On the Design Fundamentals of Diffusion Models: A
Survey

Ziyi Chang?, George A. Koulieris?, Hyung Jin Chang®, Hubert P. H. Shum®*

“Department of Computer Science, Durham University, Durham, DHI 3LE, UK
bSchool of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK

Abstract

Diffusion models are learning pattern-learning systems to model and sample from data
distributions with three functional components namely the forward process, the reverse
process, and the sampling process. The components of diffusion models have gained
significant attention with many design factors being considered in common practice.
Existing reviews have primarily focused on higher-level solutions, covering less on the
design fundamentals of components. This study seeks to address this gap by provid-
ing a comprehensive and coherent review of seminal designable factors within each
functional component of diffusion models. This provides a finer-grained perspective
of diffusion models, benefiting future studies in the analysis of individual components,
the design factors for different purposes, and the implementation of diffusion models.
Keywords: Diffusion Model, Forward Process, Reverse Process, Sampling Process,

Deep Learning

1. Introduction

Diffusion models, as a learning system, consist of three functional components,
i.e., the forward, reverse, and sampling processes. The generic pipeline of diffusion
models [1]] involves forward and reverse processes to learn a data distribution, and a

sampling process to generate novel data that follow such a distribution. Three com-
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ponents work together to achieve the functionality of diffusion models [2], i.e., the
ability to model and sample from data distributions. The forward process is expected
to perturb training data by adding noise while the reverse process is expected to remove
the aforementioned perturbation via learning a neural network. After optimization, the
sampling process is expected to generate novel data that follow the distribution.
Designing the three functional components involves consideration of different ma-
jor factors and design purposes. To perturb training data, the schedule of noise and the
type of noise are two major factors that need to be considered when a forward process
is designed. Meanwhile, the terminal point and diffusion space are also required to
specify where to stop and where to manipulate data in a forward process. The for-
ward process needs to perturb the training data by adding noise at each timestep. For
a reverse process to remove the added noise, architectures, parameterizations, and op-
timizations of a neural network become major factors to be considered for the reverse
process. Architectures specify how to learn denoising while parameterizations concern
what to learn and predict. Optimizations allow different emphases on the informa-
tion that a neural network should focus on more. The sampling process works after
optimization, and the controllability and speed become two major factors to be consid-
ered. Controllability constrains the generation to obtain data of users’ interest while
the speed factor accelerates generation without significant quality degradation. While
there could be a large number of factors in each functional component, our survey only
focuses on major ones that are transferable and usually considered in common practice.
Most existing survey papers on diffusion models focus on a particular application
area while ours hierarchically organizes the design fundamentals in a diffusion model.
With the recent prosperity in applications of diffusion models, previous survey papers
mostly focus on collecting application cases in various domains and data structures.
These domains include natural language processing [3l], computer vision-related tasks
[4], medical analysis [S]], natural science [6]], time series [[7], recommendation [8], per-
sonalization [9]], memorization [10], and etc. They also cover different types of data,
including image [111 [12], text [13], video [14], audio [15], etc. However, they are
domain-specific and application-driven, and thus lead to restricted insights into this

whole area. Some recent surveys [16, 17 [18] are organized by specific problems,
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Figure 1: The hierarchical overview of diffusion models. The forward process, the reverse process, and the
sampling process are three functional components. Major factors comprise each component. Popular designs
and seminal works are presented.

which may hinder a comprehensive understanding. In contrast, our survey adopts a
design-centric taxonomy, providing building blocks to facilitate straightforward imple-
mentation.

Our paper treats diffusion models as a learning system, discusses the system hierar-
chically, and mainly focuses on seminal designable factors within each component, as
shown in Fig. [T} This breakdown is aligned with the functionality of diffusion models
and the intuition of getting to know a system. Therefore, our survey benefits both be-
ginners who want to get fundamental knowledge from seminal works in this area and
professionals who want to hierarchically understand critical factors when designing

their advanced diffusion models.

The following are questions to answer via our literature review of diffusion models:

1. What are the functional components in a diffusion model?
2. What are the major factors that comprise each component?

3. What are the popular designs and seminal works in each factor?

We organize our survey by answering the above questions to build a hierarchical



view of diffusion models. Section[2]introduces the generic pipeline of diffusion models,
including the three functional components and two popular formulations. Sections [3]
M} and 5 respectively review the major factors, and popular designs and seminal works
of each functional component, i.e., the forward process, the reverse process, and the
sampling process. Section [6] provides overall insights on the future trends with respect

to this field, and Section|/|gives a brief conclusion on diffusion models.

2. The Generic Pipeline

This survey uses commonly-used notations and terminologies in existing papers

and represents concepts with figures whose legends are defined in Table|I]

Notation Legends

Trainable network with parameters 6
Fixed network with parameters &*

Component not in use

3
J

e

Data distributions

B
ORQT
el

The distribution at a timestep
Condition ¢
Timestep ¢
Combination, e.g., Addition.
With probability p for dropping out

Table 1: Figure legends.

2.1. Three Functional Components

The forward process perturbs a training sample xg to {x,}tT:1 as the timestep ¢ in-
creases, as shown in Fig. 2] A forward transition p(x,|x,_;) describes such a perturba-
tion where a small amount of noise ¢ is added between two timesteps. In other words,
as the forward process moves on the chain, more and more noise is added through
p(x:|x,~1) and the perturbed sample x, becomes noisier and noisier. Through multiple
timesteps, the original distribution p(xp) is eventually perturbed to a tractable terminal

distribution p(x7), which is usually full of noise. Since only noise is added through the



chain, the forward process does not have any trainable parameters. In particular, the

forward process is represented as a chain of forward transitions:

T
pGarlo) = [ | pGabrn), (M
t=1

where 7 is the timestep, T is the total number of timesteps, xq is a training sample at
t = 0 and is then perturbed to be xy after T timesteps, and p (x;|x,—1) is a forward

distribution transition between two consecutive time steps.

Figure 2: The forward process perturbs the original unknown distribution by gradually adding noise to a
given set of data samples through a chain of distribution transitions with multiple time steps. Each time step
of the chain is denoted by a circle.

The reverse process trains a denoising network to recursively remove the noise, as
shown in Fig. 3] A denoising network is trained to iteratively remove the noise between
two consecutive timesteps. The reverse process moves backwards on the multi-step
chain as ¢ decreases from T to 0. Such iterative noise removal is termed as the reverse
transition py(x;—1|x;), which is approximated by optimizing the trainable parameters 6
in the denoising network. In particular, the reverse process is formulated as a chain of

reverse transitions:

T
po(tor) = p Cer) [ | po Ceal), b)
t=1

where 6 is the parameters of the denoising network and pg(x;_1|x;) is the reverse distri-

bution transition. In particular, the reverse process is usually parameterized as:
Po (X1lxe) := N (-1 o (X1, 1), Zg (X1, 1)), 3

where p(x;, 1) and Xg(x,, f) are, respectively, the Gaussian mean and variance to be

estimated by the network 6.



Figure 3: The reverse process trains a neural network 6 to recursively remove the noise that has been previ-
ously added by the forward process.

The denoising network is trained by the standard variational bound:

L= E[ DKL(P (xrlxo) llp (XT))

prior matching term

+ 3" Dxap Comlx x0) 1o (xi11x,)
] @

denoising matching term

— log pg (xolx1) ],
reconstruction term
where Dk, (+||-) is the Kullback-Leibler (KL) divergence to compute the difference be-
tween two distributions. The prior matching term is minimized as the final distribution
becomes Gaussian after a sufficiently large 7. The reconstruction term can be approx-
imated using a Monte Carlo estimate, and training primarily focuses on the denoising
matching term. Overall, minimization of the objective L is to reduce the discrepancy

between pg(xp) and p(xp).

Figure 4: The sampling process uses the trained denoising network 6* and usually follows the same transi-
tions as the reverse process.

The sampling process leverages the optimized denoising network 6 to generate
novel data xj, as illustrated in Fig. It moves backwards on the chain to recursively
apply the optimized network 6*. Concretely, it firstly obtains a sample x7 from the
terminal distribution p(x7) and then uses the trained network to iteratively remove

noise by the sampling transition pg (x,—1|x;). Through a chain of such transitions, it



finally generates new data Xy ~ pg-(xo) = p(xp). In particular, the sampling process is

defined as a chain of sampling transitions:

T
po (or) = p Ger) [ | por Gt ), )
t=1

where 6* represents the optimized parameters of the denoising network, p(xr) is the

terminal distribution, and pg-(x;-1|x;) is the sampling transition.

2.2. Discrete and Continuous Formulations

To reflect the development of diffusion models, we organize diffusion models by
two popular formulations, i.e., discrete and continuous timesteps. To keep our survey
simple to understand, especially for beginners, we present and discuss most of the
fundamental designs under the discrete-time framework. These choices on the discrete-

time framework are generally applicable to the continuous-time framework.

2.2.1. The Discrete Formulation

Initially motivated by unsupervised learning, diffusion models are formulated with
discrete timesteps. Regarding the discrete formulation, the denoising diffusion prob-
abilistic model (DDPM) [19]] is a popular configuration of such formulated diffusion
models. It is straightforward to define, efficient to train, and capable of achieving high
quality and high diversity in the generated samples [20]].

Concretely, the forward transition in DDPM is defined to add isotropic Gaussian
noise ¢ ~ N(0, I):

plalxiet) = N T =B B, ©)

where (3, is the noise schedule, which is a hyper-parameter to control the amount of
noise to be added in each timestep. As all forward transitions are Gaussian, the forward

process in DDPM is simplified as:
p(xilxo) := N(xi; Vaixo, (1 - anl), )

where @; is defined as @; = ]_[_’Y:1 as and @; = 1 — B,. In theory, @, has a similar effect



with B, in Eq. (6).
The reverse process has the same functional form as the forward process [1]. In
DDPM configuration, the transition Eq. (3)) in the reverse process is formulated as:

Po(Xi-1|x) == N(xi-1: — ———=¢&(x, 1)), Bi]), ®)

R

where the variance 2¢(x;, ) in Eq. (3) is empirically fixed as the noise schedule j;, and
Ho(x, 1) is reparametrized by the noise prediction € (x;, ). Accordingly, the training

objective defined in Eq. () is also simplified as:

L=E,,|lle - & (x, 03] ©)

The intuition behind the derivation is two-fold. First, all distributions involved in Eq. |§|
are Gaussians. Second, with Eq. [6] and Eq. [8] the KL divergence is simplified to be
only dependent on the mean that is parameterized by the predicted noise ¢,. Finally, the

sampling process obtains x7 ~ p(xr), and applies pg-(x,_1|x;) to generate Xg.

2.2.2. The Continuous Formulation

Focusing on the dynamics of diffusion models, continuous formulation is proposed
to analyze the complex dynamics and also integrate the domain knowledge of score
matching. The continuous formulation manipulates data distributions in continuous
time. Noise is added in an infinitesimal interval between timesteps. Therefore, a dif-
ferential equation (DE) is adopted in such formulated diffusion models to describe
changes in continuous timesteps. Furthermore, [21] unifies all diffusion models with
differential equations. Flow matching or stochastic interpolants [22} 23] 24} 25]] is one
of the popular approaches to improve the dynamics of diffusion models, which is often
presented using continuous formulation.

Concretely, the forward transition to add noise is formulated as a forward SDE:
dx = f(x,t)dt + g(t)dw, (10)

where w is the standard Wiener process and accounts for noise in the forward transition,



and f(x,t) and g(¢) are the drift and diffusion coefficients to account for the mean and
variance in the forward transitions, respectively.
At the same time. a reverse SDE for the reverse transition is also determined by

these coefficients. Specifically, the reverse SDE is:
dx = [f (x.0) = &2 (1) 56 (x D) dit + g (1) dw, an

where the output of the denoising network sy(x;,#) = V, log p(x,) is the score. Like-
wise, [ f(x, 1) = g2(t)se(x, t)] and g(7) account for the mean and the variance in Eq. .

The training objective is defined as:
2
L=E 2O By Eupy |50 1) = VTog el (12)

where A(f) is the weighting function. Finally, the sampling process obtains x7, and
applies the trained network 6" to generate novel data.
The ODE-based formulation, derived from a deterministic process with the same

marginal densities { p(x,)}fT:0 as the SDE, is detailed in [21] and expressed as:

dx=|f (60 = 58 (059 (o0 | (13)

Its optimization objective matches Eq. [[2] Compared to SDE-based formulations,
ODE-based approaches enable exact likelihood computation and provide deterministic

latent representations, which are advantageous for editing tasks and efficient sampling.

2.3. Evaluation

The evaluation of diffusion models encompasses three dimensions: distribution, in-
dividual, and human aspects, the first two of which are often combined with domain
knowledge. From a distribution perspective, metrics such as the Frechet Inception Dis-
tance [26]], assess the distributional similarity to evaluate generation quality. The indi-
vidual aspect usually involves paired evaluations such as the latent alignment [27] or

self-contained evaluations such as physics constraints [28]] of generated data. Domain-



specific knowledge is essential to design evaluation metrics for different fields such
as medical analysis and meteorology. However, these quantitative measures may not
align with human perceptual judgments [29]. Human-centric evaluations, such as user
studies, are necessarily employed to provide subjective assessments of performance.
Recently, human preferences [30, 31} [32]] have been leveraged for better alignment.
With these three evaluation dimensions, diffusion models are rigorously assessed and

comparable with other models.

3. The Forward Process

The forward process is crucial for the success of diffusion models, as it reduces the
complexity of the generation task by positive-incentive noise [33]]. It perturbs data by
scheduled noise, and results in stable noisy augmentations of data [34] that bridge data
and pure noise distributions. These augmentations later facilitate diffusion models to
learn the gradual multi-step generation, thereby reducing the task entropy. Moreover,
[35] demonstrates that the integration of positive-incentive noise consistently enhances

performance from a variational perspective.

3.1. The Noise Schedule

A suitable schedule balances exploration and exploitation [36]]. Exploration, de-
fined as a model’s ability to generalize to unseen data, requires an adequate level of
noise while excessive noise can lead to suboptimal convergence. Conversely, exploita-
tion, where the model effectively fits the training data, is achieved with minimal noise
while insufficient noise undermines generalization.

The noise schedule can be either learned by a network or empirically designed
using mathematical formulations. Schedules are treated as a parameter to be learned
jointly with other parameters [41]]. Manually designed noise schedules are formulated
with a wide variety of mathematical heuristics. A linear schedule [[19] has been initially
proposed. For faster perturbation, an exponential schedule [39] is proposed for better
exploration. In contrast, schedules such as cosine [38]], sigmoid [40], and rectified flow
[23] and its variants [42] 43]] are proposed for smoother perturbation speed. Table

shows several examples of designed noise schedules.
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Noise Schedule Vlsuahzatlon
Linear [19] '

Flow [37]
Cosine [38]]
Exponential [39]

Sigmoid [40]

Table 2: Illustrations of typical manually-designed noise schedules.

Learning schedules enable models to adaptively optimize noise distributions but
may lead to overfitting and reduced generalization [41]]. In contrast, predefined sched-
ules avoid adding parameters and offer greater interpretability. They also support dif-
ferent perturbation speeds for trading-off exploration and exploitation. However, they

often require manual tuning for a new task or a new dataset [37]].

3.2. The Noise Type

The selection of the noise type plays a crucial role in diffusion models, influencing
distribution approximation and the overall expressiveness of the model. An appropriate
noise type enhances the capacity to accurately fit the perturbed distributions at various
timesteps [44]. Additionally, different noise types offer varying degrees of freedom

[45]], providing flexibility in modeling complex data distributions.

Noise Type Vlsuahzatlon
Gaussian 39, [19]] i R

Gamma [44,, |45]]

Soft [46l 147]

Table 3: Comparison of several streams of noise types.

Different noise types have been developed based on empirical experiments. Isotropic
Gaussian noise [19] is commonly used for its simplicity and compatibility. It allows

for analytical solutions by taking advantage of the additivity of Gaussian distributions

11



and simplifying the calculation of KL divergence in Eq.[d] Several variants of isotropic
Gaussian noise, such as mixture of Gaussian noise [45] and non-isotropic Gaussian
noise [48]], have also been applied to consider data structures. Correlated noise may be
a potential alternative when correlation exists in a data sample, e.g., when frames of a
video are considered [49] as correlations, while other video diffusion models usually
maintain the default noise type. Additionally, noise from other distributions is also ex-
plored. Gamma distribution [44] is another feasible alternative with one more degree
of freedom and fits to distributions better.

Soft corruptions can also be treated as a generalized noise for perturbation. Gaus-
sian blur like the heat equation [50] is introduced for disentanglement of overall color
and shape and smooth interpolation if it is used for image data. Soft corruption can also
be manually defined operators like masking [47]] to perturb data. Such operators also
destroy data structures as the aforementioned noise does. This greatly extends the ex-
pressive power as a wide variety of operators become available [46]]. Table 3] visualizes
examples of noise types.

Selecting appropriate types depends on the characteristics of data. Isotropic Gaus-
sian noise is broadly applicable but may overlook the prior knowledge of data struc-
ture. Gaussian mixtures are better for data with distinct modes, whereas non-isotropic
Gaussian noise considers self-correlation. Soft corruption is effective for known per-

turbation patterns, as it relies on predefined operators [47]] to fulfill its flexibility.

3.3. The Terminal Distribution

Diffusion models are assumed to have zero signal-to-noise ratio (SNR) value for
terminal distributions to correctly align diffusion training and inference [S1]. Ideally,
xr is heavily perturbed without any original structures, i.e., zero SNR. However, empir-
ically the terminal distribution may not strictly be zero SNR. This misalignment with
assumption leads to suboptimal generation quality.

The forward process seeks suitable terminal distributions, either to maintain as
many structures of xy as possible or to ensure zero SNR at the terminal distribution.
Fig. [5|demonstrates the first direction. These approaches usually consider the statistics

of the training dataset [52] such as the mean and variance to serve as proxies for data

12
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Figure 5: The transition chain no longer seeks an isotropic Gaussian distribution as the terminal distribution.
The grey, dashed parts represent that the transition no longer approaches the isotropic Gaussian distribution.

structures. Learning the terminal distribution p(xr) with additional networks is also
feasible [53]. This direction expects that retaining more meaningful structural infor-
mation from the data distribution mitigates the difficulty of generation. The other direc-
tion adjusts the forward process to ensure that the terminal distribution conforms to our
assumption. Offset noise is straightforward by altering its mean value but is not devoid
of inherent challenges. [51]] rescales the noise schedule but requires subsequent fine-
tuning across the entire network. [54] relies on training an auxiliary text-conditional
network to map pure Gaussian noise to the data-adulterated noise.

Choosing a suitable terminal distribution remains an open and important problem.
The direction of maintaining more original structures may additionally accelerate the
sampling process because fewer timesteps are involved, but may require an accurate
representation of the terminal distribution [52]. On the contrary, ensuring zero SNR
sticks to the assumption of diffusion models and the terminal distribution is accessible,

which is more desirable when accurate representations are hard to obtain.

3.4. Representation Space

Latent representation now becomes a common choice for diffusion, as illustrated
in Fig. [6] The high dimensionality of data often leads to considerable computational
cost and redundancy. One of the representative models is Latent Diffusion Model [55]]
where images are compressed into lower dimensional vectors. Empirical evidence [56]
shows that some transitions in diffusion models are responsible for learning latent rep-
resentations, which are usually in low-dimensional space and semantically meaningful.

Sub-space methods treat different parts of input separately in corresponding sub-
spaces. They usually involve more than one chain of transitions in the generic pipeline.

In the conditional case, data and their labels are taken as two sub-spaces and then are

13



Figure 6: The transition chain in a latent space. ¢ is a pre-trained encoder. Data are no longer manipulated
in the original space (dashed, grey). They are now transformed within the latent space (rounded rectangle).

diffused simultaneously [21]. This design explicitly builds a joint modeling approach
for conditional data. Data orthogonal decomposition is widely used where data are
decomposed into several complementary parts in their corresponding sub-spaces [S7].
This design brings flexibility for modeling data with heterogeneous properties. Fig.
shows an example of defining sub-spaces by data decomposition.

Augmented space introduces intermediate variables to extend the original space.
Introducing intermediate variables is motivated by the overly simplistic diffusions that
cannot represent the full dynamics in the forward process [38]], and thus leads to un-
necessarily complex denoising processes and limits generative modeling performance.
An auxiliary velocity variable is introduced and the forward process is only defined in
the augmented space [59]. Introducing stochasticity into the augmented space benefits

the smoothness of the evolution of variables.

L]
.

Figure 7: The forward process to separately transform the original data in orthogonal subspace.

The three spaces can be mutually beneficial instead of exclusive. Latent repre-
sentation is more suitable for compressing high-dimensional data but may risk infor-

mation loss. Sub-space methods offer flexibility for modeling heterogeneous data but

14



add pipeline complexity. Augmented space approaches capture indirect dynamics by

introducing intermediate variables.

4. The Reverse Process

The reverse process focuses on training a denoising network to remove noise. The
denoising network is configured by its network architecture and its output parameteri-

zations. To train the configured network, optimization designs are also developed.

4.1. Network Architectures

4.1.1. Architecture Flexibility

Theoretically, it is feasible to incorporate as a denoising network a wide variety
of architectures that keep the dimensionality unchanged [60]. Both U-Net and Trans-
former have become the mainstream for their high capacity for modeling complex rela-
tionships in a wide range of applications and GNN quickly gets more attention. While
other architectures may also theoretically be compatible without changing dimensions
like GAN [61], they are often adopted for task-specific purposes, e.g., adopting GAN

for fast generation [62], and may not be generally applicable to other purposes.

4.1.2. U-Net

Since [19]] first introduced diffusion models with U-Net architecture, this architec-
ture has dominated this area and largely remained intact. From a theoretical standpoint,
it is a U-shaped encoder-decoder architecture for general purposes. Its encoder extracts
high-level features from data and usually contains downsampling layers to compress
data. Its decoder leverages such features for different purposes and usually upsamples
back to the original dimensionality of the data. This architecture forms an information
bottleneck [[63]] and encourages the network to learn features effectively. Nonetheless, a
few modifications have been introduced in some representative U-Net-based diffusion
models such as ADM [20] and EDM [2,164]] when compared with the traditional U-Net.
[20] ablates several architecture choices such as adaptive group normalization. Based

on [2]], [64] proposes magnitude-preserving layers to replace the data-dependent group

15



normalization layers to preserve activation, weight, and update magnitudes. Addition-
ally, the U-shape architecture has been adopted with cross-attention [63] for higher
capacity, and cascading for hierarchy modeling [66] has been merged into the U-Net
architecture. Latent diffusion models [33]] enhance the traditional U-Net architecture

by transformer layers to capture long dependency.

4.1.3. Transformer

Transformers are increasingly adapted as an alternative architecture for the denois-
ing network for their superior properties like global dependency, scalability, and mul-
timodality [67]] because of self-attention functions [68]. In principle, a transformer
can directly substitute U-Nets because it can also maintain the data dimensions [69].
However, transformers also exhibit unique advantages. Scalability [67] of transform-
ers enables better generation quality with less network complexity, which is critical
for emergence ability. Besides, as a sequence model, transformers support an arbitrary
length of generation. For example, MDM [28]] generates an arbitrary length of human
motions. Transformers are also friendly for multi-modality in diffusion models. Stable
Diffusion 3 [43]] enables the alignment of conditions with MMDIT [70] that employs
shared full attention weights for visual and textual modalities.

Transformers natively support diverse conditioning via their core mechanisms such
as layer normalization and multi-head attention [67]. Adaptive layer norm modulates
features via scale-and-shift. Cross-attention allows each token to selectively focus on
condition embeddings for precise control. In-context conditional tokens embed guid-
ance into the representation space. Convolutional U-Nets, in contrast, usually need to
graft carefully designed layers or attention blocks at each stage, complicating design
and scaling. As a unified framework, transformers streamline implementation and scale
predictably, boosting both generative capacity and conditioning fidelity.

Since DiT [67] demonstrates the superiority of diffusion transformers, different
ways to integrate designs from other architectures into transformers have been ex-
plored. U-ViT [71]] which utilizes U-Net architecture for diffusion transformers. Mask-
DiT and MDT use the MAE-like architecture. FiT proposes flexible

transformer architecture. SANA [[76] with linear transformer architecture.

16



4.1.4. GNN

Graph Neural Networks (GNNs) have also been an emerging choice for the denois-
ing network especially when graph structures are involved. Their superior performance
is attributed to inductive bias from network architecture [6]. Otherwise, the learning
may deviate from inherent graph properties [77]]. Equivariant property has been widely
considered for denoising architecture. [78]] keeps the property of invariant permuta-
tion in the reverse process. [79] further extends it with equivariant energy guidance
to learn the geometric symmetry. Another considered aspect is the formation of graph
structure. [80] defines the denoising on the adjacency matrix as well as node features.
[81]] performs low-rank Gaussian noise insertion with spectral decomposition. Latent
space has also been considered. [82] encodes the high-dimensional discrete space to

low-dimensional topology-injected latent space.

4.2. Network Parameterizations

The output of the denoising network is applied to parameterize the reverse mean
Ho(x:, 1) in the reverse transition. Different parameterization ways all center on the
estimation of the original data xy. Specifically, the true value of the reverse mean,

denoted as u(x;, ), is formulated as:

Va1 (1 — @ )x + Va1 (1 — a)xo

1—6’f

(X, 1) 1= (14)

where xy is the original data but is unavailable during the reverse process. Therefore,
Xo needs to be estimated from the observed perturbed data x; and timestep ¢ by the
network. One parameterization way is to directly output the estimation X, by the de-
noising network and replace xo with %y in Eq. (I4). An indirect parameterization way
designs the denoising network to predict the noise €, which is the residual between the
unknown xj and the observed x; [19]]. Another indirect parameterization way is based
on the probabilistic viewpoint and predicts the score §, via the denoising network. §;
is the gradient that points towards the unknown xy from the current position x, in data
space. Combinations among the aforementioned ways are also proposed for special

tasks. Table [4] shows a comparison of different parameterization ways. Different out-
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puts are equivalent to each other [83| 2] with the following relationships:

Xo(x, 1) = X+ (1 - @_t)se(xts ) _ Xz V1 __(_Itfe(xt: t)’ (15)

a; @

500, 1) = — ey (1, ). (16)

While essentially equivalent, different outputs as well as corresponding parame-
terizations show unique characteristics in particular aspects. Using Xy mainly supports
better accuracy in the initial stage of the reverse process while & is preferable in the late
stage. Employing §, avoids computing the normalizing constant, which is a common
problem in the context of distribution modeling. Combining the aforementioned ones

provides the flexibility to retain their benefits.

4.2.1. Starting Data

Predicting the original data xy provides a straightforward denoising direction. X
indicates a denoising goal towards which x; should be changed. In particular, given the
observation x; at timestep ¢, the parameterization is defined as:

Va1 (1 — @ 1)x + Va1 (1 — a)xe(x,, 1)

Ho(X1, 1) 2= a7

where @, indicates the noise level as defined in Section 2.21]

Output Parameterization Visualization
Ho(xp, 1) =
Data xy m(l_@,,l);,+ Va1 (1-a)xg F lﬁ' 1
T-a, i !
Score s dx := [f(x, rH— gz(t)sa] dt+g(t)dw
Noise g 1o(x;, 1) = \/#ax, - %Eg
Hybrid Ay Ho(xy, 1) := H(xq, g, €)

Table 4: Visualization of parameterization ways.

Parameterizing with X is advantageous at the beginning of the sampling process,

18



while it leads to inaccuracy when approaching the end of the sampling process. Em-
pirical results show that the estimated mean py(x;, t), which is parameterized by Xy, is
closer to the ground truth u(x;, r) at the beginning of the sampling process [84]. This
is because %y helps the denoising network with an overall understanding of the global
structure [85]. On the contrary, when approaching the end of the sampling process
where substantial structures have already been formed and only small noise artifacts
need to be removed, finer details are difficult to be recovered [86]]. In other words, the

information brought by Xy becomes less effectiveness in this case.

4.2.2. Score

Score is the gradient of the logarithm of a distribution. The gradient indicates the
most possible changes between two timesteps. Therefore, as shown in Fig. [8] denoising
samples by the score forms a trajectory in data space. In particular, given the observed
x; and timestep ¢, the predicted score is defined as sy(x;,7) := V,log p(x;) and the

corresponding parameterization is the reverse SDE:

dx = [ f(x,1) = & (Dso(xs. 1)] dt + g(t)dw, (18)

where f(x, ) and g(¢) are the coefficients as previously introduced in Section@
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Figure 8: Visualization of the trajectory by predicting score. A score is a direction for the next timesteps.
Samples are denoised in the direction at each position. Colors represent the trajectories of different samples.

Score prediction is closely related to flow matching [22] in terms of modeling a
vector field. Score-parameterized diffusion models provide unbiased gradients as the

vector field under the assumption of Gaussian distribution while flow matching directly
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learns the vector field. Score-parameterized diffusion models transport data with Gaus-
sian conditional paths while flow matching also supports conditional optimal transport

paths. In particular, the predicted distribution is usually defined as:

exp_fﬁ(-x)

7 19)

po(x) =

where Zy is a normalizing constant to estimate. Predicting score avoids this problem:

Vi log pi(x) = =V, fo(x) — V. log Zy = =V, fo(x), (20)
where V, log Zy = 0 as Zy is a constant with respect to x.

4.2.3. Noise

Noise estimation predicts the noise added in the forward process. Generally, the
predicted noise is scaled according to the noise schedule and then subtracted from the
observation [[19.[77], as shown in Fig. [0] In particular, given the observation at a current

timestep, the prediction of noise is denoted as & and the parameterization is defined as:
l -«

- ————6(x, 1), @

(o t) 1= — :
X, 1) 1= —x
Hot ‘/CT! ' a(l —a,)

where ¢, indicates the noise level at timestep 7 as previously defined in Section 2.2.1]

Figure 9: Visualization of the noise-based parameterization. © means & has a subtractive relationship with
X, and 2> means this results in x,_.

The consistent magnitude and residual effect of €y(x;, f) are advantageous. The fixed
statistics, e.g. €(x;, 1) ~ N(0,I), lead to a consistent magnitude. This encourages the
learning of the denoising network [83]. Besides, the residual effect to preserve the input

X; in x;_1 is available by predicting zero noise. This becomes increasingly beneficial
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towards the end of the reverse process where only minor modifications are needed [86].

A large deviation between the ground truth noise ¢ and the predicted noise €(x;, 1)
may occur at the beginning of the sampling process, and is hard to be corrected in
the following timesteps. Sampling starts with large noise, with almost no clue for the
denoising network to predict noise accurately [[19]]. This potentially leads to a deviation
[86]]. The deviation is scaled up by the noise schedule in Eq. (ZI). The scheduled level
of noise is usually large at the beginning of the sampling process. Even for a small
noise estimation error, the deviation will be sharply enlarged. Moreover, the denoising
network is limited to predicting noise, which has a residual effect on the noise-based
parameterization. The magnitude of potential correction at each timestep is relatively

small, and thereby more timesteps are required to correct such a deviation [85]].

4.2.4. Hybrid
Combining two or more predictions is also possible for task-specific benefits. Ab-
stractly, the combination is denoted as hy(x;, 1) := H(xg(x;, 1), so(x;, 1), €5(x;, 1)) Where

‘H stands for a combination operator. Therefore, the parameterization is:

Ho(Xe, 1) = ho(x1, ). (22)

This has a wide variety of feasible implementations because the output to be combined
and the combination operators can be very diverse [16]. Velocity prediction in DDPM

is one example that linearly combines xy(x;, ) and €y(x;, ) [87]], which is designed as:

Ho(xp, 1) := as€9(xp, 1) — 0y Xg( Xy, 1), (23)

where a; and o, are the scaling factor and noise schedule respectively. It has better
stability [88]], avoids noise existing in xg(x;, f) [[89] and achieves higher likelihood [90].

Dynamically alternating between x4(x;, f) and €(x;, f) accelerates the generation [86].

4.2.5. The Reverse Variance
Modeling the reverse variance improves the training efficiency of diffusion models.

An appropriate variance minimizes the discrepancy between the predicted reverse tran-
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sition py(x,—|x;) and the forward transition p(x,|x,_), fitting the forward process better
[91]]. This facilitates fewer timesteps to be used, and improves overall efficiency.
Many efforts to model the reverse variance are attempted. Some empirically adopt
a handcrafted value for each timestep. The noise schedule is a popular option for its
simplicity and empirical performance [92]]. Scaling the schedule by a factor is also
researched but does not lead to a large difference [19]. Both choices are considered as
upper and lower bounds on reverse process entropy [1]], and the interpolation between
them is learned for flexibility [38]]. Others find the optimal variance can be solved
analytically. Its formulation is explicitly derived from the predicted score [91]], and

improves the efficiency of generation [93].

4.3. Weighted Optimization

Weighted optimization in the reverse process is inspired by the understanding of
the learning procedure of diffusion models. A common choice [19] applies uniform
weights and may overlook the characteristics of the reverse process. The semantic in-
formation of data expressed in the reverse process gradually changes, which requires
appropriately set priorities to learn [29]. An alternative choice is a function of interme-
diate characteristics, e.g., signal-to-noise values. While it takes data into account, the
hyperparameters of the designed function may need to be carefully set.

Learning priorities are balanced by weights in the learning objective to enhance the
learning quality. The change of learning priorities has been observed in the reverse
process. It pays more attention to global structures at the beginning of the reverse
process and then changes to local details when approaching its end [94]]. A balance is

achievable through adjusting weights and beneficial for training.

Figure 10: The learning priority changes in the reverse process, which is denoted by different colours.

Directly using the schedule as the weight emphasizes the global structure better

by a larger learning weight at the beginning of the reverse process [95]]. Despite its
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simplicity, the pre-defined schedule is not flexible and may deviate away from the
actual demands. A function of the noise schedule, such as the signal-to-noise (SNR)
ratio, is designed to compute the weights. The actual remaining noise is measured
rather than the scheduled one [83]]. It takes the data into account, and better balances

the learning of local details and global structures [94].

5. Sampling Process

Conditional and fast generation are two focused factors of the sampling process
in diffusion models. Without modeling conditions, diffusion models usually do not
generate data of high quality when data are considered to follow a conditional distribu-
tion [96]. Effective mechanisms of guidance are designed to modify transitions in the
sampling process to be compatible with conditions. Moreover, the sampling process
is several times slower when compared with other generative models [97]]. The long
generation time is mainly attributed to the large number of timesteps. Thus, designs

for acceleration are explored to reduce timesteps without heavily impairing quality.

5.1. Guidance Mechanisms

Vanilla guidance merges conditions via fusion approaches such as the attention
layer. However, the weight of conditions is not easy to adjust. Classifier guidance
leverages an additional classifier and adjustable weights, but comes with issues of com-
putational cost and stability. Classifier-free guidance additionally trains unconditional
diffusion models to achieve better stability. Learned modifications via adapters pro-

vides guidance but need to fine-tune extra adapters.

5.1.1. Vanilla Guidance

Vanilla guidance usually merges the given conditions ¢ with timesteps ¢ as the
guidance. The intuition of merging is that a timestep ¢ itself is inherently taken as a
condition by a denoising network and thus more conditional information can also be
conveyed. The approaches of merging can be operations such as addition [19,[98]], and
attention layer [99] [100]. Fig. [I1] shows the condition is added to a timestep in this

mechanism.
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Figure 11: Vanilla guidance adds the conditions ¢ to each timestep ¢ as a new condition.

While vanilla guidance benefits from its simplicity, its effectiveness is undermined
by the lack of adjustable conditional strength [101]]. Empirical evidence [85] shows
that a conditional diffusion model trained with vanilla guidance may not conform to

the conditions or underperform in conditional generation.

5.1.2. Classifier Guidance

For effective and adjustable strength of conditions, classifier guidance [20] adopts
an extra classifier. The gradient of the classifier is scaled by the weight and then is
used to modify the unconditional denoising direction, as shown in Fig. [I2] In other
words, the weight controls how much to rely on the classifier. To obtain the gradient as
accurately as possible, the classifier is usually pre-trained on data with conditions. In

particular, classifier guidance is formulated as:

V,log p(x|c) = V,log p(x) + wV,log p(c|x), 24)

where V, log p(x|c) and V. log p(x) are conditional and unconditional scores, respec-
tively, V, log p(c|x) is the gradient of a classifier, and w is the weight. When w = 0, this
mechanism becomes unconditional. As the weight increases, the denoising network is
more and more constrained to produce samples that satisfy conditions.

Additionally learning a classifier may lead to extra cost and training instability. The
extra expense is further scaled up because the classifier is trained on data with every
scheduled noise level [101]. Moreover, training the classifier on data with noise tends
to be unstable. The data structure is almost destroyed because more and larger noise is
added according to the noise schedule. Therefore, the quality of the classifier gradient

may not be consistent [102]. Sometimes its direction is arbitrary or even opposite
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Figure 12: Classifier guidance leverages an extra classifier network &* to compute a gradient V as the modi-
fication on the denoising network 6*. The timestep condition 7 is omitted here for visualization.

[L03]] and leads to less effective or wrong guidance. Some imitate the form of classifier
guidance but solve the gradient analytically [[104] for the inverse problem to bypass the

disadvantages of classifiers.

5.1.3. Classifier-Free Guidance

To avoid the extra classifier, classifier-free guidance [[101] replaces the classifier
with a mixture of unconditional and condition models. It further enhances the sampling
process to follow the direction of guidance by discouraging it away from unconditional
direction [105]. As shown in Fig. instead of just training a conditional model, an
unconditional one is also trained simultaneously by dropping out conditions ¢ with a

probability p. In particular, classifier-free guidance is formulated as:

Vi log p(xlc) = wVlog p(xlc) + (1 — w)V. log p(x), (25)

where w is the weight of conditions.

Figure 13: Classifier-free guidance is based on a mixture of vanilla guidance and unconditional model 6*. A
probability p controls whether to drop out the conditions during training.

The weight is slightly different from its counterpart in classifier guidance. When

w = 0, the classifier-free guidance becomes unconditional models without vanilla guid-
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ance. The vanilla guidance is a special case when w = 1. In this case, the unconditional
model is suppressed and conditions are incorporated through vanilla guidance [106].
If w > 1, the classifier-free guidance restrains the unconditional model and prioritizes
conditions further by larger weights. The score from classifier-free guidance deviates
quickly away from the unconditional score, and thus, samples that better satisfy the

conditions will be generated [[107]].

5.1.4. Learned Modifications

Learning modifications provides greater flexibility for controllable generation by
preserving a generative prior. ControlNet [108] is a pioneering method to fine-tune an
extra copied model. This idea for conditional generation has been popular, evidenced
by various adapters. SUPIR [[109] trains a trimmed ControlNet for image restoration.
Uni-ControlNet [110] further proposes all-in-one control. StableSR [111] learns a
time-aware encoder to assist super-resolution generation that is conditioned on low-
resolution images. T2I-Adapter [112]] equips the pre-trained model with several low-
complexity adapters. LoRAdapter [113]] takes inspiration from LowRank-Adaptations

(LoRA) [114] to further reduce the parameters to be learned.

v (o)

Figure 14: Applying an extra network ¢ to directly learn the required modification for guidance. Timestep
condition is omitted here.

5.2. Acceleration Designs

Reducing the number of timesteps for generation is the main goal of acceleration.
Generally, the denoising network needs to wait for the results from the timestep £+ 1 to
accomplish the transition at the current timestep ¢. The inference speed is significantly
slowed down especially when a large number of timesteps are required in the sampling

process [62]. Truncation directly cuts the sampling process at a certain timestep but
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may suffer from distribution deviation. Knowledge distillation is adopted to learn an
auxiliary module that enables fewer timesteps in its sampling process but may require
careful fine-tuning. Timestep selection skips some timesteps and selects a subset of

timesteps for fast generation but may suffer from inherent approximation errors.

5.2.1. Truncation

Truncation involves a partial sampling process with an extra network. It usually se-
lects an intermediate timestep #’, and obtains a sample from the corresponding distribu-
tion p(x,) for the generation, as shown in Fig. [I5] In other words, the process truncates
the whole chain at #’, and thereby fewer timesteps remain in the partial chain. An extra
network needs to be additionally trained to model p(¢') that may not be tractable [[19].
Overall, truncation is theoretically effective in acceleration [[115]], which is proved by

the stochastic contraction theory.

Figure 15: The sampling process is truncated and starts from a selected timestep. The grey, dashed parts
represent discarding for generations.

Truncation effects can be two-sided. On the one hand, truncation comes with ac-
celeration for not only inference but also training. Truncation also strikes a balance
between acceleration and quality as the selection of such a point depends on the data
complexity [53] and the degree of corruption [[115]. Besides, truncation takes advan-
tage of the properties of the involved extra network, which is often another generative
model [[116]. On the other hand, truncation may lead to an increased training expense

[L16]] because the extra network needs to learn p(¢’) as accurately as possible.

5.2.2. Knowledge Distillation

The technique can also be applied to learn a new sampling process with fewer
timesteps. Knowledge distillation is a network compression technique. In terms of
diffusion models, it involves the original sampling process as the teacher model and a

new one with fewer timesteps as the student model [117]]. Fig. [T6]shows an example
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method of progressive distillation in the sampling process.

O—o—B—o—
o

Figure 16: Knowledge distillation learns student denoising networks ¢ and n with fewer timesteps, based on
the teacher denoising network 6*.

Knowledge distillation is usually applied to merge several timesteps into fewer
timesteps for the new sampling process such as progressive distillation, guidance dis-
tillation, and consistency models. [118]] directly distills all timesteps into a single one
with expensive computation since a large dataset of samples from the teacher model
is needed [119]. One mitigation is progressively reducing timesteps [88]. Guidance
distillation [120] is a plug-and-play acceleration approach with classifier guidance but
the memory usage is high. Another family is consistency models where the sampling
trajectory of diffusion models are straightened for consistency [121]] to accelerate the
sampling process. Straightening is achieved via two approaches. Consistency training
approach learns a consistency model from scratch, as if it distilled all timesteps into a
single timestep to achieve consistency. In contrast, consistency distillation accelerates

existing models to become consistency models for single or fewer timesteps.

5.2.3. Timestep Selection

Timestep selection seeks to develop strategies to select only a subset of timesteps
without undermining quality. Some timesteps in a sampling process influence quality
less and thus they can be skipped safely [122]. Fig. shows a shorter sampling
process with selected timesteps. Some may not directly reduce the number of timesteps
but select a subset of timesteps for parallel computation [123].

Some acceleration methods essentially solve stochastic or ordinary differential equa-

tions. DDIM [92] has been widely applied for its simplicity in using non-Markovian
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Figure 17: Selection strategies for the sampling process skip the selected time steps for generation.

reverse processes, and PNDM [[124] further builds close connections with pseudo-

numerical methods for acceleration. Another commonly used method is DPM-Solver

[123] and its improved version DPM-Solver++ [126]. They are high-order solvers for

ODEs with a convergence order guarantee. Empirically, 20 timesteps are used to gen-

erate high-quality results. Euler samplers are also widely used [2] to generate with 20

to 30 timesteps. The selection of timesteps can also be learned by extra networks

or rely on dynamic programming algorithms [128].

6. Future Trends

We provide a summary in Table [5] to connect the components in this survey with

popular open-source diffusion models.

Models

Forward

Reverse

Sampling

DiT

Schedule: Linear
Type: Gaussian
Space: Latent

Architecture: Transformer
Parametrization: Noise
Weight: Pre-defined

Guidance: Vanilla/CFG

Acceleration: Solvers

SD1

Schedule: Scaled Linear
Type: Gaussian
Space: Latent

Architecture: U-Net
Parametrization: Noise
Weight: Pre-Defined

Guidance: Vanilla/CFG

Acceleration: Solvers

SD2 [129]

Schedule: Scaled Linear
Type: Gaussian
Space: Latent

Architecture: U-Net
Parametrization: Hybrid (v)
Weight: Pre-Defined

Guidance: Vanilla/CFG

Acceleration: Solvers

SD3 [43]

Schedule: Rectified Flow
Type: Gaussian
Space: Latent

Architecture: Transformer
Parametrization: Score (flow)
Weight: Pre-Defined

Guidance: Vanilla/CFG

Acceleration: Solvers

SVD [130]

Schedule: Linear
Type: Gaussian
Space: Latent

Architecture: U-Net
Parametrization: Hybrid (v)
Weight: Pre-Defined

Guidance: Vanilla/CFG

Acceleration: Solvers

OpenSoral.2 [137]

Schedule: Rectified Flow
Type: Gaussian
Space: Latent

Architecture: Transformer
Parametrization: Score (flow)
Weight: Pre-Defined

Guidance: CFG

Acceleration: Solvers

FLUX

Schedule: Rectified Flow
Type: Gaussian
Spcae: Latent

Architecture: Transformer
Parametrization: Score (flow)
Weight: Pre-Defined

Guidance: Vanilla/LoRA/CFG

Acceleration: Distillation

Table 5: Popular diffusion models with their designs. Guidance can vary across tasks because of the versa-
tility and adaptability of diffusion models.

29



6.1. Generalization Capability

Understanding the reasons why diffusion models generalize well remains an open
problem. Recent advances have attributed the generalization to a few designs such as
the Gaussian structure [133] and geometry-adaptive harmonic representations [134],
while the comprehensive underlying mechanism remains unclear. Further investigation
can explore other designs such as parameterizations. This may need to further consider
the interplay effects of other designs with extensive analysis and experiments since

designs are often deeply correlated.

6.2. Denoising-Oriented Architecture

The network architectures of diffusion models present significant research oppor-
tunities. Section[d.T|showcases success through integration with other areas. Nonethe-
less, a lack of specialized denoising architectures may result in suboptimal denoising
performance. Future trends may borrow network architectures from related fields like
image restoration [[135]], which also aim to recover unperturbed data from noisy inputs.
Adaptation to the wide variety of degradations may require additional modifications to
the forward and reverse processes. Additionally, timestep-adaptive architectures may
also be considered to better leverage the inherent denoising priority [60] in diffusion
processes. However, adopting timestep-adaptive architectures increases the computa-

tional and architectural complexity, requiring additional efforts to balance the tradeoffs.

6.3. Responsible Applications

Diffusion models have become popular in sciences, such as physics [136] and
medicine [137], etc. Nonetheless, concerns remain on whether they are reliable to
capture the underlying causal relations of a domain as diffusion models tend to rely on
statistical associations on the training dataset [138]. One possible direction may inte-
grate causality-aware guidance mechanisms to condition diffusion models on directed
causal graphs. While promising, handling unobserved confounding relationships usu-
ally requires extensive assumption tests to achieve higher reliability [139].

Diffusion models such as Stable Diffusion [43]] have been significantly employed

in the creative industry. Nonetheless, concerns about originality in creative works have
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been raised [140] and generated content may infringe copyrights. One potential di-
rection adopts concept forgetting [[141] or adjusts the sample process with likelihood-
aware guidance [142] to reduce the similarity. The quantification of originality remains
an open problem for creative industries [143]], and establishing industry standards to

generate content ethically requires broad industry cooperation.

6.4. Societal Impacts

Diffusion models showcase biases, and critically, the definition of biases evolves
over time and varies across cultures. Current solutions do not consider this evolution
and variation. Combining fairness-aware algorithms [144] with incremental learning
[145] may facilitate “incremental fairness”. The main difficulty lies in the interde-
pendent and multifaceted nature of biases where additional data may give rise to new
biases in existing data and addressing one type of bias without considering others can
result in incomplete or skewed mitigation efforts.

Diffusion models democratize personalization and boost productivity by enabling
non-professional users to automatically generate highly customizable content. This
accessibility may reshape the job market and further impact educational systems. Con-
sequently, governments and individuals may require additional expenses for employee
retraining and educational reforms [9]. Addressing this requires interdisciplinary col-
laboration among computer science, politics, and economics to promote democratiza-

tion and productivity while reducing potential social risks [[146].

7. Conclusion

Diffusion models involve three main components: a forward process and a reverse
process for optimization, and a sampling process for generation. The forward pro-
cess focuses on perturbing data with different noise schedules, noise types, terminal
distributions and representations. The reverse process focuses on training a denoising
network to remove noise with different architectures, parameterizations, and weights.
The sampling process works for generation and mainly focuses on guidance and accel-
eration. These designs have all contributed to the current powerful diffusion models.

Several future trends have been introduced to boost this field.
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