
On the Design Fundamentals of Diffusion Models: A
Survey

Ziyi Changa, George A. Koulierisa, Hyung Jin Changb, Hubert P. H. Shuma,∗

aDepartment of Computer Science, Durham University, Durham, DH1 3LE, UK
bSchool of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK

Abstract

Diffusion models are learning pattern-learning systems to model and sample from data

distributions with three functional components namely the forward process, the reverse

process, and the sampling process. The components of diffusion models have gained

significant attention with many design factors being considered in common practice.

Existing reviews have primarily focused on higher-level solutions, covering less on the

design fundamentals of components. This study seeks to address this gap by provid-

ing a comprehensive and coherent review of seminal designable factors within each

functional component of diffusion models. This provides a finer-grained perspective

of diffusion models, benefiting future studies in the analysis of individual components,

the design factors for different purposes, and the implementation of diffusion models.

Keywords: Diffusion Model, Forward Process, Reverse Process, Sampling Process,

Deep Learning

1. Introduction

Diffusion models, as a learning system, consist of three functional components,

i.e., the forward, reverse, and sampling processes. The generic pipeline of diffusion

models [1] involves forward and reverse processes to learn a data distribution, and a

sampling process to generate novel data that follow such a distribution. Three com-

∗Corresponding author
Email addresses: ziyi.chang@durham.ac.uk (Ziyi Chang), george.koulieris@durham.ac.uk

(George A. Koulieris), h.j.chang@bham.ac.uk (Hyung Jin Chang), hubert.shum@durham.ac.uk
(Hubert P. H. Shum)

Preprint submitted to Pattern Recognition April 30, 2025

ponents work together to achieve the functionality of diffusion models [2], i.e., the

ability to model and sample from data distributions. The forward process is expected

to perturb training data by adding noise while the reverse process is expected to remove

the aforementioned perturbation via learning a neural network. After optimization, the

sampling process is expected to generate novel data that follow the distribution.

Designing the three functional components involves consideration of different ma-

jor factors and design purposes. To perturb training data, the schedule of noise and the

type of noise are two major factors that need to be considered when a forward process

is designed. Meanwhile, the terminal point and diffusion space are also required to

specify where to stop and where to manipulate data in a forward process. The for-

ward process needs to perturb the training data by adding noise at each timestep. For

a reverse process to remove the added noise, architectures, parameterizations, and op-

timizations of a neural network become major factors to be considered for the reverse

process. Architectures specify how to learn denoising while parameterizations concern

what to learn and predict. Optimizations allow different emphases on the informa-

tion that a neural network should focus on more. The sampling process works after

optimization, and the controllability and speed become two major factors to be consid-

ered. Controllability constrains the generation to obtain data of users’ interest while

the speed factor accelerates generation without significant quality degradation. While

there could be a large number of factors in each functional component, our survey only

focuses on major ones that are transferable and usually considered in common practice.

Most existing survey papers on diffusion models focus on a particular application

area while ours hierarchically organizes the design fundamentals in a diffusion model.

With the recent prosperity in applications of diffusion models, previous survey papers

mostly focus on collecting application cases in various domains and data structures.

These domains include natural language processing [3], computer vision-related tasks

[4], medical analysis [5], natural science [6], time series [7], recommendation [8], per-

sonalization [9], memorization [10], and etc. They also cover different types of data,

including image [11, 12], text [13], video [14], audio [15], etc. However, they are

domain-specific and application-driven, and thus lead to restricted insights into this

whole area. Some recent surveys [16, 17, 18] are organized by specific problems,

2

Figure 1: The hierarchical overview of diffusion models. The forward process, the reverse process, and the
sampling process are three functional components. Major factors comprise each component. Popular designs
and seminal works are presented.

which may hinder a comprehensive understanding. In contrast, our survey adopts a

design-centric taxonomy, providing building blocks to facilitate straightforward imple-

mentation.

Our paper treats diffusion models as a learning system, discusses the system hierar-

chically, and mainly focuses on seminal designable factors within each component, as

shown in Fig. 1. This breakdown is aligned with the functionality of diffusion models

and the intuition of getting to know a system. Therefore, our survey benefits both be-

ginners who want to get fundamental knowledge from seminal works in this area and

professionals who want to hierarchically understand critical factors when designing

their advanced diffusion models.

The following are questions to answer via our literature review of diffusion models:

1. What are the functional components in a diffusion model?

2. What are the major factors that comprise each component?

3. What are the popular designs and seminal works in each factor?

We organize our survey by answering the above questions to build a hierarchical

3

view of diffusion models. Section 2 introduces the generic pipeline of diffusion models,

including the three functional components and two popular formulations. Sections 3,

4, and 5 respectively review the major factors, and popular designs and seminal works

of each functional component, i.e., the forward process, the reverse process, and the

sampling process. Section 6 provides overall insights on the future trends with respect

to this field, and Section 7 gives a brief conclusion on diffusion models.

2. The Generic Pipeline

This survey uses commonly-used notations and terminologies in existing papers

and represents concepts with figures whose legends are defined in Table 1.

Notation Legends
Trainable network with parameters θ

Fixed network with parameters ξ∗

Component not in use

Data distributions

The distribution at a timestep

Condition c

Timestep t

Combination, e.g., Addition.

With probability p for dropping out

Table 1: Figure legends.

2.1. Three Functional Components

The forward process perturbs a training sample x0 to {xt}
T
t=1 as the timestep t in-

creases, as shown in Fig. 2. A forward transition p(xt |xt−1) describes such a perturba-

tion where a small amount of noise ϵt is added between two timesteps. In other words,

as the forward process moves on the chain, more and more noise is added through

p(xt |xt−1) and the perturbed sample xt becomes noisier and noisier. Through multiple

timesteps, the original distribution p(x0) is eventually perturbed to a tractable terminal

distribution p(xT), which is usually full of noise. Since only noise is added through the

4

chain, the forward process does not have any trainable parameters. In particular, the

forward process is represented as a chain of forward transitions:

p (x1:T |x0) :=
T∏

t=1

p (xt |xt−1) , (1)

where t is the timestep, T is the total number of timesteps, x0 is a training sample at

t = 0 and is then perturbed to be xT after T timesteps, and p (xt |xt−1) is a forward

distribution transition between two consecutive time steps.

Figure 2: The forward process perturbs the original unknown distribution by gradually adding noise to a
given set of data samples through a chain of distribution transitions with multiple time steps. Each time step
of the chain is denoted by a circle.

The reverse process trains a denoising network to recursively remove the noise, as

shown in Fig. 3. A denoising network is trained to iteratively remove the noise between

two consecutive timesteps. The reverse process moves backwards on the multi-step

chain as t decreases from T to 0. Such iterative noise removal is termed as the reverse

transition pθ(xt−1|xt), which is approximated by optimizing the trainable parameters θ

in the denoising network. In particular, the reverse process is formulated as a chain of

reverse transitions:

pθ (x0:T) := p (xT)
T∏

t=1

pθ (xt−1|xt) , (2)

where θ is the parameters of the denoising network and pθ(xt−1|xt) is the reverse distri-

bution transition. In particular, the reverse process is usually parameterized as:

pθ (xt−1|xt) := N (xt−1; µθ (xt, t) ,Σθ (xt, t)) , (3)

where µθ(xt, t) and Σθ(xt, t) are, respectively, the Gaussian mean and variance to be

estimated by the network θ.

5

Figure 3: The reverse process trains a neural network θ to recursively remove the noise that has been previ-
ously added by the forward process.

The denoising network is trained by the standard variational bound:

L = E
[

DKL

(
p (xT |x0) ||p (xT)

)︸ ︷︷ ︸
prior matching term

+
∑
t≥1

DKL

(
p (xt−1|xt, x0) ||pθ (xt−1|xt)

)
︸ ︷︷ ︸

denoising matching term

− log pθ (x0|x1)︸ ︷︷ ︸
reconstruction term

]
,

(4)

where DKL(·∥·) is the Kullback–Leibler (KL) divergence to compute the difference be-

tween two distributions. The prior matching term is minimized as the final distribution

becomes Gaussian after a sufficiently large T . The reconstruction term can be approx-

imated using a Monte Carlo estimate, and training primarily focuses on the denoising

matching term. Overall, minimization of the objective L is to reduce the discrepancy

between pθ(x0) and p(x0).

Figure 4: The sampling process uses the trained denoising network θ∗ and usually follows the same transi-
tions as the reverse process.

The sampling process leverages the optimized denoising network θ∗ to generate

novel data x∗0, as illustrated in Fig. 4. It moves backwards on the chain to recursively

apply the optimized network θ∗. Concretely, it firstly obtains a sample xT from the

terminal distribution p(xT) and then uses the trained network to iteratively remove

noise by the sampling transition pθ∗ (xt−1|xt). Through a chain of such transitions, it

6

finally generates new data x̂0 ∼ pθ∗ (x0) ≈ p(x0). In particular, the sampling process is

defined as a chain of sampling transitions:

pθ∗ (x0:T) := p (xT)
T∏

t=1

pθ∗ (xt−1|xt) , (5)

where θ∗ represents the optimized parameters of the denoising network, p(xT) is the

terminal distribution, and pθ∗ (xt−1|xt) is the sampling transition.

2.2. Discrete and Continuous Formulations

To reflect the development of diffusion models, we organize diffusion models by

two popular formulations, i.e., discrete and continuous timesteps. To keep our survey

simple to understand, especially for beginners, we present and discuss most of the

fundamental designs under the discrete-time framework. These choices on the discrete-

time framework are generally applicable to the continuous-time framework.

2.2.1. The Discrete Formulation

Initially motivated by unsupervised learning, diffusion models are formulated with

discrete timesteps. Regarding the discrete formulation, the denoising diffusion prob-

abilistic model (DDPM) [19] is a popular configuration of such formulated diffusion

models. It is straightforward to define, efficient to train, and capable of achieving high

quality and high diversity in the generated samples [20].

Concretely, the forward transition in DDPM is defined to add isotropic Gaussian

noise ϵt ∼ N(0, I):

p(xt |xt−1) := N(xt;
√

1 − βt xt−1, βtI), (6)

where βt is the noise schedule, which is a hyper-parameter to control the amount of

noise to be added in each timestep. As all forward transitions are Gaussian, the forward

process in DDPM is simplified as:

p(xt |x0) := N(xt;
√
ᾱt x0, (1 − ᾱt)I), (7)

where ᾱt is defined as ᾱt =
∏t

s=1 αs and αt = 1 − βt. In theory, ᾱt has a similar effect

7

with βt in Eq. (6).

The reverse process has the same functional form as the forward process [1]. In

DDPM configuration, the transition Eq. (3) in the reverse process is formulated as:

pθ(xt−1|xt) := N(xt−1;
1
√
αt

(xt −
1 − αt
√

1 − ᾱt
ϵθ(xt, t)), βtI), (8)

where the variance Σθ(xt, t) in Eq. (3) is empirically fixed as the noise schedule βt, and

µθ(xt, t) is reparametrized by the noise prediction ϵθ (xt, t). Accordingly, the training

objective defined in Eq. (4) is also simplified as:

L = Ext ,t

[
∥ϵt − ϵθ (xt, t)∥22

]
. (9)

The intuition behind the derivation is two-fold. First, all distributions involved in Eq. 4

are Gaussians. Second, with Eq. 6 and Eq. 8, the KL divergence is simplified to be

only dependent on the mean that is parameterized by the predicted noise ϵt. Finally, the

sampling process obtains xT ∼ p(xT), and applies pθ∗ (xt−1|xt) to generate x̂0.

2.2.2. The Continuous Formulation

Focusing on the dynamics of diffusion models, continuous formulation is proposed

to analyze the complex dynamics and also integrate the domain knowledge of score

matching. The continuous formulation manipulates data distributions in continuous

time. Noise is added in an infinitesimal interval between timesteps. Therefore, a dif-

ferential equation (DE) is adopted in such formulated diffusion models to describe

changes in continuous timesteps. Furthermore, [21] unifies all diffusion models with

differential equations. Flow matching or stochastic interpolants [22, 23, 24, 25] is one

of the popular approaches to improve the dynamics of diffusion models, which is often

presented using continuous formulation.

Concretely, the forward transition to add noise is formulated as a forward SDE:

dx = f (x, t)dt + g(t)dw, (10)

where w is the standard Wiener process and accounts for noise in the forward transition,

8

and f (x, t) and g(t) are the drift and diffusion coefficients to account for the mean and

variance in the forward transitions, respectively.

At the same time. a reverse SDE for the reverse transition is also determined by

these coefficients. Specifically, the reverse SDE is:

dx =
[
f (x, t) − g2 (t) sθ (xt, t)

]
dt + g (t) dw, (11)

where the output of the denoising network sθ(xt, t) = ∇x log p(xt) is the score. Like-

wise,
[
f (x, t) − g2(t)sθ(xt, t)

]
and g(t) account for the mean and the variance in Eq. (3).

The training objective is defined as:

L = Et

[
λ (t)Ex0Ext |x0

[∥∥∥sθ (xt, t) − ∇x log p(xt |x0)
∥∥∥2

2

]]
, (12)

where λ(t) is the weighting function. Finally, the sampling process obtains xT , and

applies the trained network θ∗ to generate novel data.

The ODE-based formulation, derived from a deterministic process with the same

marginal densities {p(xt)}Tt=0 as the SDE, is detailed in [21] and expressed as:

dx =
[

f (x, t) −
1
2

g2 (t) sθ (xt, t)
]

dt, (13)

Its optimization objective matches Eq. 12. Compared to SDE-based formulations,

ODE-based approaches enable exact likelihood computation and provide deterministic

latent representations, which are advantageous for editing tasks and efficient sampling.

2.3. Evaluation

The evaluation of diffusion models encompasses three dimensions: distribution, in-

dividual, and human aspects, the first two of which are often combined with domain

knowledge. From a distribution perspective, metrics such as the Frechet Inception Dis-

tance [26], assess the distributional similarity to evaluate generation quality. The indi-

vidual aspect usually involves paired evaluations such as the latent alignment [27] or

self-contained evaluations such as physics constraints [28] of generated data. Domain-

9

specific knowledge is essential to design evaluation metrics for different fields such

as medical analysis and meteorology. However, these quantitative measures may not

align with human perceptual judgments [29]. Human-centric evaluations, such as user

studies, are necessarily employed to provide subjective assessments of performance.

Recently, human preferences [30, 31, 32] have been leveraged for better alignment.

With these three evaluation dimensions, diffusion models are rigorously assessed and

comparable with other models.

3. The Forward Process

The forward process is crucial for the success of diffusion models, as it reduces the

complexity of the generation task by positive-incentive noise [33]. It perturbs data by

scheduled noise, and results in stable noisy augmentations of data [34] that bridge data

and pure noise distributions. These augmentations later facilitate diffusion models to

learn the gradual multi-step generation, thereby reducing the task entropy. Moreover,

[35] demonstrates that the integration of positive-incentive noise consistently enhances

performance from a variational perspective.

3.1. The Noise Schedule

A suitable schedule balances exploration and exploitation [36]. Exploration, de-

fined as a model’s ability to generalize to unseen data, requires an adequate level of

noise while excessive noise can lead to suboptimal convergence. Conversely, exploita-

tion, where the model effectively fits the training data, is achieved with minimal noise

while insufficient noise undermines generalization.

The noise schedule can be either learned by a network or empirically designed

using mathematical formulations. Schedules are treated as a parameter to be learned

jointly with other parameters [41]. Manually designed noise schedules are formulated

with a wide variety of mathematical heuristics. A linear schedule [19] has been initially

proposed. For faster perturbation, an exponential schedule [39] is proposed for better

exploration. In contrast, schedules such as cosine [38], sigmoid [40], and rectified flow

[25] and its variants [42, 43] are proposed for smoother perturbation speed. Table 2

shows several examples of designed noise schedules.

10

Noise Schedule Visualization

Linear [19]

Flow [37]

Cosine [38]

Exponential [39]

Sigmoid [40]

Table 2: Illustrations of typical manually-designed noise schedules.

Learning schedules enable models to adaptively optimize noise distributions but

may lead to overfitting and reduced generalization [41]. In contrast, predefined sched-

ules avoid adding parameters and offer greater interpretability. They also support dif-

ferent perturbation speeds for trading-off exploration and exploitation. However, they

often require manual tuning for a new task or a new dataset [37].

3.2. The Noise Type

The selection of the noise type plays a crucial role in diffusion models, influencing

distribution approximation and the overall expressiveness of the model. An appropriate

noise type enhances the capacity to accurately fit the perturbed distributions at various

timesteps [44]. Additionally, different noise types offer varying degrees of freedom

[45], providing flexibility in modeling complex data distributions.

Noise Type Visualization

Gaussian [39, 19]

Gamma [44, 45]

Soft [46, 47]

Table 3: Comparison of several streams of noise types.

Different noise types have been developed based on empirical experiments. Isotropic

Gaussian noise [19] is commonly used for its simplicity and compatibility. It allows

for analytical solutions by taking advantage of the additivity of Gaussian distributions

11

and simplifying the calculation of KL divergence in Eq. 4. Several variants of isotropic

Gaussian noise, such as mixture of Gaussian noise [45] and non-isotropic Gaussian

noise [48], have also been applied to consider data structures. Correlated noise may be

a potential alternative when correlation exists in a data sample, e.g., when frames of a

video are considered [49] as correlations, while other video diffusion models usually

maintain the default noise type. Additionally, noise from other distributions is also ex-

plored. Gamma distribution [44] is another feasible alternative with one more degree

of freedom and fits to distributions better.

Soft corruptions can also be treated as a generalized noise for perturbation. Gaus-

sian blur like the heat equation [50] is introduced for disentanglement of overall color

and shape and smooth interpolation if it is used for image data. Soft corruption can also

be manually defined operators like masking [47] to perturb data. Such operators also

destroy data structures as the aforementioned noise does. This greatly extends the ex-

pressive power as a wide variety of operators become available [46]. Table 3 visualizes

examples of noise types.

Selecting appropriate types depends on the characteristics of data. Isotropic Gaus-

sian noise is broadly applicable but may overlook the prior knowledge of data struc-

ture. Gaussian mixtures are better for data with distinct modes, whereas non-isotropic

Gaussian noise considers self-correlation. Soft corruption is effective for known per-

turbation patterns, as it relies on predefined operators [47] to fulfill its flexibility.

3.3. The Terminal Distribution

Diffusion models are assumed to have zero signal-to-noise ratio (SNR) value for

terminal distributions to correctly align diffusion training and inference [51]. Ideally,

xT is heavily perturbed without any original structures, i.e., zero SNR. However, empir-

ically the terminal distribution may not strictly be zero SNR. This misalignment with

assumption leads to suboptimal generation quality.

The forward process seeks suitable terminal distributions, either to maintain as

many structures of x0 as possible or to ensure zero SNR at the terminal distribution.

Fig. 5 demonstrates the first direction. These approaches usually consider the statistics

of the training dataset [52] such as the mean and variance to serve as proxies for data

12

Figure 5: The transition chain no longer seeks an isotropic Gaussian distribution as the terminal distribution.
The grey, dashed parts represent that the transition no longer approaches the isotropic Gaussian distribution.

structures. Learning the terminal distribution p(xT) with additional networks is also

feasible [53]. This direction expects that retaining more meaningful structural infor-

mation from the data distribution mitigates the difficulty of generation. The other direc-

tion adjusts the forward process to ensure that the terminal distribution conforms to our

assumption. Offset noise is straightforward by altering its mean value but is not devoid

of inherent challenges. [51] rescales the noise schedule but requires subsequent fine-

tuning across the entire network. [54] relies on training an auxiliary text-conditional

network to map pure Gaussian noise to the data-adulterated noise.

Choosing a suitable terminal distribution remains an open and important problem.

The direction of maintaining more original structures may additionally accelerate the

sampling process because fewer timesteps are involved, but may require an accurate

representation of the terminal distribution [52]. On the contrary, ensuring zero SNR

sticks to the assumption of diffusion models and the terminal distribution is accessible,

which is more desirable when accurate representations are hard to obtain.

3.4. Representation Space

Latent representation now becomes a common choice for diffusion, as illustrated

in Fig. 6. The high dimensionality of data often leads to considerable computational

cost and redundancy. One of the representative models is Latent Diffusion Model [55]

where images are compressed into lower dimensional vectors. Empirical evidence [56]

shows that some transitions in diffusion models are responsible for learning latent rep-

resentations, which are usually in low-dimensional space and semantically meaningful.

Sub-space methods treat different parts of input separately in corresponding sub-

spaces. They usually involve more than one chain of transitions in the generic pipeline.

In the conditional case, data and their labels are taken as two sub-spaces and then are

13

Figure 6: The transition chain in a latent space. ψ∗ is a pre-trained encoder. Data are no longer manipulated
in the original space (dashed, grey). They are now transformed within the latent space (rounded rectangle).

diffused simultaneously [21]. This design explicitly builds a joint modeling approach

for conditional data. Data orthogonal decomposition is widely used where data are

decomposed into several complementary parts in their corresponding sub-spaces [57].

This design brings flexibility for modeling data with heterogeneous properties. Fig. 7

shows an example of defining sub-spaces by data decomposition.

Augmented space introduces intermediate variables to extend the original space.

Introducing intermediate variables is motivated by the overly simplistic diffusions that

cannot represent the full dynamics in the forward process [58], and thus leads to un-

necessarily complex denoising processes and limits generative modeling performance.

An auxiliary velocity variable is introduced and the forward process is only defined in

the augmented space [59]. Introducing stochasticity into the augmented space benefits

the smoothness of the evolution of variables.

Figure 7: The forward process to separately transform the original data in orthogonal subspace.

The three spaces can be mutually beneficial instead of exclusive. Latent repre-

sentation is more suitable for compressing high-dimensional data but may risk infor-

mation loss. Sub-space methods offer flexibility for modeling heterogeneous data but

14

add pipeline complexity. Augmented space approaches capture indirect dynamics by

introducing intermediate variables.

4. The Reverse Process

The reverse process focuses on training a denoising network to remove noise. The

denoising network is configured by its network architecture and its output parameteri-

zations. To train the configured network, optimization designs are also developed.

4.1. Network Architectures

4.1.1. Architecture Flexibility

Theoretically, it is feasible to incorporate as a denoising network a wide variety

of architectures that keep the dimensionality unchanged [60]. Both U-Net and Trans-

former have become the mainstream for their high capacity for modeling complex rela-

tionships in a wide range of applications and GNN quickly gets more attention. While

other architectures may also theoretically be compatible without changing dimensions

like GAN [61], they are often adopted for task-specific purposes, e.g., adopting GAN

for fast generation [62], and may not be generally applicable to other purposes.

4.1.2. U-Net

Since [19] first introduced diffusion models with U-Net architecture, this architec-

ture has dominated this area and largely remained intact. From a theoretical standpoint,

it is a U-shaped encoder-decoder architecture for general purposes. Its encoder extracts

high-level features from data and usually contains downsampling layers to compress

data. Its decoder leverages such features for different purposes and usually upsamples

back to the original dimensionality of the data. This architecture forms an information

bottleneck [63] and encourages the network to learn features effectively. Nonetheless, a

few modifications have been introduced in some representative U-Net-based diffusion

models such as ADM [20] and EDM [2, 64] when compared with the traditional U-Net.

[20] ablates several architecture choices such as adaptive group normalization. Based

on [2], [64] proposes magnitude-preserving layers to replace the data-dependent group

15

normalization layers to preserve activation, weight, and update magnitudes. Addition-

ally, the U-shape architecture has been adopted with cross-attention [65] for higher

capacity, and cascading for hierarchy modeling [66] has been merged into the U-Net

architecture. Latent diffusion models [55] enhance the traditional U-Net architecture

by transformer layers to capture long dependency.

4.1.3. Transformer

Transformers are increasingly adapted as an alternative architecture for the denois-

ing network for their superior properties like global dependency, scalability, and mul-

timodality [67] because of self-attention functions [68]. In principle, a transformer

can directly substitute U-Nets because it can also maintain the data dimensions [69].

However, transformers also exhibit unique advantages. Scalability [67] of transform-

ers enables better generation quality with less network complexity, which is critical

for emergence ability. Besides, as a sequence model, transformers support an arbitrary

length of generation. For example, MDM [28] generates an arbitrary length of human

motions. Transformers are also friendly for multi-modality in diffusion models. Stable

Diffusion 3 [43] enables the alignment of conditions with MMDIT [70] that employs

shared full attention weights for visual and textual modalities.

Transformers natively support diverse conditioning via their core mechanisms such

as layer normalization and multi-head attention [67]. Adaptive layer norm modulates

features via scale-and-shift. Cross-attention allows each token to selectively focus on

condition embeddings for precise control. In-context conditional tokens embed guid-

ance into the representation space. Convolutional U-Nets, in contrast, usually need to

graft carefully designed layers or attention blocks at each stage, complicating design

and scaling. As a unified framework, transformers streamline implementation and scale

predictably, boosting both generative capacity and conditioning fidelity.

Since DiT [67] demonstrates the superiority of diffusion transformers, different

ways to integrate designs from other architectures into transformers have been ex-

plored. U-ViT [71] which utilizes U-Net architecture for diffusion transformers. Mask-

DiT [72] and MDT [73] use the MAE-like architecture. FiT [74, 75] proposes flexible

transformer architecture. SANA [76] with linear transformer architecture.

16

4.1.4. GNN

Graph Neural Networks (GNNs) have also been an emerging choice for the denois-

ing network especially when graph structures are involved. Their superior performance

is attributed to inductive bias from network architecture [6]. Otherwise, the learning

may deviate from inherent graph properties [77]. Equivariant property has been widely

considered for denoising architecture. [78] keeps the property of invariant permuta-

tion in the reverse process. [79] further extends it with equivariant energy guidance

to learn the geometric symmetry. Another considered aspect is the formation of graph

structure. [80] defines the denoising on the adjacency matrix as well as node features.

[81] performs low-rank Gaussian noise insertion with spectral decomposition. Latent

space has also been considered. [82] encodes the high-dimensional discrete space to

low-dimensional topology-injected latent space.

4.2. Network Parameterizations

The output of the denoising network is applied to parameterize the reverse mean

µθ(xt, t) in the reverse transition. Different parameterization ways all center on the

estimation of the original data x0. Specifically, the true value of the reverse mean,

denoted as µ(xt, t), is formulated as:

µ(xt, t) :=
√
ᾱt−1(1 − ᾱt−1)xt +

√
ᾱt−1(1 − αt)x0

1 − ᾱt
, (14)

where x0 is the original data but is unavailable during the reverse process. Therefore,

x0 needs to be estimated from the observed perturbed data xt and timestep t by the

network. One parameterization way is to directly output the estimation x̂0 by the de-

noising network and replace x0 with x̂0 in Eq. (14). An indirect parameterization way

designs the denoising network to predict the noise ϵ̂t, which is the residual between the

unknown x0 and the observed xt [19]. Another indirect parameterization way is based

on the probabilistic viewpoint and predicts the score ŝt via the denoising network. ŝt

is the gradient that points towards the unknown x0 from the current position xt in data

space. Combinations among the aforementioned ways are also proposed for special

tasks. Table 4 shows a comparison of different parameterization ways. Different out-

17

puts are equivalent to each other [83, 2] with the following relationships:

xθ(xt, t) =
xt + (1 − ᾱt)sθ(xt, t)

√
ᾱt

=
xt −
√

1 − ᾱtϵθ(xt, t)
√
ᾱt

, (15)

sθ(xt, t) = −
1

√
1 − ᾱt

ϵθ(xt, t). (16)

While essentially equivalent, different outputs as well as corresponding parame-

terizations show unique characteristics in particular aspects. Using x̂0 mainly supports

better accuracy in the initial stage of the reverse process while ϵ̂t is preferable in the late

stage. Employing ŝt avoids computing the normalizing constant, which is a common

problem in the context of distribution modeling. Combining the aforementioned ones

provides the flexibility to retain their benefits.

4.2.1. Starting Data

Predicting the original data x0 provides a straightforward denoising direction. x̂0

indicates a denoising goal towards which xt should be changed. In particular, given the

observation xt at timestep t, the parameterization is defined as:

µθ(xt, t) :=
√
ᾱt−1(1 − ᾱt−1)xt +

√
ᾱt−1(1 − αt)xθ(xt, t)

1 − ᾱt
, (17)

where αt indicates the noise level as defined in Section 2.2.1.

Output Parameterization Visualization

Data xθ
µθ(xt, t) :=

√
ᾱt−1(1−ᾱt−1)xt+

√
ᾱt−1(1−αt)xθ

1−ᾱt

Score sθ dx :=
[
f (x, t) − g2(t)sθ

]
dt+g(t)dw

Noise ϵθ µθ(xt, t) := 1
√
αt

xt −
1−αt√
αt(1−ᾱt)

ϵθ

Hybrid hθ µθ(xt, t) := H(xθ, sθ, ϵθ) N/A

Table 4: Visualization of parameterization ways.

Parameterizing with x̂0 is advantageous at the beginning of the sampling process,

18

while it leads to inaccuracy when approaching the end of the sampling process. Em-

pirical results show that the estimated mean µθ(xt, t), which is parameterized by x̂0, is

closer to the ground truth µ(xt, t) at the beginning of the sampling process [84]. This

is because x̂0 helps the denoising network with an overall understanding of the global

structure [85]. On the contrary, when approaching the end of the sampling process

where substantial structures have already been formed and only small noise artifacts

need to be removed, finer details are difficult to be recovered [86]. In other words, the

information brought by x̂0 becomes less effectiveness in this case.

4.2.2. Score

Score is the gradient of the logarithm of a distribution. The gradient indicates the

most possible changes between two timesteps. Therefore, as shown in Fig. 8, denoising

samples by the score forms a trajectory in data space. In particular, given the observed

xt and timestep t, the predicted score is defined as sθ(xt, t) := ∇x log p(xt) and the

corresponding parameterization is the reverse SDE:

dx :=
[
f (x, t) − g2(t)sθ(xt, t)

]
dt + g(t)dw, (18)

where f (x, t) and g(t) are the coefficients as previously introduced in Section 2.2.2.

Figure 8: Visualization of the trajectory by predicting score. A score is a direction for the next timesteps.
Samples are denoised in the direction at each position. Colors represent the trajectories of different samples.

Score prediction is closely related to flow matching [22] in terms of modeling a

vector field. Score-parameterized diffusion models provide unbiased gradients as the

vector field under the assumption of Gaussian distribution while flow matching directly

19

learns the vector field. Score-parameterized diffusion models transport data with Gaus-

sian conditional paths while flow matching also supports conditional optimal transport

paths. In particular, the predicted distribution is usually defined as:

pθ(x) =
exp− fθ(x)

Zθ
, (19)

where Zθ is a normalizing constant to estimate. Predicting score avoids this problem:

∇x log pt(x) = −∇x fθ(x) − ∇x log Zθ = −∇x fθ(x), (20)

where ∇x log Zθ = 0 as Zθ is a constant with respect to x.

4.2.3. Noise

Noise estimation predicts the noise added in the forward process. Generally, the

predicted noise is scaled according to the noise schedule and then subtracted from the

observation [19, 77], as shown in Fig. 9. In particular, given the observation at a current

timestep, the prediction of noise is denoted as ϵ̂t and the parameterization is defined as:

µθ(xt, t) :=
1
√
αt

xt −
1 − αt

√
αt(1 − ᾱt)

ϵθ(xt, t), (21)

where αt indicates the noise level at timestep t as previously defined in Section 2.2.1.

Figure 9: Visualization of the noise-based parameterization. means ϵ̂t has a subtractive relationship with
xt , and means this results in xt−1.

The consistent magnitude and residual effect of ϵθ(xt, t) are advantageous. The fixed

statistics, e.g. ϵθ(xt, t) ∼ N(0, I), lead to a consistent magnitude. This encourages the

learning of the denoising network [83]. Besides, the residual effect to preserve the input

xt in xt−1 is available by predicting zero noise. This becomes increasingly beneficial

20

towards the end of the reverse process where only minor modifications are needed [86].

A large deviation between the ground truth noise ϵt and the predicted noise ϵθ(xt, t)

may occur at the beginning of the sampling process, and is hard to be corrected in

the following timesteps. Sampling starts with large noise, with almost no clue for the

denoising network to predict noise accurately [19]. This potentially leads to a deviation

[86]. The deviation is scaled up by the noise schedule in Eq. (21). The scheduled level

of noise is usually large at the beginning of the sampling process. Even for a small

noise estimation error, the deviation will be sharply enlarged. Moreover, the denoising

network is limited to predicting noise, which has a residual effect on the noise-based

parameterization. The magnitude of potential correction at each timestep is relatively

small, and thereby more timesteps are required to correct such a deviation [85].

4.2.4. Hybrid

Combining two or more predictions is also possible for task-specific benefits. Ab-

stractly, the combination is denoted as hθ(xt, t) := H(xθ(xt, t), sθ(xt, t), ϵθ(xt, t)) where

H stands for a combination operator. Therefore, the parameterization is:

µθ(xt, t) = hθ(xt, t). (22)

This has a wide variety of feasible implementations because the output to be combined

and the combination operators can be very diverse [16]. Velocity prediction in DDPM

is one example that linearly combines xθ(xt, t) and ϵθ(xt, t) [87], which is designed as:

µθ(xt, t) := αtϵθ(xt, t) − σt xθ(xt, t), (23)

where αt and σt are the scaling factor and noise schedule respectively. It has better

stability [88], avoids noise existing in xθ(xt, t) [89] and achieves higher likelihood [90].

Dynamically alternating between xθ(xt, t) and ϵθ(xt, t) accelerates the generation [86].

4.2.5. The Reverse Variance

Modeling the reverse variance improves the training efficiency of diffusion models.

An appropriate variance minimizes the discrepancy between the predicted reverse tran-

21

sition pθ(xt−1|xt) and the forward transition p(xt |xt−1), fitting the forward process better

[91]. This facilitates fewer timesteps to be used, and improves overall efficiency.

Many efforts to model the reverse variance are attempted. Some empirically adopt

a handcrafted value for each timestep. The noise schedule is a popular option for its

simplicity and empirical performance [92]. Scaling the schedule by a factor is also

researched but does not lead to a large difference [19]. Both choices are considered as

upper and lower bounds on reverse process entropy [1], and the interpolation between

them is learned for flexibility [38]. Others find the optimal variance can be solved

analytically. Its formulation is explicitly derived from the predicted score [91], and

improves the efficiency of generation [93].

4.3. Weighted Optimization

Weighted optimization in the reverse process is inspired by the understanding of

the learning procedure of diffusion models. A common choice [19] applies uniform

weights and may overlook the characteristics of the reverse process. The semantic in-

formation of data expressed in the reverse process gradually changes, which requires

appropriately set priorities to learn [29]. An alternative choice is a function of interme-

diate characteristics, e.g., signal-to-noise values. While it takes data into account, the

hyperparameters of the designed function may need to be carefully set.

Learning priorities are balanced by weights in the learning objective to enhance the

learning quality. The change of learning priorities has been observed in the reverse

process. It pays more attention to global structures at the beginning of the reverse

process and then changes to local details when approaching its end [94]. A balance is

achievable through adjusting weights and beneficial for training.

Figure 10: The learning priority changes in the reverse process, which is denoted by different colours.

Directly using the schedule as the weight emphasizes the global structure better

by a larger learning weight at the beginning of the reverse process [95]. Despite its

22

simplicity, the pre-defined schedule is not flexible and may deviate away from the

actual demands. A function of the noise schedule, such as the signal-to-noise (SNR)

ratio, is designed to compute the weights. The actual remaining noise is measured

rather than the scheduled one [83]. It takes the data into account, and better balances

the learning of local details and global structures [94].

5. Sampling Process

Conditional and fast generation are two focused factors of the sampling process

in diffusion models. Without modeling conditions, diffusion models usually do not

generate data of high quality when data are considered to follow a conditional distribu-

tion [96]. Effective mechanisms of guidance are designed to modify transitions in the

sampling process to be compatible with conditions. Moreover, the sampling process

is several times slower when compared with other generative models [97]. The long

generation time is mainly attributed to the large number of timesteps. Thus, designs

for acceleration are explored to reduce timesteps without heavily impairing quality.

5.1. Guidance Mechanisms

Vanilla guidance merges conditions via fusion approaches such as the attention

layer. However, the weight of conditions is not easy to adjust. Classifier guidance

leverages an additional classifier and adjustable weights, but comes with issues of com-

putational cost and stability. Classifier-free guidance additionally trains unconditional

diffusion models to achieve better stability. Learned modifications via adapters pro-

vides guidance but need to fine-tune extra adapters.

5.1.1. Vanilla Guidance

Vanilla guidance usually merges the given conditions c with timesteps t as the

guidance. The intuition of merging is that a timestep t itself is inherently taken as a

condition by a denoising network and thus more conditional information can also be

conveyed. The approaches of merging can be operations such as addition [19, 98], and

attention layer [99, 100]. Fig. 11 shows the condition is added to a timestep in this

mechanism.

23

Figure 11: Vanilla guidance adds the conditions c to each timestep t as a new condition.

While vanilla guidance benefits from its simplicity, its effectiveness is undermined

by the lack of adjustable conditional strength [101]. Empirical evidence [85] shows

that a conditional diffusion model trained with vanilla guidance may not conform to

the conditions or underperform in conditional generation.

5.1.2. Classifier Guidance

For effective and adjustable strength of conditions, classifier guidance [20] adopts

an extra classifier. The gradient of the classifier is scaled by the weight and then is

used to modify the unconditional denoising direction, as shown in Fig. 12. In other

words, the weight controls how much to rely on the classifier. To obtain the gradient as

accurately as possible, the classifier is usually pre-trained on data with conditions. In

particular, classifier guidance is formulated as:

∇x log p(x|c) = ∇x log p(x) + w∇x log p(c|x), (24)

where ∇x log p(x|c) and ∇x log p(x) are conditional and unconditional scores, respec-

tively, ∇x log p(c|x) is the gradient of a classifier, and w is the weight. When w = 0, this

mechanism becomes unconditional. As the weight increases, the denoising network is

more and more constrained to produce samples that satisfy conditions.

Additionally learning a classifier may lead to extra cost and training instability. The

extra expense is further scaled up because the classifier is trained on data with every

scheduled noise level [101]. Moreover, training the classifier on data with noise tends

to be unstable. The data structure is almost destroyed because more and larger noise is

added according to the noise schedule. Therefore, the quality of the classifier gradient

may not be consistent [102]. Sometimes its direction is arbitrary or even opposite

24

Figure 12: Classifier guidance leverages an extra classifier network ξ∗ to compute a gradient ∇ as the modi-
fication on the denoising network θ∗. The timestep condition t is omitted here for visualization.

[103] and leads to less effective or wrong guidance. Some imitate the form of classifier

guidance but solve the gradient analytically [104] for the inverse problem to bypass the

disadvantages of classifiers.

5.1.3. Classifier-Free Guidance

To avoid the extra classifier, classifier-free guidance [101] replaces the classifier

with a mixture of unconditional and condition models. It further enhances the sampling

process to follow the direction of guidance by discouraging it away from unconditional

direction [105]. As shown in Fig. 13, instead of just training a conditional model, an

unconditional one is also trained simultaneously by dropping out conditions c with a

probability p. In particular, classifier-free guidance is formulated as:

∇x log p(x|c) = w∇x log p(x|c) + (1 − w)∇x log p(x), (25)

where w is the weight of conditions.

Figure 13: Classifier-free guidance is based on a mixture of vanilla guidance and unconditional model θ∗. A
probability p controls whether to drop out the conditions during training.

The weight is slightly different from its counterpart in classifier guidance. When

w = 0, the classifier-free guidance becomes unconditional models without vanilla guid-

25

ance. The vanilla guidance is a special case when w = 1. In this case, the unconditional

model is suppressed and conditions are incorporated through vanilla guidance [106].

If w > 1, the classifier-free guidance restrains the unconditional model and prioritizes

conditions further by larger weights. The score from classifier-free guidance deviates

quickly away from the unconditional score, and thus, samples that better satisfy the

conditions will be generated [107].

5.1.4. Learned Modifications

Learning modifications provides greater flexibility for controllable generation by

preserving a generative prior. ControlNet [108] is a pioneering method to fine-tune an

extra copied model. This idea for conditional generation has been popular, evidenced

by various adapters. SUPIR [109] trains a trimmed ControlNet for image restoration.

Uni-ControlNet [110] further proposes all-in-one control. StableSR [111] learns a

time-aware encoder to assist super-resolution generation that is conditioned on low-

resolution images. T2I-Adapter [112] equips the pre-trained model with several low-

complexity adapters. LoRAdapter [113] takes inspiration from LowRank-Adaptations

(LoRA) [114] to further reduce the parameters to be learned.

Figure 14: Applying an extra network ϑ to directly learn the required modification for guidance. Timestep
condition is omitted here.

5.2. Acceleration Designs

Reducing the number of timesteps for generation is the main goal of acceleration.

Generally, the denoising network needs to wait for the results from the timestep t+1 to

accomplish the transition at the current timestep t. The inference speed is significantly

slowed down especially when a large number of timesteps are required in the sampling

process [62]. Truncation directly cuts the sampling process at a certain timestep but

26

may suffer from distribution deviation. Knowledge distillation is adopted to learn an

auxiliary module that enables fewer timesteps in its sampling process but may require

careful fine-tuning. Timestep selection skips some timesteps and selects a subset of

timesteps for fast generation but may suffer from inherent approximation errors.

5.2.1. Truncation

Truncation involves a partial sampling process with an extra network. It usually se-

lects an intermediate timestep t′, and obtains a sample from the corresponding distribu-

tion p(xt′) for the generation, as shown in Fig. 15. In other words, the process truncates

the whole chain at t′, and thereby fewer timesteps remain in the partial chain. An extra

network needs to be additionally trained to model p(t′) that may not be tractable [19].

Overall, truncation is theoretically effective in acceleration [115], which is proved by

the stochastic contraction theory.

Figure 15: The sampling process is truncated and starts from a selected timestep. The grey, dashed parts
represent discarding for generations.

Truncation effects can be two-sided. On the one hand, truncation comes with ac-

celeration for not only inference but also training. Truncation also strikes a balance

between acceleration and quality as the selection of such a point depends on the data

complexity [53] and the degree of corruption [115]. Besides, truncation takes advan-

tage of the properties of the involved extra network, which is often another generative

model [116]. On the other hand, truncation may lead to an increased training expense

[116] because the extra network needs to learn p(t′) as accurately as possible.

5.2.2. Knowledge Distillation

The technique can also be applied to learn a new sampling process with fewer

timesteps. Knowledge distillation is a network compression technique. In terms of

diffusion models, it involves the original sampling process as the teacher model and a

new one with fewer timesteps as the student model [117]. Fig. 16 shows an example

27

method of progressive distillation in the sampling process.

Figure 16: Knowledge distillation learns student denoising networks δ and η with fewer timesteps, based on
the teacher denoising network θ∗.

Knowledge distillation is usually applied to merge several timesteps into fewer

timesteps for the new sampling process such as progressive distillation, guidance dis-

tillation, and consistency models. [118] directly distills all timesteps into a single one

with expensive computation since a large dataset of samples from the teacher model

is needed [119]. One mitigation is progressively reducing timesteps [88]. Guidance

distillation [120] is a plug-and-play acceleration approach with classifier guidance but

the memory usage is high. Another family is consistency models where the sampling

trajectory of diffusion models are straightened for consistency [121] to accelerate the

sampling process. Straightening is achieved via two approaches. Consistency training

approach learns a consistency model from scratch, as if it distilled all timesteps into a

single timestep to achieve consistency. In contrast, consistency distillation accelerates

existing models to become consistency models for single or fewer timesteps.

5.2.3. Timestep Selection

Timestep selection seeks to develop strategies to select only a subset of timesteps

without undermining quality. Some timesteps in a sampling process influence quality

less and thus they can be skipped safely [122]. Fig. 17 shows a shorter sampling

process with selected timesteps. Some may not directly reduce the number of timesteps

but select a subset of timesteps for parallel computation [123].

Some acceleration methods essentially solve stochastic or ordinary differential equa-

tions. DDIM [92] has been widely applied for its simplicity in using non-Markovian

28

Figure 17: Selection strategies for the sampling process skip the selected time steps for generation.

reverse processes, and PNDM [124] further builds close connections with pseudo-

numerical methods for acceleration. Another commonly used method is DPM-Solver

[125] and its improved version DPM-Solver++ [126]. They are high-order solvers for

ODEs with a convergence order guarantee. Empirically, 20 timesteps are used to gen-

erate high-quality results. Euler samplers are also widely used [2] to generate with 20

to 30 timesteps. The selection of timesteps can also be learned by extra networks [127]

or rely on dynamic programming algorithms [128].

6. Future Trends

We provide a summary in Table 5 to connect the components in this survey with

popular open-source diffusion models.

Models Forward Reverse Sampling

DiT [67]
Schedule: Linear Architecture: Transformer Guidance: Vanilla/CFGType: Gaussian Parametrization: Noise

Space: Latent Weight: Pre-defined Acceleration: Solvers

SD1 [55]
Schedule: Scaled Linear Architecture: U-Net Guidance: Vanilla/CFGType: Gaussian Parametrization: Noise

Space: Latent Weight: Pre-Defined Acceleration: Solvers

SD2 [129]
Schedule: Scaled Linear Architecture: U-Net Guidance: Vanilla/CFGType: Gaussian Parametrization: Hybrid (v)

Space: Latent Weight: Pre-Defined Acceleration: Solvers

SD3 [43]
Schedule: Rectified Flow Architecture: Transformer Guidance: Vanilla/CFGType: Gaussian Parametrization: Score (flow)

Space: Latent Weight: Pre-Defined Acceleration: Solvers

SVD [130]
Schedule: Linear Architecture: U-Net Guidance: Vanilla/CFGType: Gaussian Parametrization: Hybrid (v)

Space: Latent Weight: Pre-Defined Acceleration: Solvers

OpenSora1.2 [131]
Schedule: Rectified Flow Architecture: Transformer Guidance: CFGType: Gaussian Parametrization: Score (flow)

Space: Latent Weight: Pre-Defined Acceleration: Solvers

FLUX [132]
Schedule: Rectified Flow Architecture: Transformer Guidance: Vanilla/LoRA/CFGType: Gaussian Parametrization: Score (flow)

Spcae: Latent Weight: Pre-Defined Acceleration: Distillation

Table 5: Popular diffusion models with their designs. Guidance can vary across tasks because of the versa-
tility and adaptability of diffusion models.

29

6.1. Generalization Capability

Understanding the reasons why diffusion models generalize well remains an open

problem. Recent advances have attributed the generalization to a few designs such as

the Gaussian structure [133] and geometry-adaptive harmonic representations [134],

while the comprehensive underlying mechanism remains unclear. Further investigation

can explore other designs such as parameterizations. This may need to further consider

the interplay effects of other designs with extensive analysis and experiments since

designs are often deeply correlated.

6.2. Denoising-Oriented Architecture

The network architectures of diffusion models present significant research oppor-

tunities. Section 4.1 showcases success through integration with other areas. Nonethe-

less, a lack of specialized denoising architectures may result in suboptimal denoising

performance. Future trends may borrow network architectures from related fields like

image restoration [135], which also aim to recover unperturbed data from noisy inputs.

Adaptation to the wide variety of degradations may require additional modifications to

the forward and reverse processes. Additionally, timestep-adaptive architectures may

also be considered to better leverage the inherent denoising priority [60] in diffusion

processes. However, adopting timestep-adaptive architectures increases the computa-

tional and architectural complexity, requiring additional efforts to balance the tradeoffs.

6.3. Responsible Applications

Diffusion models have become popular in sciences, such as physics [136] and

medicine [137], etc. Nonetheless, concerns remain on whether they are reliable to

capture the underlying causal relations of a domain as diffusion models tend to rely on

statistical associations on the training dataset [138]. One possible direction may inte-

grate causality-aware guidance mechanisms to condition diffusion models on directed

causal graphs. While promising, handling unobserved confounding relationships usu-

ally requires extensive assumption tests to achieve higher reliability [139].

Diffusion models such as Stable Diffusion [43] have been significantly employed

in the creative industry. Nonetheless, concerns about originality in creative works have

30

been raised [140] and generated content may infringe copyrights. One potential di-

rection adopts concept forgetting [141] or adjusts the sample process with likelihood-

aware guidance [142] to reduce the similarity. The quantification of originality remains

an open problem for creative industries [143], and establishing industry standards to

generate content ethically requires broad industry cooperation.

6.4. Societal Impacts

Diffusion models showcase biases, and critically, the definition of biases evolves

over time and varies across cultures. Current solutions do not consider this evolution

and variation. Combining fairness-aware algorithms [144] with incremental learning

[145] may facilitate “incremental fairness”. The main difficulty lies in the interde-

pendent and multifaceted nature of biases where additional data may give rise to new

biases in existing data and addressing one type of bias without considering others can

result in incomplete or skewed mitigation efforts.

Diffusion models democratize personalization and boost productivity by enabling

non-professional users to automatically generate highly customizable content. This

accessibility may reshape the job market and further impact educational systems. Con-

sequently, governments and individuals may require additional expenses for employee

retraining and educational reforms [9]. Addressing this requires interdisciplinary col-

laboration among computer science, politics, and economics to promote democratiza-

tion and productivity while reducing potential social risks [146].

7. Conclusion

Diffusion models involve three main components: a forward process and a reverse

process for optimization, and a sampling process for generation. The forward pro-

cess focuses on perturbing data with different noise schedules, noise types, terminal

distributions and representations. The reverse process focuses on training a denoising

network to remove noise with different architectures, parameterizations, and weights.

The sampling process works for generation and mainly focuses on guidance and accel-

eration. These designs have all contributed to the current powerful diffusion models.

Several future trends have been introduced to boost this field.

31

References

[1] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, S. Ganguli, Deep unsupervised learn-
ing using nonequilibrium thermodynamics, in: International Conference on Machine
Learning, PMLR, 2015, pp. 2256–2265.

[2] T. Karras, M. Aittala, T. Aila, S. Laine, Elucidating the design space of diffusion-
based generative models, Advances in Neural Information Processing Systems 35 (2022)
26565–26577.

[3] Y. Zhu, Y. Zhao, Diffusion models in nlp: A survey, arXiv preprint arXiv:2303.07576
(2023).

[4] J. Wang, H. Zhang, Y. Yuan, Adv-cpg: A customized portrait generation framework with
facial adversarial attacks, arXiv preprint arXiv:2503.08269 (2025).

[5] A. Kazerouni, E. K. Aghdam, M. Heidari, R. Azad, M. Fayyaz, I. Hacihaliloglu, D. Mer-
hof, Diffusion models in medical imaging: A comprehensive survey, Medical Image Anal-
ysis (2023) 102846.

[6] M. Zhang, M. Qamar, T. Kang, Y. Jung, C. Zhang, S.-H. Bae, C. Zhang, A survey on
graph diffusion models: Generative ai in science for molecule, protein and material, arXiv
preprint arXiv:2304.01565 (2023).

[7] L. Lin, Z. Li, R. Li, X. Li, J. Gao, Diffusion models for time-series applications: a survey,
Frontiers of Information Technology & Electronic Engineering (2023) 1–23.

[8] D. Jiangzhou, W. Songli, Y. Jianmei, J. Lianghao, W. Yong, Dgrm: Diffusion-gan recom-
mendation model to alleviate the mode collapse problem in sparse environments, Pattern
Recognition (2024) 110692.

[9] X. Zhang, X.-Y. Wei, W. Zhang, J. Wu, Z. Zhang, Z. Lei, Q. Li, A survey on personalized
content synthesis with diffusion models, arXiv preprint arXiv:2405.05538 (2024).

[10] W. Wang, Y. Sun, Z. Yang, Z. Hu, Z. Tan, Y. Yang, Replication in visual diffusion models:
A survey and outlook, arXiv preprint arXiv:2408.00001 (2024).

[11] G. Kim, W. Jang, G. Lee, S. Hong, J. Seo, S. Kim, Depth-aware guidance with self-
estimated depth representations of diffusion models, Pattern Recognition 153 (2024)
110474.

[12] T. Wang, K. Zhang, Y. Zhang, W. Luo, B. Stenger, T. Lu, T.-K. Kim, W. Liu, Lldiffusion:
Learning degradation representations in diffusion models for low-light image enhance-
ment, Pattern Recognition (2025) 111628.

[13] Y. Li, K. Zhou, W. X. Zhao, J.-R. Wen, Diffusion models for non-autoregressive text
generation: a survey, in: Proceedings of the Thirty-Second International Joint Conference
on Artificial Intelligence, 2023, pp. 6692–6701.

[14] Z. Xing, Q. Feng, H. Chen, Q. Dai, H. Hu, H. Xu, Z. Wu, Y.-G. Jiang, A survey on video
diffusion models, arXiv preprint arXiv:2310.10647 (2023).

[15] C. Zhang, C. Zhang, S. Zheng, M. Zhang, M. Qamar, S.-H. Bae, I. S. Kweon, A survey on
audio diffusion models: Text to speech synthesis and enhancement in generative ai, arXiv
preprint arXiv:2303.13336 2 (2023).

[16] H. Cao, C. Tan, Z. Gao, Y. Xu, G. Chen, P.-A. Heng, S. Z. Li, A survey on generative
diffusion models, IEEE Transactions on Knowledge and Data Engineering (2024).

32

[17] L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, M.-H. Yang, Dif-
fusion models: A comprehensive survey of methods and applications, ACM Computing
Surveys 56 (4) (2023) 1–39.

[18] M. Chen, S. Mei, J. Fan, M. Wang, An overview of diffusion models: Applications, guided
generation, statistical rates and optimization, arXiv preprint arXiv:2404.07771 (2024).

[19] J. Ho, A. Jain, P. Abbeel, Denoising diffusion probabilistic models, Advances in Neural
Information Processing Systems 33 (2020) 6840–6851.

[20] P. Dhariwal, A. Nichol, Diffusion models beat gans on image synthesis, Advances in
Neural Information Processing Systems 34 (2021) 8780–8794.

[21] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, B. Poole, Score-based
generative modeling through stochastic differential equations, in: International Confer-
ence on Learning Representations, 2021.

[22] Y. Lipman, R. T. Q. Chen, H. Ben-Hamu, M. Nickel, M. Le, Flow matching for generative
modeling, in: The Eleventh International Conference on Learning Representations, 2023.

[23] M. S. Albergo, E. Vanden-Eijnden, Building normalizing flows with stochastic inter-
polants, in: The Eleventh International Conference on Learning Representations, 2023.

[24] M. S. Albergo, N. M. Boffi, E. Vanden-Eijnden, Stochastic interpolants: A unifying
framework for flows and diffusions, arXiv preprint arXiv:2303.08797 (2023).

[25] X. Liu, C. Gong, qiang liu, Flow straight and fast: Learning to generate and transfer data
with rectified flow, in: The Eleventh International Conference on Learning Representa-
tions, 2023.

[26] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, S. Hochreiter, Gans trained by a two
time-scale update rule converge to a local nash equilibrium, Advances in neural informa-
tion processing systems 30 (2017).

[27] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gon-
tijo Lopes, B. Karagol Ayan, T. Salimans, et al., Photorealistic text-to-image diffusion
models with deep language understanding, Advances in neural information processing
systems 35 (2022) 36479–36494.

[28] G. Tevet, S. Raab, B. Gordon, Y. Shafir, D. Cohen-or, A. H. Bermano, Human motion
diffusion model, in: The Eleventh International Conference on Learning Representations,
2023.

[29] G. Stein, J. Cresswell, R. Hosseinzadeh, Y. Sui, B. Ross, V. Villecroze, Z. Liu, A. L.
Caterini, E. Taylor, G. Loaiza-Ganem, Exposing flaws of generative model evaluation
metrics and their unfair treatment of diffusion models, Advances in Neural Information
Processing Systems 36 (2024).

[30] X. Wu, K. Sun, F. Zhu, R. Zhao, H. Li, Human preference score: Better aligning text-
to-image models with human preference, in: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2023, pp. 2096–2105.

[31] X. Wu, Y. Hao, K. Sun, Y. Chen, F. Zhu, R. Zhao, H. Li, Human preference score v2:
A solid benchmark for evaluating human preferences of text-to-image synthesis, arXiv
preprint arXiv:2306.09341 (2023).

[32] J. Xu, X. Liu, Y. Wu, Y. Tong, Q. Li, M. Ding, J. Tang, Y. Dong, Imagereward: Learn-
ing and evaluating human preferences for text-to-image generation, Advances in Neural
Information Processing Systems 36 (2023) 15903–15935.

33

[33] X. Li, Positive-incentive noise, IEEE Transactions on Neural Networks and Learning Sys-
tems (2022).

[34] H. Zhang, Y. Xu, S. Huang, X. Li, Data augmentation of contrastive learning is estimating
positive-incentive noise, arXiv preprint arXiv:2408.09929 (2024).

[35] H. Zhang, S. Huang, X. Li, Variational positive-incentive noise: How noise benefits mod-
els, arXiv preprint arXiv:2306.07651 (2023).

[36] T. Hang, S. Gu, Improved noise schedule for diffusion training, arXiv preprint
arXiv:2407.03297 (2024).

[37] T. Chen, On the importance of noise scheduling for diffusion models, arXiv preprint
arXiv:2301.10972 (2023).

[38] A. Q. Nichol, P. Dhariwal, Improved denoising diffusion probabilistic models, in: Inter-
national Conference on Machine Learning, PMLR, 2021, pp. 8162–8171.

[39] Y. Song, S. Ermon, Generative modeling by estimating gradients of the data distribution,
Advances in Neural Information Processing Systems 32 (2019).

[40] A. Jabri, D. J. Fleet, T. Chen, Scalable adaptive computation for iterative generation, in:
International Conference on Machine Learning, PMLR, 2023, pp. 14569–14589.

[41] S. S. Sahoo, A. Gokaslan, C. D. Sa, V. Kuleshov, Diffusion models with learned adap-
tive noise, in: The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

[42] N. Ma, M. Goldstein, M. S. Albergo, N. M. Boffi, E. Vanden-Eijnden, S. Xie, Sit: Explor-
ing flow and diffusion-based generative models with scalable interpolant transformers, in:
European Conference on Computer Vision, Springer, 2024, pp. 23–40.

[43] P. Esser, S. Kulal, A. Blattmann, R. Entezari, J. Müller, H. Saini, Y. Levi, D. Lorenz,
A. Sauer, F. Boesel, et al., Scaling rectified flow transformers for high-resolution image
synthesis, in: Forty-first International Conference on Machine Learning, 2024.

[44] E. Nachmani, R. S. Roman, L. Wolf, Denoising diffusion gamma models, arXiv preprint
arXiv:2110.05948 (2021).

[45] E. Nachmani, R. S. Roman, L. Wolf, Non gaussian denoising diffusion models, arXiv
preprint arXiv:2106.07582 (2021).

[46] A. Bansal, E. Borgnia, H.-M. Chu, J. Li, H. Kazemi, F. Huang, M. Goldblum, J. Geip-
ing, T. Goldstein, Cold diffusion: Inverting arbitrary image transforms without noise,
Advances in Neural Information Processing Systems 36 (2024).

[47] G. Daras, M. Delbracio, H. Talebi, A. Dimakis, P. Milanfar, Soft diffusion: Score match-
ing with general corruptions, Transactions on Machine Learning Research (2023).

[48] V. Voleti, C. Pal, A. M. Oberman, Score-based denoising diffusion with non-isotropic
gaussian noise models, in: NeurIPS 2022 Workshop on Score-Based Methods, 2022.

[49] S. Ge, S. Nah, G. Liu, T. Poon, A. Tao, B. Catanzaro, D. Jacobs, J.-B. Huang, M.-Y. Liu,
Y. Balaji, Preserve your own correlation: A noise prior for video diffusion models, in:
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp.
22930–22941.

[50] S. Rissanen, M. Heinonen, A. Solin, Generative modelling with inverse heat dissipation,
in: International Conference on Learning Representations, 2023.

34

[51] S. Lin, B. Liu, J. Li, X. Yang, Common diffusion noise schedules and sample steps are
flawed, in: Proceedings of the IEEE/CVF winter conference on applications of computer
vision, 2024, pp. 5404–5411.

[52] S. gil Lee, H. Kim, C. Shin, X. Tan, C. Liu, Q. Meng, T. Qin, W. Chen, S. Yoon, T.-Y.
Liu, Priorgrad: Improving conditional denoising diffusion models with data-dependent
adaptive prior, in: International Conference on Learning Representations, 2022.

[53] H. Zheng, P. He, W. Chen, M. Zhou, Truncated diffusion probabilistic models and
diffusion-based adversarial auto-encoders, in: The Eleventh International Conference on
Learning Representations, 2023.

[54] M. Hu, J. Zheng, C. Zheng, C. Wang, D. Tao, T.-J. Cham, One more step: A versatile plug-
and-play module for rectifying diffusion schedule flaws and enhancing low-frequency
controls, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024, pp. 7331–7340.

[55] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer, High-resolution image syn-
thesis with latent diffusion models, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 10684–10695.

[56] K. Pandey, A. Mukherjee, P. Rai, A. Kumar, Diffusevae: Efficient, controllable and high-
fidelity generation from low-dimensional latents, Transactions on Machine Learning Re-
search (2022).

[57] H.-Y. Choi, S.-H. Lee, S.-W. Lee, Dddm-vc: Decoupled denoising diffusion models with
disentangled representation and prior mixup for verified robust voice conversion, in: Pro-
ceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, 2024, pp. 17862–
17870.

[58] T. Dockhorn, A. Vahdat, K. Kreis, Score-based generative modeling with critically-
damped langevin diffusion, in: International Conference on Learning Representations,
2022.

[59] T. Chen, J. Gu, L. Dinh, E. Theodorou, J. M. Susskind, S. Zhai, Generative modeling with
phase stochastic bridge, in: The Twelfth International Conference on Learning Represen-
tations, 2024.

[60] Y. Lee, J. Kim, H. Go, M. Jeong, S. Oh, S. Choi, Multi-architecture multi-expert diffusion
models, in: Thirty-Eighth Association of Advancement Artificial Intelligence, Vol. 38,
2024, pp. 13427–13436.

[61] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio, Generative adversarial networks, Communications of the ACM
63 (11) (2020) 139–144.

[62] Z. Xiao, K. Kreis, A. Vahdat, Tackling the generative learning trilemma with denoising
diffusion GANs, in: International Conference on Learning Representations, 2022.

[63] N. Tishby, N. Zaslavsky, Deep learning and the information bottleneck principle, in: 2015
ieee information theory workshop (itw), IEEE, 2015, pp. 1–5.

[64] T. Karras, M. Aittala, J. Lehtinen, J. Hellsten, T. Aila, S. Laine, Analyzing and improving
the training dynamics of diffusion models, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2024, pp. 24174–24184.

[65] C.-F. R. Chen, Q. Fan, R. Panda, Crossvit: Cross-attention multi-scale vision transformer
for image classification, in: Proceedings of the IEEE/CVF international conference on
computer vision, 2021, pp. 357–366.

35

[66] J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, T. Salimans, Cascaded diffusion
models for high fidelity image generation, J. Mach. Learn. Res. 23 (2022) 47–1.

[67] W. Peebles, S. Xie, Scalable diffusion models with transformers, in: Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2023, pp. 4195–4205.

[68] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
I. Polosukhin, Attention is all you need, Advances in neural information processing sys-
tems 30 (2017).

[69] H. Lu, G. Yang, N. Fei, Y. Huo, Z. Lu, P. Luo, M. Ding, Vdt: General-purpose video
diffusion transformers via mask modeling, arXiv preprint arXiv:2305.13311 (2023).

[70] M. Reuss, Ö. E. Yağmurlu, F. Wenzel, R. Lioutikov, Multimodal diffusion transformer:
Learning versatile behavior from multimodal goals, in: First Workshop on Vision-
Language Models for Navigation and Manipulation at ICRA 2024, 2024.

[71] F. Bao, S. Nie, K. Xue, Y. Cao, C. Li, H. Su, J. Zhu, All are worth words: A vit backbone
for diffusion models, in: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2023, pp. 22669–22679.

[72] H. Zheng, W. Nie, A. Vahdat, A. Anandkumar, Fast training of diffusion models with
masked transformers, Transactions on Machine Learning Research (2024).

[73] S. Gao, P. Zhou, M.-M. Cheng, S. Yan, Masked diffusion transformer is a strong im-
age synthesizer, in: Proceedings of the IEEE/CVF international conference on computer
vision, 2023, pp. 23164–23173.

[74] Z. Lu, Z. Wang, D. Huang, C. Wu, X. Liu, W. Ouyang, L. BAI, Fit: Flexible vision trans-
former for diffusion model, in: Forty-first International Conference on Machine Learning,
2024.

[75] Z. Wang, Z. Lu, D. Huang, C. Zhou, W. Ouyang, et al., Fitv2: Scalable and improved
flexible vision transformer for diffusion model, arXiv preprint arXiv:2410.13925 (2024).

[76] E. Xie, J. Chen, J. Chen, H. Cai, H. Tang, Y. Lin, Z. Zhang, M. Li, L. Zhu, Y. Lu, et al.,
Sana: Efficient high-resolution image synthesis with linear diffusion transformers, arXiv
preprint arXiv:2410.10629 (2024).

[77] M. Xu, L. Yu, Y. Song, C. Shi, S. Ermon, J. Tang, Geodiff: A geometric diffusion model
for molecular conformation generation, in: International Conference on Learning Repre-
sentations, 2022.

[78] E. Hoogeboom, V. G. Satorras, C. Vignac, M. Welling, Equivariant diffusion for molecule
generation in 3d, in: International Conference on Machine Learning, PMLR, 2022, pp.
8867–8887.

[79] F. Bao, M. Zhao, Z. Hao, P. Li, C. Li, J. Zhu, Equivariant energy-guided sde for inverse
molecular design, in: The eleventh international conference on learning representations,
2022.

[80] J. Jo, S. Lee, S. J. Hwang, Score-based generative modeling of graphs via the system
of stochastic differential equations, in: International conference on machine learning,
PMLR, 2022, pp. 10362–10383.

[81] T. Luo, Z. Mo, S. J. Pan, Fast graph generation via spectral diffusion, IEEE Transactions
on Pattern Analysis and Machine Intelligence (2023).

36

[82] L. Yang, Z. Zhang, W. Zhang, S. Hong, Score-based graph generative modeling with
self-guided latent diffusion (2023).

[83] D. Kingma, T. Salimans, B. Poole, J. Ho, Variational diffusion models, Advances in neural
information processing systems 34 (2021) 21696–21707.

[84] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, M. Chen, Hierarchical text-conditional image
generation with clip latents, arXiv preprint arXiv:2204.06125 (2022).

[85] C. Luo, Understanding diffusion models: A unified perspective, arXiv preprint
arXiv:2208.11970 (2022).

[86] Y. Benny, L. Wolf, Dynamic dual-output diffusion models, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11482–
11491.

[87] J. Ho, W. Chan, C. Saharia, J. Whang, R. Gao, A. Gritsenko, D. P. Kingma, B. Poole,
M. Norouzi, D. J. Fleet, et al., Imagen video: High definition video generation with diffu-
sion models, arXiv preprint arXiv:2210.02303 (2022).

[88] T. Salimans, J. Ho, Progressive distillation for fast sampling of diffusion models, in: In-
ternational Conference on Learning Representations, 2022.

[89] S. Lin, B. Liu, J. Li, X. Yang, Common diffusion noise schedules and sample steps are
flawed, in: Proceedings of the IEEE/CVF winter conference on applications of computer
vision, 2024, pp. 5404–5411.

[90] K. Zheng, C. Lu, J. Chen, J. Zhu, Improved techniques for maximum likelihood estima-
tion for diffusion odes, in: International Conference on Machine Learning, PMLR, 2023,
pp. 42363–42389.

[91] F. Bao, C. Li, J. Zhu, B. Zhang, Analytic-DPM: an analytic estimate of the optimal re-
verse variance in diffusion probabilistic models, in: International Conference on Learning
Representations, 2022.

[92] J. Song, C. Meng, S. Ermon, Denoising diffusion implicit models, in: International Con-
ference on Learning Representations, 2021.

[93] F. Bao, C. Li, J. Sun, J. Zhu, B. Zhang, Estimating the optimal covariance with imperfect
mean in diffusion probabilistic models, in: International Conference on Machine Learn-
ing, PMLR, 2022, pp. 1555–1584.

[94] J. Choi, J. Lee, C. Shin, S. Kim, H. Kim, S. Yoon, Perception prioritized training of
diffusion models, in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 11472–11481.

[95] Y. Song, C. Durkan, I. Murray, S. Ermon, Maximum likelihood training of score-based
diffusion models, Advances in Neural Information Processing Systems 34 (2021) 1415–
1428.

[96] S. Chen, S. Chewi, J. Li, Y. Li, A. Salim, A. Zhang, Sampling is as easy as learning
the score: theory for diffusion models with minimal data assumptions, in: The Eleventh
International Conference on Learning Representations, 2023.

[97] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, I. Mitliagkas, Gotta go fast
when generating data with score-based models, arXiv preprint arXiv:2105.14080 (2021).

37

[98] Z. Chang, E. J. C. Findlay, H. Zhang, H. P. H. Shum, Unifying human motion synthesis
and style transfer with denoising diffusion probabilistic models, in: Proceedings of the
2023 International Conference on Computer Graphics Theory and Applications, GRAPP
’23, SciTePress, 2023, pp. 64–74.

[99] H. Chefer, Y. Alaluf, Y. Vinker, L. Wolf, D. Cohen-Or, Attend-and-excite: Attention-
based semantic guidance for text-to-image diffusion models, ACM Transactions on
Graphics (TOG) 42 (4) (2023) 1–10.

[100] S. Hong, G. Lee, W. Jang, S. Kim, Improving sample quality of diffusion models using
self-attention guidance, in: Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2023, pp. 7462–7471.

[101] J. Ho, T. Salimans, Classifier-free diffusion guidance, in: NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applications, 2021.

[102] B. Wallace, A. Gokul, S. Ermon, N. Naik, End-to-end diffusion latent optimization im-
proves classifier guidance, in: Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2023, pp. 7280–7290.

[103] S. Srinivas, F. Fleuret, Rethinking the role of gradient-based attribution methods for model
interpretability, in: International Conference on Learning Representations, 2021.

[104] L. Yang, S. Ding, Y. Cai, J. Yu, J. Wang, Y. Shi, Guidance with spherical gaussian
constraint for conditional diffusion, in: Forty-first International Conference on Machine
Learning, 2024.

[105] J. Zhao, H. Zheng, C. Wang, L. Lan, W. Huang, W. Yang, Null-text guidance in diffusion
models is secretly a cartoon-style creator, in: Proceedings of the 31st ACM International
Conference on Multimedia, 2023, pp. 5143–5152.

[106] T. Pang, C. Lu, C. Du, M. Lin, S. Yan, Z. Deng, On calibrating diffusion probabilistic
models, Advances in Neural Information Processing Systems 36 (2024).

[107] T. Pearce, T. Rashid, A. Kanervisto, D. Bignell, M. Sun, R. Georgescu, S. V. Macua,
S. Z. Tan, I. Momennejad, K. Hofmann, et al., Imitating human behaviour with diffusion
models, in: Deep Reinforcement Learning Workshop NeurIPS 2022.

[108] L. Zhang, A. Rao, M. Agrawala, Adding conditional control to text-to-image diffusion
models, in: Proceedings of the IEEE/CVF International Conference on Computer Vision,
2023, pp. 3836–3847.

[109] F. Yu, J. Gu, Z. Li, J. Hu, X. Kong, X. Wang, J. He, Y. Qiao, C. Dong, Scaling up to
excellence: Practicing model scaling for photo-realistic image restoration in the wild, in:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2024, pp. 25669–25680.

[110] S. Zhao, D. Chen, Y.-C. Chen, J. Bao, S. Hao, L. Yuan, K.-Y. K. Wong, Uni-controlnet:
All-in-one control to text-to-image diffusion models, Advances in Neural Information
Processing Systems 36 (2024).

[111] J. Wang, Z. Yue, S. Zhou, K. C. Chan, C. C. Loy, Exploiting diffusion prior for real-world
image super-resolution, International Journal of Computer Vision (2024) 1–21.

[112] C. Mou, X. Wang, L. Xie, Y. Wu, J. Zhang, Z. Qi, Y. Shan, T2i-adapter: Learning adapters
to dig out more controllable ability for text-to-image diffusion models, in: Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 38, 2024, pp. 4296–4304.

38

[113] N. Stracke, S. A. Baumann, J. Susskind, M. A. Bautista, B. Ommer, Ctrloralter: Condi-
tional loradapter for efficient 0-shot control & altering of t2i models (2024).

[114] E. J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, LoRA:
Low-rank adaptation of large language models, in: International Conference on Learning
Representations, 2022.

[115] H. Chung, B. Sim, J. C. Ye, Come-closer-diffuse-faster: Accelerating conditional diffu-
sion models for inverse problems through stochastic contraction, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 12413–
12422.

[116] Z. Lyu, X. Xu, C. Yang, D. Lin, B. Dai, Accelerating diffusion models via early stop of
the diffusion process, arXiv preprint arXiv:2205.12524 (2022).

[117] T. Huang, Y. Zhang, M. Zheng, S. You, F. Wang, C. Qian, C. Xu, Knowledge diffusion
for distillation, Advances in Neural Information Processing Systems 36 (2024).

[118] E. Luhman, T. Luhman, Knowledge distillation in iterative generative models for im-
proved sampling speed, arXiv preprint arXiv:2101.02388 (2021).

[119] C. Meng, R. Rombach, R. Gao, D. Kingma, S. Ermon, J. Ho, T. Salimans, On distillation
of guided diffusion models, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 14297–14306.

[120] Y.-T. Hsiao, S. Khodadadeh, K. Duarte, W.-A. Lin, H. Qu, M. Kwon, R. Kalarot, Plug-
and-play diffusion distillation, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2024, pp. 13743–13752.

[121] Y. Song, P. Dhariwal, M. Chen, I. Sutskever, Consistency models, in: Proceedings of the
40th International Conference on Machine Learning, 2023, pp. 32211–32252.

[122] G. Fang, X. Ma, X. Wang, Structural pruning for diffusion models, in: Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

[123] A. Shih, S. Belkhale, S. Ermon, D. Sadigh, N. Anari, Parallel sampling of diffusion mod-
els, Advances in Neural Information Processing Systems 36 (2024).

[124] L. Liu, Y. Ren, Z. Lin, Z. Zhao, Pseudo numerical methods for diffusion models on man-
ifolds, in: International Conference on Learning Representations, 2022.

[125] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, J. Zhu, Dpm-solver: A fast ode solver for dif-
fusion probabilistic model sampling in around 10 steps, Advances in Neural Information
Processing Systems 35 (2022) 5775–5787.

[126] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, J. Zhu, Dpm-solver++: Fast solver for guided
sampling of diffusion probabilistic models, arXiv preprint arXiv:2211.01095 (2022).

[127] Z. Duan, C. Wang, C. Chen, J. Huang, W. Qian, Optimal linear subspace search: Learning
to construct fast and high-quality schedulers for diffusion models, in: Proceedings of the
32nd ACM International Conference on Information and Knowledge Management, 2023,
pp. 463–472.

[128] D. Watson, J. Ho, M. Norouzi, W. Chan, Learning to efficiently sample from diffusion
probabilistic models, arXiv preprint arXiv:2106.03802 (2021).

[129] S. AI, Stable diffusion 2 (November 2022).

39

[130] A. Blattmann, T. Dockhorn, S. Kulal, D. Mendelevitch, M. Kilian, D. Lorenz, Y. Levi,
Z. English, V. Voleti, A. Letts, et al., Stable video diffusion: Scaling latent video diffusion
models to large datasets, arXiv preprint arXiv:2311.15127 (2023).

[131] Z. Zheng, X. Peng, T. Yang, C. Shen, S. Li, H. Liu, Y. Zhou, T. Li, Y. You, Open-sora:
Democratizing efficient video production for all (March 2024).

[132] B. F. Labs, Flux (August 2024).

[133] X. Li, Y. Dai, Q. Qu, Understanding generalizability of diffusion models requires rethink-
ing the hidden gaussian structure, in: The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

[134] Z. Kadkhodaie, F. Guth, E. P. Simoncelli, S. Mallat, Generalization in diffusion models
arises from geometry-adaptive harmonic representations, in: The Twelfth International
Conference on Learning Representations, 2024.

[135] J. Jiang, Z. Zuo, G. Wu, K. Jiang, X. Liu, A survey on all-in-one image restoration:
Taxonomy, evaluation and future trends, arXiv preprint arXiv:2410.15067 (2024).

[136] A. Shmakov, K. Greif, M. Fenton, A. Ghosh, P. Baldi, D. Whiteson, End-to-end latent
variational diffusion models for inverse problems in high energy physics, Advances in
Neural Information Processing Systems 36 (2024).

[137] C. Gou, Y. Yu, Z. Guo, C. Xiong, M. Cai, Cascaded learning with transformer for simul-
taneous eye landmark, eye state and gaze estimation, Pattern Recognition (2024) 110760.

[138] L. Lorch, A. Krause, B. Schölkopf, Causal modeling with stationary diffusions, in: In-
ternational Conference on Artificial Intelligence and Statistics, PMLR, 2024, pp. 1927–
1935.

[139] P. Chao, P. Blöbaum, S. P. Kasiviswanathan, Interventional and counterfactual inference
with diffusion models, arXiv preprint arXiv:2302.00860 4 (2023) 16.

[140] X. Gu, C. Du, T. Pang, C. Li, M. Lin, Y. Wang, On memorization in diffusion models,
arXiv preprint arXiv:2310.02664 (2023).

[141] G. Zhang, K. Wang, X. Xu, Z. Wang, H. Shi, Forget-me-not: Learning to forget in text-
to-image diffusion models, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2024, pp. 1755–1764.

[142] C. Chen, D. Liu, C. Xu, Towards memorization-free diffusion models, in: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp.
8425–8434.

[143] K. Erickson, Intellectual property and creative industries policy in the uk, in: Research
Handbook on Intellectual Property and Creative Industries, Edward Elgar Publishing,
2018, pp. 79–84.

[144] Y. Choi, J. Park, H. Kim, J. Lee, S. Park, Fair sampling in diffusion models through
switching mechanism, in: Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 38, 2024, pp. 21995–22003.

[145] R. Gao, W. Liu, Ddgr: Continual learning with deep diffusion-based generative replay, in:
International Conference on Machine Learning, PMLR, 2023, pp. 10744–10763.

[146] Y. Wei, G. Tyson, Understanding the impact of ai-generated content on social media: The
pixiv case, in: Proceedings of the 32nd ACM International Conference on Multimedia,
2024, pp. 6813–6822.

40

	Introduction
	The Generic Pipeline
	Three Functional Components
	Discrete and Continuous Formulations
	The Discrete Formulation
	The Continuous Formulation

	Evaluation

	The Forward Process
	The Noise Schedule
	The Noise Type
	The Terminal Distribution
	Representation Space

	The Reverse Process
	Network Architectures
	Architecture Flexibility
	U-Net
	Transformer
	GNN

	Network Parameterizations
	Starting Data
	Score
	Noise
	Hybrid
	The Reverse Variance

	Weighted Optimization

	Sampling Process
	Guidance Mechanisms
	Vanilla Guidance
	Classifier Guidance
	Classifier-Free Guidance
	Learned Modifications

	Acceleration Designs
	Truncation
	Knowledge Distillation
	Timestep Selection

	Future Trends
	Generalization Capability
	Denoising-Oriented Architecture
	Responsible Applications
	Societal Impacts

	Conclusion

