree-

egression-based method of [20] , which learns to predict saliency

rom low- and high-level geometric properties such as curvatures

nd symmetries. However, both methods require category-specific

https://doi.org/10.1016/j.neucom.2020.02.106
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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human annotations for saliency computation and therefore cannot

generalize to more object categories without annotations. 

In view of the above challenges, we propose a new saliency de-

tection method that does not require human annotations, gener-

ates accurate saliency maps much closer to ground-truth, and is ro-

bust to mesh noises, simplification and holes. Our method is math-

ematically derived from two fundamental principles of saliency:

rarity and sparsity . The rarity principle regards those regions dis-

tinct from others to be salient, and the sparsity principle ensures

that only a small number of truly distinct regions can pop out

from the saliency computation process. Without enforcing sparsity

while optimizing rarity, the computed saliency maps would be-

come overly uniform and very few regions can stand out and be

correctly recognized as salient. 

Specifically, we propose a sparse metric-based rarity optimiza-

tion problem for saliency computation. The optimization variable

of the problem is the optimal saliency map to be solved for, and

the optimization objective is the continuous rarity of a metric en-

coding the shape distance between every pair of local regions. We

incorporate the sparsity principle of saliency by constraining the

L0-norm of any feasible saliency map solutions. As a result, our

saliency detection method amounts to solving a sparse eigenvalue

problem [21] , with the optimal saliency map being the sparse

eigenvector of the metric of a mesh. By averaging multi-scale met-

rics into a scale-free metric, our method is able to discover a com-

pact set of multi-scale salient regions from raw geometric features.

By avoiding the use of mesh connectivity in metric representation,

our method maintains robust to mesh flaws such as simplifications,

noises, and holes. 

To evaluate the performance of saliency detection methods, we

build a perceptually motivated 3D eye fixation dataset from 50

graphics meshes and 8 human subjects through a 3D eye-tracking

experiment. We also implement the highly cited saliency detection

methods of [6,18,19] , whose original source codes are not publicly

available for large-scale quantitative benchmarking. We perform

extensive method evaluations on our eye fixation dataset and the

Schelling saliency dataset of [20] . The results show that our com-

puted saliency maps are closer to the ground-truth than that gen-

erated by the competing methods of [6,8,9,18,19] . To showcase the

usefulness of our computed saliency maps, we apply them to fea-

ture point localization [22] and compare to the established feature

detectors of [6,23–25] . The results show that our saliency-guided

feature detector outperforms others in terms of feature point lo-

calization accuracy. 

We propose three contributions in this study: 

• We propose a sparse metric-based rarity optimization method

for saliency detection. Our method is shown to be able to pro-

duce accurate saliency maps without relying on human anno-

tations while being robust to mesh simplifications, noises, and

holes. 

• We build a perceptually motivated 3D eye fixation dataset for

saliency detection benchmarking. The dataset extends the eye

fixation experiment of [26] from 2D to 3D, and complements

the Schelling saliency dataset of [20] that is not constructed

from real captured human eye movements. Our publicly avail-

able dataset can be downloaded from this link: http://info.

hubertshum.com . 

• We implement the highly cited saliency detection methods

of [6,8,18,19] and perform benchmarking on our eye fixation

dataset and the Schelling saliency dataset of [20] . The re-

sults show that our computed saliency maps are closer to the

ground-truth annotations compared to that of [6,9,18,19] . Our

open-source codes can be downloaded from this link: http:
//info.hubertshum.com . 
. Related work 

Visual Attention Modeling . The theoretical foundation of visual

ttention can be traced back to [27] , where Treisman and Gelade

roposed “Feature-Integration Theory” which suggests what and

ow visual features are combined to direct human visual atten-

ion. Koch and Ullman [28] developed a feed-forward computa-

ional method to incorporate these features, indicating that salient

mage locations are visually distinct from their surroundings. Itti

t al. [2] implemented a center-surround operator on low-level im-

ge features for saliency detection. After that, a large body of visual

aliency methods have been proposed in computer vision [1,3–5] .

ecently, [29] proposed to extract the most distinguishable infor-

ation from image color, texture and location features for saliency

etection. Further, [30] incorporated both low- and high-level im-

ge features into a variety of learning algorithms for more accurate

aliency detection. Additionally, the detected saliency maps can be

nforced to be more accurate and consistent using Markov Random

ield (MRF) on multiple feature maps [31] . Our proposed method is

lso for visual attention modeling but works on 3D surface meshes

nstead of 2D images. Another difference is that we only use one

et of features for saliency detection [32] , without leveraging mul-

iple sets of features as in [29–31] . Incorporating more features is

 future direction. 

Image Co-saliency Detection . Recently, image co-saliency de-

ection that aims to extract the common salient objects from a

roup of similar images has been widely studied. Different from

raditional image saliency detection that handles each individual

mage separately [1–5] , co-saliency detection needs to address the

oreground consistency and background variations of a group of

mages [33] . proposed to estimate the co-saliency priors of these

mages for co-saliency detection using the Gaussian Mixture Model

GMM) on the corresponding binary salient masks [34] . further ob-

erved that the common salient objects usually have similar color

istributions and therefore can be effectively captured in a shared

olor space without the explicit combination of single saliency

aps. More recently, [35] achieved more accurate co-saliency de-

ection results by learning from both labeled exemplar images and

egions. We focus on single saliency detection for 3D meshes in

his work instead of co-saliency detection. 

Saliency Detection for 3D Scenes . To accelerate realistic ren-

ering, Yee et al. [36] used the method of [2] to detect salient

egions of coarsely rendered scenes and focused rendering re-

ources on these important regions. Similar to [36] , Longhurst et al.

37] controlled per-pixel ray sampling density based on detected

alient regions. Afterwards, [14] extended the idea to participating

edia rendering and achieved realistic results with low computa-

ional costs. Mantiuk et al. [38] made an attempt to compress an-

mated scenes with the guidance of image saliency. By only using

alient regions of rendered images, these methods have no access

o any depth information of 3D scenes, which plays an important

ole in human visual attention [39] . In contrast, our method analy-

es 3D geometry directly and therefore can detect structure-related

aliency information. 

Saliency Detection for Surface Meshes . We classify existing

esh saliency detection methods into the following five categories:

Local Contrast . Inspired by [2] , Lee et al. [6] introduced the

oncept of mesh saliency using a center-surround operator on

aussian-weighted mean curvatures. Gal and Cohen-Or [10] de-

ned the saliency of a region based on its relative size, cur-

atures, and curvature changes. They detected and segmented

alient regions for partial shape matching. Feixas et al. [17] pro-

osed an information-theoretical framework for viewpoint selec-

ion and mesh saliency computation. Zhao et al. [40] computed

aliency from local normal information for subsequent refinement.

hese models compute saliency as local contrast of surface prop-

http://info.hubertshum.com
http://info.hubertshum.com
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rties, generally by comparing local regions to their neighbours.

eong et al. [41] used normal information to compute both view-

ndependent and view-dependent saliency. However, local contrast

ethods tend to wrongly identify bumpy and noisy regions as

alient. Our method addresses this issue by extending region com-

arison from a local to a global context. 

Spectral Irregularity . Based on the work of [4] , Song et al.

9] assumed that saliency is hidden in the irregularity of the log-

aplacian spectrum of a mesh. They extracted such irregularity and

ransformed it back to the spatial domain to compute saliency.

esh simplification [42] was used to tackle the costly eigende-

omposition of a large Laplacian matrix. Due to the spatial un-

wareness of spectral basis, this method has difficulties in cap-

uring some individual local salient regions. Our method, instead,

orks in the spatial domain and can capture salient regions from

mall to large scales. 

Shape Discrimination . Analogous to feature selection in classifi-

ation problems, Shilane and Funkhouser [7] detected salient sur-

ace regions for distinguishing shapes of different object categories.

he detection results depend not only on a semantically catego-

ized shape database but also on the object categories of input

eshes. In many applications, however, these semantic annota-

ions remain scarce and their collection is labour-intensive. Our

ethod does not require any semantic data for saliency detection,

hereby allowing the use for geometry processing applications that

o not have semantic annotations. 

Learning-based Detection . Through a large-scale online user

tudy, Chen et al. [20] obtained massive amounts of salient sur-

ace points for a library of meshes. They used the obtained data to

rain regression models for saliency prediction. A variety of low-,

iddle-, and high-level cues, such as curvatures, geodesics, seg-

entation, and symmetries, were incorporated. The trained models

erformed well on the training set but showed limited generaliza-

ion abilities for novel meshes out of training datasets. Our method

oes not require training before use and shows good generalization

o diverse object categories. 

Global Rarity . Leifman et al. [18] detected more globally rare sur-

ace regions for viewpoint selection. Wu et al. [8] combined lo-

al contrast with global rarity to compute mesh saliency. Pingping

t al. [19] detected salient regions by identifying non-salient back-

rounds via manifold ranking. These methods aim to suppress re-

eated patterns across a mesh surface by extending region compar-

son from a local to a wider context. However, they require mesh

egmentation and geodesic distance computation which are not ro-

ust to topological flaws such as holes and non-manifold structures

f meshes. Our method belongs to this category and is based on a

lobal metric representation, which is robust to underlying poten-

ially poor mesh tessellations. 

Mesh Saliency Evaluation . Howlett et al. [43] computed

aliency maps from human eye fixations to guide mesh simpli-

cation. They demonstrated that preserving salient details could

mprove the fidelity of simplified meshes. Using eye-tracking

xperiments, Kim et al. [26] validated that saliency [6] was better

ompared to mean curvature for eye fixation prediction. We ex-

end the eye-tracking experiment of [26] from 2D to 3D and build

 3D eye fixation dataset suitable for public saliency detection

enchmarking. 

Mesh Saliency Applications . Numerous graphics applications

ave benefited from mesh saliency. Kim and Varshney used

aliency to edit surface [12] and volume [11] regions for high-

ighted visualization. Liu et al. [15] and Miao et al. [13] employed

aliency to detect feature points and extremum lines for mesh

egmentation and depiction. Recently, Gu et al. [44] combined

aliency with Poisson sampling for adaptive depth image compres-

ion. Other applications include mesh simplification [6–9] , view-

oint selection [6,7,18,45] , shape matching [7,10] , mesh sampling
8] , surface reconstruction [9] , and crowd modeling [16] . We apply

ur method to the task of feature point detection which is a funda-

ental building block in many geometry processing applications. 

. Our method 

.1. Overview 

We illustrate the computation steps of our proposed saliency

etection method in Fig. 1 . Given a 3D polygonal surface mesh as

nput, we first sample a set of random points on the surface (a). For

ach sample point, we construct a shape descriptor that character-

zes its local shape information (b). We then compute a matrix of

quared Euclidean distances among all sample points using their

hape descriptors (c). From this metric representation, we derive

he optimal saliency map by solving a sparse metric-based rarity

ptimization problem (d). Finally, we map the computed saliency

rom the sampled points back to the underlying mesh vertices via

aussian filtering (e). 

.2. Mesh sampling 

To achieve the translation and uniform scaling invariance of

aliency detection, we normalize an input mesh by locating its cen-

roid at the origin and uniformly scaling its radius (i.e. the half di-

gonal length of its tight bounding box) to 1. As a surface mesh

s sometimes either under- or over-tessellated, we randomly sam-

le a set of points on the surface of the normalized mesh [7] , so

hat the quality of computed saliency maps is maintained while

he computational cost remains invariant to the original size of the

esh. We denote the sample point set as P = { p 1 , p 2 , · · · , p n } and

mpirically find that 50 0 0 points are sufficient to cover the whole

urface. We use this value in all of our experiments. 

As observed in [6,7] , salient regions can range from small sur-

ace details to large surface parts. To accommodate the multi-

cale nature of saliency, we define a succession of increas-

ngly larger regions for each sample point on the surface, S =
 0 . 02 , 0 . 04 , 0 . 06 , 0 . 08 , 0 . 1 } . We denote a region p k 

i 
as a spherical

olume of the radius s k ∈ S, with the volume centered at the sam-

le point p i ∈ P . We use this region representation because it is

ndependent of the underlying potentially poor mesh tessellation

i.e. irregular meshes, non-manifold edges, and disconnected com-

onents) and easily supports multi-scale saliency computation by

terating through each scale in S . We find that S works well for

apturing both small- and large-scale salient features in practice. 

.3. Shape descriptor construction 

For each region p k 
i 

defined in the above, we compute a feature

ector f k 
i 

to characterize its local shape information. We choose

he harmonic shape descriptor [32] because it is rotation-invariant

nd has minimal information loss. It was also used by [7] to facili-

ate the multi-scale computation of saliency. 

To compute the descriptor, we convert a mesh into a Gaussian

istance field of resolution 256 × 256 × 256 and partition each

egion (i.e. a spherical volume) into 8 equally-spaced concentric

hells [7] . We sample the Gaussian distance field on these shells

nd compute the amplitudes of the first 8 spherical harmonic fre-

uency bands for each shell [32] . Therefore, the shape descriptor

ength of each region is 8 × 8 = 64 . We find that this feature gran-

larity is sufficient to discriminate regions for effective saliency

omputation. 

.4. Sparse metric-based rarity optimization 

Traditionally, the methods of [6–8,10,17–19,40,41] compute 

aliency from some hand-crafted rules, lacking a principled goal of
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(a) (b) (c) (d) (e)

Mesh Sample Points Shape Descriptors Metric Sample Saliency Vertex Saliency

Fig. 1. Overview of our sparse metric-based mesh saliency detection method. The steps from (a)-(e) are mesh sampling, shape descriptor construction, metric computation, 

saliency optimization, and vertex saliency interpolation respectively. We use red and blue colours to indicate high and low saliency values respectively. 
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optimization. In contrast, we derive saliency from optimizing the

rarity of a global metric representation while enforcing the spar-

sity of saliency. The rarity principle regards those regions that have

the maximum distinction from others as salient, while the sparsity

principle ensures that only a compact set of truly distinct regions

can stand out. To this end, we propose the following optimization

problem: 

arg max R (ϕ) = ϕ 

T Mϕ , s.t. ϕ ≥ 0 , ‖ ϕ‖ = 1 and ‖ ϕ‖ 0 ≤ μn (1)

where ϕ ∈ R 

n is the saliency map of the sample points P to be

solved for ( ϕi is the saliency value of point p i ), and M ∈ R 

n ×n is the

metric representation that encodes the pairwise shape contrasts

among all sample points. Additionally, the first constraint ensures

the solution saliency map to be element-wise nonnegative, and the

second constraint ‖ ϕ‖ = 

√ ∑ 

i ϕ 

2 
i 

= 1 requires the map to have a

unit Euclidean norm. 

The Rarity Principle of Saliency . We refer to the objective of

the optimization problem (1) as the rarity principle of saliency.

After rewriting it as R (ϕ) = 

∑ 

i, j ϕ i ϕ j M i j and assuming that the

saliency map ϕ is binary (i.e. 1 for salient points and 0 otherwise),

we can see that the objective exactly sums the shape contrasts

among all sample points together. By globally optimizing this com-

binatorial problem with the sparsity constraint, we would obtain a

set of salient regions (associated with the salient points) that are

the most distinct from others. However, this problem is known to

be NP-hard to solve [46] and the resulting map is not continuous

for many applications. Therefore, we relax a saliency map to be

continuous-valued and arrive at our continuous metric-based rarity

optimization problem (1) , so that it can be much more efficiently

solved and the optimal saliency map is inherently continuous. 

The Sparsity Principle of Saliency . We refer to the third con-

straint of the optimization problem (1) as the sparsity principle

of saliency. The constraint ‖ ϕ‖ 0 = 

∑ 

i I(ϕ i � = 0) ≤ μn enforces the

fraction of detected salient regions to be less than 0 < μ ≤ 1,

where I ( · ) is the indicator function. When μ = 1 , it has no use

because all sample points are feasible to be identified as salient.

When 0 < μ < 1, it guarantees that only a fraction of truly unique

salient regions can be retained. We find that setting μ to 0.2 works

well in practice. 

To finely quantify and compare the sparsity patterns of saliency

maps, we consider the Lorenz curves and Gini indices of them for

analysis [47] . Let ϕ(1) ≤ ϕ(2) ≤ ��� ≤ ϕ( n ) be the non-decreasing

order statistics of a saliency map ϕ. The Lorenz curve is a piece-

wise linear function interpolating n + 1 points ( F i , L ( F i )), where for

0 ≤ i ≤ n , F i = 

i 
n denotes the proportion of the i least salient re-

gions and L (F i ) = 

∑ i 
j=1 ϕ ( j) ∑ n 
j=1 ϕ ( j) 

encodes the proportion of saliency val-

ues assigned to these regions. As F i varies evenly from 0 to 1, L ( F i )

grows increasingly from 0 to 1, tracing out a concave curve from

the origin to (1,1). The Gini index associated with a Lorenz curve

is one minus two times the area under the curve. As shown in

Fig. 2 , the Lorenz curve of a uniform saliency map is the straight

line from the origin to (1,1), with the lowest Gini index of 0 in-

dicating the absolutely even distribution of saliency values to all
egions. The other extreme is the singular saliency map, which

istributes all the saliency values only to a single region and pro-

uces the highest Gini index of 1. We also show the saliency maps

f the Dragon with and without sparsity in Fig. 2 . It can be seen

hat the map without sparsity is visually and quantitatively very

lose to the uniform one, suggesting very weak discrimination be-

ween salient (i.e. the long body) and non-salient (i.e. the head and

laws) regions of the Dragon. By enforcing the sparsity constraint

n (1) , we dramatically push the map away from the uniform one

nd highlight the salient regions of the Dragon much more clearly.

Multi-Scale Saliency Computation . To capture small- and

arge-scale salient regions, we use a metric for each scale to repre-

ent the global pairwise shape contrasts among all sample points

or saliency computation. Specifically, we compute M 

k 
i j 

= ‖ f k 
i 

−
f k 

j 
‖ 2 as the squared Euclidean distance between the descriptors of

 pair of regions, and M 

k ∈ R 

n ×n as the metric consisting of these

escriptor distances among all points at scale k . Due to the use of

uch a global metric representation, we are able to avoid the am-

iguity of manually choosing a suitable context for saliency detec-

ion, as traditionally done in the methods of [6–8,10,17–19,40,41] .

ore importantly, the representation is decoupled with the under-

ying mesh tessellation, which may contain topological flaws that

revent robust saliency computation. 

Without the sparsity constraint in (1) , the objective is the

ayleigh quotient of a metric M 

k and the saliency map ϕk glob-

lly optimizing it is the principal eigenvector of M 

k [48] . Due to

he nonnegativity of M 

k , its principal eigenvector is guaranteed to

e nonnegative and unique. It can be efficiently computed from M 

k 

sing the power method [21] . With the sparsity constraint, we can

lso efficiently solve the problem (1) using the truncated power

ethod [21] . We describe the solution process as follows: 

• Initialization . We shift all the eigenvalues of M 

k to (0, ∞ ) to

make it positive definite, ˜ M 

k ← M 

k + νI n ×n , where ν is the prin-

cipal eigenvalue of M 

k computed from the power method and

I n × n is the identity matrix. 

• Iteration . We start from the principal eigenvector of M 

k com-

puted from the power method,and then alternate between set-

ting the (1 − μ) n smallest values of the current map to ze-

ros and multiplying it by ˜ M 

k followed with normalization, until

converging to the optimal sparse saliency map. 

Multi-Scale Saliency Integration To capture both small- and

arge-scale salient features, we integrate multi-scale shape infor-

ation by summing the metrics of all scales together: M = 

∑ 

k M 

k .

e then compute the integrated saliency map ϕ from M by solv-

ng the problem (1) using the method described in the above. This

ay, we obtain a scale-free saliency map that fully adheres to the

arity and the sparsity principles os saliency. We also successfully

void the cost of computing, summing, and then discarding multi-

cale saliency maps as traditionally done in [6–10,17–19] . 

As shown in Fig. 3 , the smallest-scale saliency map responds

trongly to the local surface bumps and textures of the Bunny. As

he scale is increased, larger salient regions such as the mouth,



S. Hu, X. Liang and H.P. H. Shum et al. / Neurocomputing 400 (2020) 11–23 15 

Fig. 2. Saliency detection with and without sparsity. Left : our computed saliency map without sparsity. Middle : our computed saliency map with sparsity. Right : Lorenz curves 

and Gini indices of saliency maps. Our map without sparsity is both visually and quantitatively similar to the uniform one, while our map with sparsity is quantitatively 

sparser and visually more concentrated on distinct regions. 

Fig. 3. Multi-scale saliency integration. The saliency map of each scale is computed from the corresponding metric and the integrated map is computed from the sum of 

the metrics of all scales. 
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yes, ears, and feet are accurately captured. The final scale-free

ap effectively retains these visually salient regions while sup-

ressing other undesirable local surface variations. 

.5. Vertex saliency interpolation 

After computing the saliency values of sample points, we map

hem back to the underlying mesh vertices using Gaussian filtering.

et ξ ( v ) denotes the saliency of a vertex v . We compute ξ ( v ) as

he Gaussian-weighted average of the saliency values of the sample

oints close to v : 

(v ) = 

∑ 

p∈N (v , 3 σ ) exp[ −| | v − p | | 2 / ( 2 σ 2 )] ϕ( p) 
∑ 

p∈N (v , 3 σ ) exp[ −| | v − p | | 2 / ( 2 σ 2 )] 
(2) 

here N (v , 3 σ ) = { p ∈ P | | | v − p | | < 3 σ } and σ is the scale pa-

ameter of the Gaussian filter. We use a KD-tree to organize and

uery sample points for more efficient Gaussian filtering. We find

hat σ = 0 . 02 works well in practice. 
. Our 3D eye fixation dataset 

As visual saliency is inherently a pre-attentive mechanism of

he human visual system [1] , it is important to evaluate the per-

ormance of saliency detection methods using real captured hu-

an eye movements on 3D surface meshes. However, the previ-

usly constructed saliency datasets are either too small [43] , only

or 2D rendered images of 3D meshes [26] , or not captured from

eal human eye movements on 3D meshes [20] . Therefore, we

ropose our 3D eye fixation dataset for public saliency detection

enchmarking ( http://info.hubertshum.com ), which is built as fol-

ows (see an example mesh and the collected eye fixations on the

eft of 6 ): 

Mesh Dataset . We collected 50 meshes that are popularly used

n computer graphics research from the Stanford 3D Scanning

epository [49] and the SHREC2007 Challenge [50] . For each mesh,

e fixed the non-manifold edges and remeshed the surface into a

ood quality, so that all of our evaluated saliency detection meth-

ds can work well on it [6,9,18,19] . In the future, we will include

http://info.hubertshum.com
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meshes of poorer qualities (e.g. with holes and non-manifold struc-

tures) for more realistic benchmarking in real-world applications. 

Participating Subjects . We hired 8 undergraduate and master

students from Beihang University as human subjects for our study.

They were aged 23 − 28 and have normal or corrected visions.

They were kept unknown about the purpose of our study to re-

duce the bias of collected data. 

Eye-Tracking Experiments . To capture 3D eye movement data,

we generated a 48s video for each mesh that shows its whole sur-

face from 12 key viewpoints. We kept each viewpoint static for 3 s

and then smoothly switched to the next viewpoint in 1 s, so that

the visual attention of a subject can be directed through the whole

surface of a mesh. For each subject, we instructed him/her to sit in

a distance of 95 − 110 cm from a 1680 × 1050 LED display. Be-

fore the onset of each video stimulus (corresponding to each mesh

in our dataset), we calibrated our used SMI RED250 eye-tracker by

letting the subject gaze at 9 successive black dots on the screen.

We considered the calibration successful if the gaze error was less

than 0.8 ◦, otherwise we repeated the calibration process. After cal-

ibration, we let the subject freely view the displayed video of a

mesh and used the eye-tracker to capture his/her gaze positions

on the screen at 250HZ sampling rate, with a gaze capturing accu-

racy of 0.4 ◦. 

Data Pre-processing and Aggregation . For each mesh in our

dataset, we discarded the first two and the last two eye fixations

of each subject because they can be noisy due to the onset and

offset of the video stimulus. We only retained the 15 2D eye fixa-

tions of the longest durations (average ≥ 300ms) for each subject,

because these eye fixations were much less noisy and represented

where a subject was gazing towards on the screen. To obtain 3D

eye fixations on the surface, we synchronized the timestamps of

the captured 2D eye fixations with camera viewpoints and then

projected them back to the nearest mesh vertices on the surface.

Finally, we aggregated the 15 3D eye fixations from each of the 8

subjects to form 120 ground-truth eye fixations on each mesh sur-

face in our dataset. 

5. Results 

5.1. Saliency detection results 

We show the saliency maps of 18 meshes computed by our

method in Fig. 4 , along with the ground-truth maps provided by

Chen et al. [20] . Each mesh is randomly chosen from the 20 of the

corresponding object category [20] . These results indicate several

strengths of our method for saliency detection: 

• Shape Distinction . Our method successfully detects the glob-

ally distinct regions of surface meshes, such as the protruded

parts (the horns, ears, and legs of the Cow), shape extremities

(the hands, feet, and head of the Human), sharp edges (the per-

pendicular borders of the Mech), and corners (the claws of the

Armadillo). 

• Curvature Insensitivity . Our method is shown to be robust to

the local curvature changes of surface regions. As shown for the

legs of the Armadillo, they are bumpy and textured but are ef-

fectively suppressed by our method. 

• Compactness of Saliency . The saliency maps computed by our

method are visually quite compact, which only highlight a

small number of salient regions with a clear boundary between

non-salient ones. 

We can also see that our saliency maps are visually close to the

ground-truth. This suggests that they capture the true unknown

human visual attention towards surface meshes to some extent. 
.2. Visual comparisons with other methods 

We compare our saliency maps with those generated by 6 rep-

esentative methods in Fig. 5 . We choose these methods for com-

arison because they are the most cited in the field and have dis-

inct methodologies. We highlight the merits of our method over

ach of them as follows: 

• Local Contrast . The method of [6] computes saliency as the lo-

cal contrast of mean curvatures and is thus unable to suppress

bumpy surface regions such as the body of the Bunny. In com-

parison, our method only detects the globally rare mouth, eyes,

ears, and feet regions. 

• Shape Discrimination . The method of [7] detects category-

specific distinctive regions and only marks the whole heads

of the Horse and the Dog as salient. Our method more finely

captures the individual salient regions, including their mouths,

eyes, ears, and legs. 

• Global Rarity . While the method of [18] used shape extreme

points, patch distinction and patch association for saliency de-

tection, the method of [19] induced saliency from their dissimi-

larities to non-salient backgrounds. As shown for the facial fea-

tures of the Horse and the Bunny, our method highlights them

more accurately compared to that of [18] . For the body of the

Dragon and the head of the Igea, our method is more robust to

the noisy surface variations. 

• Learning-based Detection . The method of [20] trains a

tree-regression function for saliency detection. However, the

trained function shows limited generalization abilities for novel

meshes. For example, the handles of the Vase and the legs of

the Camel are not well detected. Our method captures these

regions without using any semantic data. 

• Spectral Irregularity . The method of [9] leverages the residu-

als of the Laplacian spectrum for saliency detection. Due to the

spatial unawareness of spectral basis, the method has difficulty

in localizing individual salient regions. While the forelegs of the

Dog and the centers of the Glasses are of interest, they are er-

roneously neglected. Our method recovers them correctly. 

.3. Quantitative comparison with other methods 

We also evaluate saliency detection methods on our own 3D

ye fixation dataset and the Schelling saliency dataset of [20] .

e choose the two datasets because the former is directly cap-

ured from our human eye tracking experiments and the latter re-

ects human subjective agreements on what constitute semanti-

ally prominent regions on surface meshes. Both characterize hu-

an visual attention on surface meshes to some extent. 

Implementing Other Methods for Comparison . Since the in-

roduction of mesh saliency to computer graphics [6] , a number

f saliency detection methods have been proposed in the past [6–

,10,17–20,40,41] , which show some progress of the visual quality

f the generated saliency maps. However, their source codes are

ot publicly available, preventing a large-scale quantitative bench-

arking of their true performance. Kim et al. [26] only evalu-

ted the performance of the method of [6] and the evaluation

s only based on 2D eye fixation data. Therefore, we have made

ffort s to implement the highly cited methods of [6,8,18,19] and

se the source code of [9] for quantitative evaluation ( http://info.

ubertshum.com ). For the methods of [6,9] , we use the original pa-

ameters and find that the reproduced results align well with that

eported in the original papers. For the methods of [18,19] , we have

ried to tune their shape descriptor construction and saliency com-

utation parameters to match the reported images in the original

apers. To our knowledge, this is the first time that saliency de-

ection methods are quantitatively evaluated in the field. In the

http://info.hubertshum.com
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Fig. 4. Comparison of our saliency maps with the ground-truth of [20] . Each of the 18 shown meshes belongs to a different object category from the dataset of [20] . 

Following [9] , we take the rendered pseudo ground-truth images from [20] because we do not have access to their source code. 

Fig. 5. Comparison of our saliency maps with that generated by other methods. The competing methods include Local Contrast [6] , Shape Discrimination [7] , Global Rarity 

1 [18] , Global Rarity 2 [19] , Learning-based Detection [20] , and Spectral Irregularity [9] . Following [9,18,19] , we take the rendered saliency maps from the original papers of 

[7,9,18–20] because we do not have access to their source codes. For the method of [6] , we generate the saliency maps using our own implementation and visualize them to 

match the original color themes. 
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uture, we plan to implement other methods for more thorough

valuation. 

Evaluation on Our Eye Fixation Dataset . As described in

ection 4 , we build a 3D eye fixation dataset from 50 meshes and 8

uman subjects, who were instructed to freely view these meshes

n a computer screen while wearing a high-precision eye-tracking

evice. After data pre-processing and aggregation, we retain 120

ost frequently attended points on each mesh in our study. We

se the popular Area Under Curve (AUC) metric to quantify how

ell a saliency map captures these eye fixations on a surface [1] . 
We present an example mesh with the captured eye fixations

nd the evaluation results on our eye fixation dataset in Fig. 6 .

s pointed out by [1] , the AUC metric is sensitive to the blurring

f saliency maps, so we filter each saliency map on a surface us-

ng the Gaussian kernels with scales from 0 to 0.2 and compute

he corresponding AUC score for each scale. The Human method

mounts to filtering the eye fixations of randomly selected half

ubjects into a saliency map and evaluating on the other half sub-

ects for each mesh. A stable AUC score is computed by averaging

he results of this random process. 
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Fig. 6. Performance of eye fixation prediction. Left : The Dragon and our captured ground-truth 3D eye fixations on the surface. Right : The Human method uses the captured 

eye fixations of half subjects to predict that of the other halves, thereby measuring the self-consistency of our eye fixation dataset. The competing methods are MC [51] , MS 

[6] , SRI [18] , MR [19] , SI [9] , and GR [8] . The peak AUC scores of these methods are displayed in the plot legend. 
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It can be seen from Fig. 6 that the Human method detects the

captured eye fixations very accurately, achieving the peak score

around scale 0.05. This shows that our recorded eye fixations agree

well among subjects and therefore qualify as ground-truth for

method benchmarking. By focusing on the peak scores, it is sur-

prising to see that MC performs better than MS on eye fixation

prediction, which appears to contradict the findings of [26] . This

may be because Kim et al. [26] did not take blurring into consid-

eration for evaluation. It is also interesting to see that the more

global SRI and MR methods achieve lower accuracy compared to

that by the local MC and MS methods, indicating their limited

eye fixation localization performance. The spectral SI method, com-

pared to them, performs slightly better but is still worse than the

optimally blurred MC method. In contrast, our method achieves

much higher eye fixation localization accuracy around the optimal

blur scale 0.04. 

Evaluation on the Saliency Dataset of [20] . We also use the

Schelling saliency dataset of [20] for method benchmarking. This

dataset has 400 meshes evenly split into 20 object categories, with

a collection of human annotated salient points on each mesh and

the corresponding filtered saliency map. We use the AUC score and

the Linear Correlation Coefficient (LCC) to quantify the accuracy of

a saliency map for predicting discrete salient points and continu-

ous saliency values respectively [1] . 

To finely compare different methods, we report their AUC

scores for each object category separately and the scores for all

categories together in Table 1 . It can be seen that overall our

method is the best performing one, and the followings are the

MS, MC, SRI, SI, MR, and GR methods. It is interesting to see that

the AUC scores achieved by these methods are generally higher

than that on our eye fixation dataset. This may be because the

salient points in the dataset of [20] are fewer and less spread on

mesh surfaces. As visually shown in Fig. 7 , The sparsity of salient

points can explain the poor performance of the SI and MR meth-

ods, which produce overly large patches of salient regions and

therefore lack feature localization ability. The GR method also per-

forms poorly because it fails to clearly highlight salient regions of

surfaces. In contrast, our method localizes salient points more ac-

curately by optimizing the rarity and sparsity principles together. 

We report the LCC scores of these methods for predicting con-

tinuous saliency distributions in Table 2 . We note that continu-

ous saliency distributions are generally harder to predict than dis-

crete points because a method needs to discriminate salient and

non-salient regions more finely. Therefore, we expect the LCC met-
ic to be a more comprehensive performance metric than AUC. It

an be seen that our method produces saliency maps that corre-

ate with the ground-truth considerably better compared to other

ethods. We observe that while MS and SRI may be good at local-

zing sparse salient points, they have limited abilities to finely sep-

rate less salient from totally non-salient ones. As expected, SI and

R perform poorly because they produce overly large patches of

alient regions that contain many non-salient backgrounds as well.

R does not perform well either because it fails to clearly separate

alient and non-salient regions. 

.4. Robustness comparison with other methods 

To show the robustness of our method, we compare our

aliency maps of corrupted meshes with those computed by the

ompeting methods of [6,9,18,19] in Fig. 8 . It can be seen that our

ethod copes well with surface noises, simplifications, and holes.

he computed saliency maps remain very close to that of the orig-

nal Armadillo. In contrast, the method of [6] is fairly sensitive to

urvature changes, responding strongly to the bumps around the

egs of the Armadillo. The methods of [18,19] are also not suffi-

iently resilient to the introduced mesh flaws, producing inconsis-

ent saliency maps for the damaged versions of the Armadillo (e.g.

t the claws and facial regions). The method of [9] appears more

obust than that of [18,19] but fails to localize small-scale salient

eatures such as the eyes, knees, and claws of the Armadillo. 

.5. Feature point localization 

To showcase the usefulness of our computed saliency maps, we

pply them to the task of feature point localization on surface

eshes and evaluate on the dataset of [22] . We choose this task

s our application because it is a fundamental building block of

eometry processing and shape analysis. 

The dataset of [22] consists of 43 commonly used graphics

eshes and the feature points annotated by 16 human subjects for

ach mesh. We evaluate six feature detectors: MS [6] , SP [24] , SDC

23] , HKS [25] , and ours. For MS, SP, SDC and HKS, Dutagaci et al.

22] detected feature points using the published source codes. For

ur method, we classify a mesh vertex to be a candidate feature

oint if it has a local maxima saliency value that is also higher

han the average of all local maxima saliency values. After sorting

hese candidates in the descending order of saliency, we sequen-

ially retain each point with the constraint that it has at least 0.15
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Table 1 

Performance (AUC) of salient point detection on the dataset of [20] . The first row is the list of evaluated methods: MC [51] , MS [6] , SRI 

[18] , MR [19] , SI [9] , GR [8] , and Ours. The second row shows the scores computed on the 19 categories (excluding Helix as in the original 

paper) of the dataset of [20] together. The remaining rows show the scores computed on each category separately. The highest score is 

highlighted in each row. 

MC MS SRI MR SI GR Ours 

All Categories 0.7839 0.8028 0.7605 0.6826 0.7097 0.7402 0.8168 

Airplane 0.8952 0.8356 0.9004 0.7404 0.8690 0.8135 0.8790 

Ant 0.7728 0.8806 0.7975 0.7331 0.7039 0.7216 0.7925 

Armadillo 0.8620 0.9022 0.7603 0.8165 0.7858 0.8183 0.8878 

Bearing 0.7814 0.8313 0.6350 0.6445 0.5312 0.7729 0.8555 

Bird 0.8442 0.7792 0.8468 0.7532 0.7878 0.7580 0.8232 

Bust 0.8134 0.8120 0.7696 0.6307 0.6714 0.651 0.7690 

Chair 0.7570 0.7821 0.8398 0.6665 0.7154 0.6956 0.8012 

Cup 0.7845 0.7829 0.7888 0.5622 0.7891 0.6684 0.8031 

Fish 0.9432 0.9109 0.9231 0.8451 0.8950 0.884 0.9015 

Fourleg 0.8613 0.8394 0.7682 0.7996 0.8281 0.8047 0.8331 

Glasses 0.5201 0.5981 0.7057 0.4969 0.5226 0.5343 0.6947 

Hand 0.7895 0.8242 0.8159 0.6977 0.7440 0.8142 0.8066 

Human 0.7515 0.8015 0.6661 0.6745 0.7085 0.6325 0.6890 

Mech 0.8880 0.8231 0.8060 0.6098 0.5934 0.5745 0.8780 

Octopus 0.7295 0.8339 0.7534 0.7063 0.6059 0.7278 0.8796 

Plier 0.5677 0.7083 0.8718 0.5119 0.6370 0.732 0.9128 

Table 0.7734 0.7458 0.8123 0.7102 0.7355 0.6769 0.8317 

Teddy 0.6909 0.7131 0.5457 0.6160 0.6775 0.6379 0.6975 

Vase 0.7747 0.7822 0.7874 0.7201 0.7819 0.8098 0.8299 

Fig. 7. Comparison of the saliency maps generated on the dataset of [20] . The first six rows correspond to the competing methods of MS [6] , SRI [18] , MR [19] , SI [9] , and 

GR [8] . The seventh row is our proposed method and the eighth shows the ground-truth salient points (in blue) and saliency distributions (in red). The columns correspond 

to the 19 categories (excluding Helix as in the original paper) of the dataset of [20] . Please zoom in to compare the details of the saliency maps. 
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eodesic distances to the already selected points. This way, we ob-

ain a set of feature points that are spread out on mesh surfaces.

e use the popular Recall, Precision, and F-measure scores for de-

ector performance evaluation [22] . 

We show the Recall, Precision, and F-measure scores of the

valuated feature detectors in Fig. 9 . The Recall score of a detec-

or measures the fraction of true feature points it correctly finds

n the ground-truth, and the Precision score measures the fraction

f true feature points in the detector output. The F-measure score

s the harmonic mean of Recall and Precision, which indicates the

verall performance of a detector. As the localization error thresh-

ld is increased, all three scores of the evaluated detectors grow

ecause the output points become more probably to be identified

s correct matches. The MS, SP, and SDC methods achieve higher

ecalls compared to HKS and our method by detecting excessive

umbers of points. The cost, however, is that they produce many

on-salient points and therefore score considerably lower on Pre-

ision. HKS, on the other end, sacrifices Recall for Precision by only
enerating sufficiently prominent points. Our method is shown to

trike the best balance between Recall and Precision, identifying

any true feature points while not incurring many false positive

nes. This can be seen from the F-measure plot, where our method

s shown to outperform other feature detectors from very small lo-

alization threshold. 

.6. Run time of our method 

Table 3 reports the run time of our method and the competi-

ors on a commodity PC with an Intel Dual Core 3.1GHZ CPU and a

GB RAM. For each mesh, the run times of the main steps and the

otal time used are listed. It can be seen that our method scales

ell from medium-size meshes (e.g. the Bunny and the Dinosaur)

o very large meshes (e.g. the Buddha and the Lucy). This high scal-

bility would allow it to be used as an efficient preprocessing tool

or many saliency-guided graphics applications. MC is the fastest

ethod because it only only involves very efficient differential cur-
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Fig. 8. Comparison of the robustness of our method with that of others. The columns from left to right correspond to the original Armadillo mesh, the noisy version (20% 

noises in vertex normal directions), the simplified version (with 5k vertices), and the broken version with holes. The competing methods are MS [6] , SRI [18] , MR [19] , and 

SI [9] . 

Fig. 9. Performance of feature point localization on the dataset of [22] . Four competing methods that are highly cited in the field are included: MS [6] , SP [24] , SDC [23] , 

and HKS [25] . We use the popular Recall, Precision, and F-measure for performance evaluation [22] . 
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Table 2 

Performance (LCC) of saliency value prediction on the dataset of [20] . The first row is the list of evaluated methods: MC [51] , MS [6] , SRI 

[18] , MR [19] , SI [9] , GR [8] , and Ours. The second row shows the scores computed on the 19 categories (excluding Helix as in the original 

paper) of the dataset of [20] together. The remaining rows show the scores computed on each category separately. The highest score is 

highlighted in each row. 

MC MS SRI MR SI GR Ours 

All Categories 0.3442 0.3131 0.2898 0.2158 0.1987 0.3083 0.4303 

Airplane 0.4908 0.3270 0.4271 0.2221 0.3049 0.3555 0.6049 

Ant 0.3779 0.4648 0.3349 0.3324 0.2116 0.3869 0.6138 

Armadillo 0.4248 0.4801 0.1690 0.3096 0.2417 0.3570 0.4658 

Bearing 0.2949 0.3055 0.1835 0.0760 0.0213 0.2588 0.3578 

Bird 0.4594 0.3496 0.3738 0.2381 0.2371 0.3666 0.5319 

Bust 0.3018 0.2979 0.2614 0.1005 0.1577 0.1025 0.2295 

Chair 0.2484 0.2441 0.3574 0.2130 0.1803 0.3015 0.4618 

Cup 0.4011 0.3624 0.3789 0.2094 0.3455 0.2289 0.3306 

Fish 0.5824 0.4708 0.4412 0.3745 0.3499 0.4659 0.5303 

Fourleg 0.4211 0.2945 0.3004 0.2558 0.2794 0.3055 0.4089 

Glasses 0.1736 0.1499 0.2662 0.0680 0.1648 0.1880 0.3825 

Hand 0.3904 0.2714 0.3669 0.2806 0.2013 0.4492 0.4208 

Human 0.3914 0.3404 0.2579 0.2017 0.2020 0.1629 0.2528 

Mech 0.3862 0.2903 0.2166 -0.0082 0.0670 0.02484 0.4329 

Octopus 0.3029 0.3623 0.3319 0.1833 0.1048 0.3457 0.5367 

Plier 0.2799 0.1426 0.3719 0.3532 0.1330 0.4037 0.5450 

Table 0.3233 0.2315 0.3279 0.2484 0.2033 0.3612 0.5225 

Teddy 0.2137 0.2419 0.0942 0.1302 0.1466 0.1813 0.2282 

Vase 0.3810 0.3303 0.3160 0.2981 0.3300 0.3479 0.3830 

Table 3 

Run time of our method and the competitors in seconds. A : multi-scale metric computation from a mesh. B : saliency computation from 

a metric. C : vertex saliency interpolation. Please note that we implement our method, MC [51] , and MS [6] in C++. We implement SRI [18] , 

MR [19] , and GR [8] in Matlab. The original implementation of SI [9] we use in this work is also in Matlab. 

Mesh #Vert A B C Ours MC MS SRI MR SI GR 

Bunny 35k 40.3 3.0 0.1 43.5 0.5 12.2 56.9 35.8 13.7 43.4 

Dinosaur 56k 42.0 2.8 0.4 45.2 1.8 28.2 100.2 67.3 23.6 86.3 

Armadillo 172k 40.5 3.1 0.8 44.3 2.3 56.1 245.8 221.3 36.5 276.2 

Dragon 437k 41.4 3.0 1.6 46.0 4.7 245.1 657.9 622.1 43.6 676.3 

Buddha 543k 40.5 2.9 1.9 45.3 5.2 376.9 873.2 825.4 56.4 982.4 

Lucy 604k 43.3 2.9 2.6 48.9 7.3 448.0 1178.2 912.5 67.4 1264.0 
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ature estimation on surface meshes. MS scales poorly because the

ulti-scale Gaussian filtering of curvatures becomes very expen-

ive for large meshes. Despite in Matlab, the original implementa-

ion of SI remains efficient as it applies mesh simplification before

aliency computation. In contrast, the methods of SRI, MR, and GR

re quite time-consuming for especially large meshes such as Bud-

ha and Lucy. We emphasize again that the methods of SRI, MR, SI,

nd GR are implemented in Matlab and could be more efficiently

mplemented in C ++ in the future. We leave the fairer comparison

f the computational costs of these methods as future work. 

. Conclusion and future work 

We have proposed an accurate and robust sparse metric-based

aliency detection method for 3D polygonal surface meshes. Our

ethod was rigorously derived from optimizing the rarity principle

f saliency while enforcing the sparsity principle of saliency. This

akes it able to optimally discover a compact set of salient re-

ions that have the maximum distinction from others. Our method

as formulated as solving for the sparse eigenvector of a global

etric, which enjoys the robustness to the flaws of surface noises,

implifications, and holes. The results on our eye fixation dataset,

he Schelling saliency dataset of [20] , and the feature localiza-

ion dataset of [22] show that our method produces more accurate

aliency estimations compared with existing ones. 

We have selected 50 commonly used graphics meshes for our

D eye fixation dataset construction. In the future, we could scale

he construction to the SHREC2007 dataset [50] so that we can

ave each of the 400 meshes annotated with 3D eye fixations

nd Schelling saliency values [20] . This would greatly facilitate the
arge-scale benchmarking of saliency detection methods for further

rogress. Implementing more methods (e.g. of [17,40,41] ) will also

elp this. 

We have instructed each subject to sit in a distance of 95 −
10 cm from a 1680 × 1050 LED display to capture our 3D eye fix-

tion dataset. This ensures that all of the meshes in our dataset

ave a proper size on the display. There is evidence that visual at-

ention and the distance of observers are correlated [52] . This sug-

ests us to explore the impact of the distance of subjects from the

isplay on captured eye fixations in the future. 

We have used a fixed number of sample points for mesh

aliency computation in this work. This is not optimal as some

arge surfaces may be under-sampled while some small surfaces

ay be over-sampled. We are investigating the method of adap-

ive Poisson sampling [53] to generate high-quality saliency maps

or both small and large meshes as future work. 

Our assumption of saliency is a bottom-up computational ap-

roximation to the pre-attentive mechanism of the human visual

ystem. As a result, it may fail to capture a few visually salient but

ot necessarily rare regions of a mesh, such as the chest of the

rmadillo and the face of the Teddy, as shown in Fig. 4 . To cap-

ure these challenging regions, more high-level cues like symme-

ries, segmentation, and semantic annotations are expected to be

elpful. Benefiting from the large volume of image saliency annota-

ions [54] , deep learning methods have recently demonstrated ex-

ellent performance on image saliency detection [55–57] . However,

he size of 3D mesh saliency datasets [20,58] is still very limited

nd may not well support the generalization of over-parameterized

eep learning models. As a result, designing a more efficient rep-

esentation of meshes with much fewer parameters for saliency
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detection will be crucial for deep learning methods to generalize

well. We are actively investigating this direction. 

Different from visual saliency we addressed in this work, there

is tactile saliency that measures the importance of surface regions

for human-object interaction (e.g. grasp, press, and touch) [58] . The

interaction-oriented nature of tactile saliency makes it a desirable

complement to the traditional visual saliency for more effectively

assessing the semantic importance of surface regions. We are seek-

ing to jointly investigate visual saliency and tactile saliency as fu-

ture work for 3D shape analysis. 
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