A Motion Classification Approach to Fall Detection
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Abstract—The population of older people in the world has
grown rapidly in recent years. To alleviate the increasing burden
on health systems, automated health monitoring of older people
can be very economical for requesting urgent medical support
when a harmful accident has been detected. One of the accidents
that happens frequently to older people in a household environ-
ment is a fall, which can cause serious injuries if not handled
immediately. In this paper, we propose a motion classification
approach to fall detection, by integrating the techniques of
motion capture and machine learning. The motion of a person
is recorded with a set of inertial sensors, which provides a
comprehensive and structural description of body movements,
while being robust to variations in the working environment.
We build a database comprising motions of both falls and
normal activities. We experiment with several combinations of
joint selection, feature extraction, and classification algorithms,
showing that accurate fall detection can be achieved by our
motion classification approach.

Keywords—fall detection, motion capture, motion analysis,
motion classification, machine learning

I. INTRODUCTION

According to the 2017 Revision of World Population
Prospects [1], there are approximately 962 million older people
(aged 60 or above) in the world today, which makes up 13%
of the entire population. Moreover, the population of older
people is estimated to be growing at a rate of 3% per year,
and the trend of population aging is irreversible in almost
all parts of the world. One of the significant consequences
of population aging is the rising burden on health systems.
Aiming to alleviate this burden, automated in-home monitoring
of older people is an economical way to dispatch medical care
and support when a harmful accident has been detected.

In a home environment, one of the accidents that happens
frequently to older people is a fall [2], which can cause
serious injuries if the accident cannot be reported and handled
immediately. Due to complex layouts of furniture and home
appliances, a fall can happen to an old person in various
situations. A natural requirement for a fall detector would
be to reliably identify most kinds of real falls, while issuing
as few false alarms as possible during normal activities. The
challenge, however, is that in some situations, a normal activity
such as bending down to pick up an item on the floor may
be mistaken as a fall, since both activities resemble each
other in terms of movement speed. Conversely, a fall may be
misinterpreted as a normal activity such as sleeping on the
floor, due to the similarity in body postures.

The above difficulties arise from the intrinsic complexity

of human activity in a physical environment. As a result, the
difference between falls and normal activities in terms of body
posture may not be as prominent as the intra-variations of
either one. To accurately distinguish falls from diverse kinds of
normal activities, it is important to acquire the body movement
data of a person in a comprehensive way, so that subsequent
analysis can be applied to extract more informative features
for more accurate classification.

In this paper, we represent the motion of a human body
as a sequence of body postures, each of which is described
by a set of body joints with measured angles and positions
in the 3D space. These joints are organized as a hierarchy
to capture full body posture information as shown in Figure
1, while respecting the physical rigidity constraints induced
by human bone structure. A motion sensor is attached to each
joint to measure its angle and position. Compared to traditional
accelerometers mounted on parts of the body [3], [4], [5], these
sensors provide more comprehensive and structural informa-
tion about human activity. Meanwhile, they are more robust to
working environment than color and depth cameras [6], [7],
[81, [9], [10], as the latter are known to suffer from cluttered
backgrounds, self occlusions, and environment occlusions.

Using these sensors, we build a database comprising mo-
tions of both fall and normal activities. A male adult subject
is recruited to perform different types of motion including
falling, walking, grabbing, sleeping, sitting on a chair, and
sitting on the floor. After preprocessing the motion including
registration, segmentation, alignment, and scaling, we obtain
a database of 69 motion clips, each of which contains 380
frames of normalized body postures. With a frame rate of 60
frames per second, the duration of each motion clip is roughly
6.3 seconds. This database allows us to investigate a machine
learning approach to fall detection.

Due to the high dimension nature of motion data, it would
be impossible to hand-craft an ad-hoc method for separating
falls from normal activities. Therefore, we regard fall detection
as a motion classification task, which takes a motion clip as
input and predicts a fall/not-fall binary label as output. If a
trained classifier has high generalization performance, i.e., it
performs well on input motions outside the training dataset,
very accurate and reliable fall detection results can then be
expected. We consider two factors that have a significant
impact on generalization: one is the input features extracted
from the original motion data, and the other is the choice
of classification algorithms. We experiment with three joint
selection strategies, two feature extraction methods, and four
choices of kernels in the support vector machine (SVM) clas-



sifier, to demonstrate that very high fall detection performance
can be achieved by our motion classification approach using
the right combination.

The structure of this paper is as follows. Section II reviews
literature closely related to fall detection. Section III elaborates
on the construction of our fall motion database. Section IV
presents our motion classification approach to fall detection.
Section V shows the experimental results of fall detection.
Section VI concludes this paper and discusses future research
directions.

II. RELATED WORK

In this section, we briefly discuss fall detection approaches
in literature. Please refer to [11] for a recent survey of this field.
Based on the kind of sensor used to capture body movements,
existing fall detection approaches can be divided into the
following two main categories.

Approaches in the first category mainly use acceleration
sensors mounted on parts of the body of a person for fall
detection. Mathie et al. [3] identified a fall event when a
rapid increase of the negative acceleration measured by a
waist-mounted accelerometer was detected. Bianchi et al. [4]
enhanced a waist-mounted accelerometer with a barometric
pressure sensor for altitude measurement, and trained a deci-
sion tree classifier for fall detection. Lai et al. [5] recognized
injured body parts of a fallen older person using a combination
of several tri-axial accelerometers. These sensors are cheap and
easy to use, but have very limited capabilities to record fine-
grained, full body movements, and thus can lead to unreliable
fall detection results.

Approaches in the second category, compared to those in
the first category, are less intrusive, as they mainly utilize color
and depth cameras for measurement purposes. Thome et al.
[6] introduced a layered hidden Markov model for posture
modeling from multiple color cameras. Fall detection was
formulated as posture classification in a fuzzy logic context.
Rougier et al. [7] tracked human body silhouettes from a video
sequence, and then recovered body shape deformations for fall
detection using a Gaussian mixture model. Recently, depth
cameras such as Microsoft’s Kinect have been used for action
recognition [8], because they provide direct measurement of
geometric and structural information. Example works include
[9] and [10], which recovered 3D body structures from depth
images for fall detection. The drawback of color and depth
cameras is that they both are sensitive to body occlusion, envi-
ronment occlusion, and cluttered backgrounds, which present
a significant challenge to a computer vision system for fall
detection.

III. FALL MOTION DATABASE CONSTRUCTION

In this section, we elaborate on the construction of a
database comprising motions of both falls and normal activi-
ties. This database allows us to investigate a motion classifi-
cation approach to fall detection in the next section.

Motion Representation. In the left of Figure 1, we show
that in motion analysis, a human body is abstracted as an
articulated figure, which is composed of a set of rigid bones
with specified lengths. To parameterize the rigid motion of
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Fig. 1. Motion Representation. Left: A human body is abstracted as a tree
hierarchy of 20 body joints (circled nodes). Each line segment connecting a
pair of joints represents a rigid bone, whose motion is specified by the rotation
of the child joint relative to the parent joint. 1: hip; 2: right hip; 3: left hip;
4: right knee; 5: left knee; 6: right ankle; 7: left ankle; 8: right toe; 9: left
toe; 10: spine; 11: chest; 12: head; 13: right collar; 14: left collar; 15: right
shoulder; 16: left shoulder; 17: right elbow; 18: left elbow; 19: right wrist; 20:
left wrist; unnumbered nodes: joints not used in this work. Right: The falling
motion of a person is represented as a sequence of body postures, which start
from the standing posture (top left) and end with the lying posture (bottom
right). Each posture is specified by a set of body joints with captured rotation
angles and computed spatial positions.

|

Fig. 2. Motion Capture System. Left: The system consists of a set of inertial
motion sensors (orange boxes attached to the body of the subject), a remote
controller (black box with cables and an aerial), and a host computer (laptop).
Right: Using the management software run on the computer, we can collect
and visualize captured motion data in real-time, as the subject is wearing the
sensors to perform an activity.

each bone in a physically valid way, these bones are defined
and constrained by a tree hierarchy of 20 body joints, with the
hip as the root node of the tree, the head, two toes and two
wrists as the leaf nodes (i.e. end effectors), and the remaining
joints as the internal nodes. The benefit of this hierarchy is
that we can now parameterize the rotation of each joint only
relative to its parent, which is analogous to yaw, pitch, and
roll of an aircraft in its local frame.

In the right of Figure 1, we show that the motion of a
person is represented as a sequence of body postures. Each
of these postures is fully specified by the rotation angles of
all the joints. To move a body in the 3D space, we also
need to specify the position of the root joint, so that the
positions of the remaining joints can be calculated easily
from the rotation angles and bone lengths, by traversing the
joint hierarchy from top to bottom. To restore translational
invariance, we subtract the position of each joint from that



of the root joint. Consequently, we have two basic kinds of
posture representation: one is joint angle representation, and
the other is joint position representation.

Motion Capture System. To obtain the motion data of a
person performing an activity, we use the Xsens 3D motion
capture system to gather the aforementioned two kinds of
posture representations in a time-series way. In the left of
Figure 2, we show a snapshot of this system, which comprises
a suite of inertial motion sensors worn by a subject, a remote
device for controlling these sensors, and a host computer for
running a management software. In the right of Figure 2,
we show that this software allows us to collect and visualize
recorded motion data in real-time, as the person is wearing the
motion sensor suite to perform an activity.

Experimental Protocol. We recruited a male adult subject
to perform six kinds of activities: falling, walking, grabbing,
sleeping, sitting on a chair, and sitting on a floor. The reason
we chose these activities in our experiment is that they make
up a large portion of the daily life of an older person in
a household environment. Before each performance started,
we used the motion capture management software to conduct
posture calibration, so that subsequent collected motion data
was reliable.

Motion Data Processing. After finishing the motion cap-
ture experiment, we executed the following steps to process
each collected motion, i.e. a sequence of raw body postures,
to build our fall motion database:

e  First, we retargetted the sequence to a common skele-
ton template, so that person-specific variations, such
as body height and weight, could be eliminated from
the captured postures.

e Then, we segmented the sequence into shorter motion
clips, each of which only contained postures from the
beginning to the end of a single activity.

e  Afterwards, we rescaled the length of each clip via
linear interpolation, so that all clips in the database
had the same number of postures.

e  Finally, we annotated each clip with a semantic class
label, which could be falling, walking, grabbing,
sleeping, sitting on a chair, and sitting on the floor.
The first class is considered to be a “fall” label, while
the rest is considered to be the “not-fall” labels.

The resulting database comprises 69 well-processed motion
clips of six activities. Each clip is a sequence of 380 body
postures. With a frame rate of 60 frames per second, the
duration of each clip is approximately 6.3 seconds.

IV. FALL DETECTION VIA MOTION CLASSIFICATION

In this section, we pose fall detection as a motion clas-
sification task, which predicts a fall/not-fall binary label for
an input sequence of body postures. Because the dimension
of input motion data is very high, it would be impossible
to hand-craft an ad-hoc method for this purpose. We need to
leverage classification algorithms in machine learning that can
robustly work in a high-dimensional feature space and have
good generalization performance.
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Fig. 3. Method Overview. The solid and dotted line arrows illustrate the
steps of the fall motion classifier training and testing stage, respectively. We
experiment with multiple options for joint selection and feature extraction.
For the SVM classifier, we experiment with four kinds of kernels for identity
feature mapping using the linear kernel, or non-linear feature mapping using
the polynomial, radial basis function (RBF), and sigmoid kernels.
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Fig. 4. Joint Selection. Red color is used to indicate the selection of joints.
Only the selected joints will be used in the subsequent feature extraction step.
Left: The root joint, i.e. the hip node, of the hierarchy defined in Figure 1,
is selected. Middle: The end effectors, i.e. the head, two toes, and two wrists
nodes of the hierarchy, are selected. Right: All the joints of the hierarchy are
selected.

A. Method Overview

In Figure 3, we show the main computational steps of our
motion classification approach to fall detection. Given an input
sequence of body postures, we first select a subset of the body
joints, and then extract a feature vector from the selected joints.
In the training stage, we can learn a SVM classifier from the
training motion data for fall detection. In the testing stage, the
trained classifier is used to predict a fall/not-fall binary label
for an input motion. For each step, we provide several options
to explore the best combination of settings. In the following
subsections, we elaborate on each step in more detail.

B. Joint Selection

As described in Figure 1, a human body is abstracted as
a tree hierarchy of 20 joints in this work. The benefit of this
abstraction is that we can represent the motion of a person in a
fine-grained way. The downside, however, is that the resulting
feature dimension of a whole motion sequence could be very
high, because we need to consider all the joints of each posture
in the sequence together. This would not only create a non-
trivial computational burden, but also impact the generalization
performance of a classifier to some extent.

We consider mitigating this problem by manually selecting
a subset of key joints, which are expected to have significant
correlations with the motion characteristics of a fall activity. As
shown in Figure 4, we consider three joint selection strategies:
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Fig. 5. Feature Extraction. Top: The motion of a person is represented as
a sequence of body postures. Each posture is described by a set of body
joints with measured rotation angles and spatial positions. Middle: The joint
angle feature vector extracted from the motion contains a sequence of chunks
(intervals with line boundaries), each of which is built by concatenating the
rotation angles (Euler angle representation) of the selected joints of a posture
in the motion sequence. Joint selection is conducted prior to feature extraction,
as shown in Figure 3 and 4. Bottom: The joint position feature vector has the
same layout as shown in the middle, except that we use the positions rather
than the rotation angles of the selected joints.

e  The first strategy is the simplest, which only selects
the root joint of the hierarchy. The reason that the hip
node could be relevant to fall detection is that it is
able to reflect the rapid drop of body centroid in a
short time duration when a fall does happen.

e The second strategy only selects the end effectors of
the hierarchy, i.e. the head, two toe, and two wrist
nodes. Because the motion of the end effectors are
fully driven by that of the root and intermediate joints,
they may convey discriminative features of the whole
motion that are relevant to fall detection.

e  The third strategy is to trivially select all the joints of
the hierarchy, which is intended to be a baseline for
comparison with the former two strategies.

For each strategy, only the selected joints are included in
the subsequent feature extraction step explained in the next
section, where we evaluate the impact of joint selection on
fall detection accuracy.

C. Feature Extraction

After joint selection, we proceed to the feature extraction
step. The purpose of this step is to embed a motion sequence
into a high-dimensional feature space, where fall detection is
performed by differentiating feature vectors of normal and fall
motion sequences. As shown in Figure 5, we consider two
feature extraction methods in this work:

e  The first method concatenates the rotation angles of
the selected joints of each posture in the motion
sequence into a feature vector. The rotation of a joint
relative to its parent in the hierarchy is represented as a
Euler angle triplet (¢, 6, ¥), where ¢ is the yaw angle,
0 is the pitch angle, and ) is the roll angle. Such local
representation allows us to parameterize the motion of
a human body in a rigid, physically valid way. Their

Non-linear kernel mapping
—_—

°
0 @
)
Fall activities

@
Normal activities ~,

Separating hyper-plane

Fig. 6. SVM Classifier. Left: After feature extraction as shown in Figure 5,
a motion is translated into a feature vector in a high-dimensional space. The
feature vectors of motions of normal and fall activities are depicted as pink
and blue filled circles, respectively. The goal of linear SVM classifier training
is to find a hyper-plane (red straight line) that can separate normal and fall
activities in the feature space, while having as wide a margin as possible (two
black dotted lines parallel to the red line). In this case, one normal activity is
wrongly identified as a fall, and two fall activities are wrongly classified as
normal. Right: To enhance the linear separability of motion data, we can use a
kernel function to perform non-linear feature mapping, so that the data can be
better separated in a much higher, and possibly infinite-dimensional, feature
space. The resulting hyper-plane is thus non-linear in the original space.

measured values are directly available from the motion
capture system.

e  The second method generates a feature vector with the
same layout as that generated by the first method. The
only difference is that the content of the feature vector
now is the positions of the selected joints. The position
of a joint is represented as a coordinate triplet (x, y, 2),
which can be easily computed from the rotation angles
of all the joints and the bone lengths, by specifying
the position of the root joint. To restore translational
invariance, we subtract the computed positions from
the specified position.

In the next section, we evaluate the impact of feature
extraction methods on fall detection accuracy.

D. Fall Detection using SVM

After joint selection and feature extraction, we obtain a set
of M feature vectors { X}, and the corresponding fall/not-
fall binary labels {yx}+L,, where y, € {—1,1}. The task is
to learn a classification function f : X — y from the given
M pairs of training examples (X, yx), such that it can be
reliably generalized to predict a fall/not-fall label for a new,
unseen feature vector with high accuracy.

A common practice in machine learning is to represent
f with a set of free parameters Oy, and then search for an
optimal @}‘2 that approximately solves the following structural
risk minimization problem:

1 M
O = argmin - > I(f(Xx),yx) + AR(O5) (1)
Oy k=1

where the loss function I( f (X} ), yx) penalizes the discrepancy
between the predicted label f(X}) and the true label yg,
and the regularization function R(© ;) penalizes the functional
complexity of f, as a simpler function is expected to generalize
better than a more complex alternative. A is a tunable parameter
for balancing the effect of the two functions.



Linear Polynomial RBF Sigmoid
Root Position Angles 61.64% 63.61% 80.42% 73.71%

Position - - - -
End Effectors | Angles 69.00% 73.19% 80.34% 74.59%
Position | 66.77% 71.33% 80.85% 76.11%
All Joints Angles 70.61% 73.07% 80.33% 76.55%
Position | 70.48% 74.81% 80.33% 72.46%

TABLE T. FALL DETECTION ACCURACY.

In this work, we employ the popularly used SVM classi-
fication algorithm [12] for fall detection. SVM is known to
work well in the high-dimensional input feature and small
training dataset regime. This merit stems directly from the
structural risk minimization problem formulation (1), with
proper representation of the classification function f, the loss
function [, and the regularization function R. As shown in
the left of Figure 6, the basic linear SVM represents the
classification function as a linear hyper-plane in the feature
space, f(X) = WTX +b, where T is the transpose operator,
©; = {W,b} are the parameters to optimize, and the sign
of f(X) is used to produce +1/-1 binary labels. One of the
distinct features that endows SVM with high generalization
ability is that it aims to solve for a hyper-plane as wide a
margin as possible. This is achieved by using the hinge loss
function, I(f(Xy),yr) = maz(0,1 — yp(WT X}, + b)) where
mazx(-,-) is the element-wise maximum operator, and the L2-
norm regularization function, R(©;) = 1|[W||* where || - | is
the Euclidean norm of a vector.

The formulation of the linear SVM is simple and powerful,
but would encounter the difficulty of clasifying normal and fall
motions that are almost surely non-separable using a linear
hyper-plane. As shown in the right of Figure 6, a solution
would be to non-linearly transform an original feature vector
into a much higher-dimensional space, where it is expected
to stay on the correct side of a hyper-plane with higher
probability. To implicitly apply this transformation, we only
need to define a kernel function, K (Xl-,Xj), that measures
the similarity of motion X; and X;. We consider four kinds
of kernel functions in this work:

e Linear kernel: K(X;,X;) = X!X;, which corre-
sponds to the basic linear SVM with identity feature
mapping.

e  Polynomial kernel: K(X;, X;) = (XIX;)3, which
implicitly raises a feature vector to the order of 3.

e RBF kemel: K(X;,X;) = e IXi=XiI" which im-
plicitly raises a feature vector to an infinite order.

e Sigmoid: K(X;,X;) = ﬁ

plicitly raises a feature vector to an infinite order.

— 1, which im-

It can be seen that a non-linear kernel function is a natural
extension of the linear dot product for data similarity mea-
surement. The extension allows us to easily perform non-linear
classification in a new feature space.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our motion
classification approach to fall detection.

We use 5-folds cross validation to evaluate the system
accuracy, which allows us to reliably assess the generalization
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Fig. 8. Two feature extraction methods are compared in terms of their impacts
on fall detection accuracy (with standard deviations on top of each bar).

ability of our approach. The fall motion database is randomly
split into five subsets of equal size, with four of the five subsets
for SVM classifier training and the remaining one for testing.
This process is repeated 100 times to estimate the mean value
and standard deviation of fall detection accuracy.

Table I shows the accuracy of different setup. The best
accuracy is achieved using the 3D joint position of end
effectors with the RBF kernal, in which we have 80.85%
accuracy. Due to the small size of training data, using a subset
of joints instead of all performs slightly better. Notice that
since we represent joint positions relative to the root, we cannot
extract root positions as a standalone feature. In the following,
we evaluate the impact of joint selection, feature extraction,
and SVM kernel function on fall detection accuracy.

Impact of Joint Selection. In Figure 7, we compare the
three joint selection strategies, i.e. selecting root joint, end
effectors, and all joints, in terms of their impact on fall detec-
tion accuracy. For each strategy, we show four performance
bars corresponding to the four linear and non-linear SVM
kernels, respectively. For each combination of strategy and
kernel, we only report the accuracy results using the best
performing feature extraction methods. It can be seen that
the RBF kernel gives the consistently highest accuracy, with
the lowest standard deviations, among the four kernels under
each joint selection strategy. Also noticeable is that the three
strategies give quite comparable results under each kernel,
indicating the significance of the root joint and end effectors
for fall detection.
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Fig. 9. Four SVM kernel functions are compared in terms of their impacts
on fall detection accuracy (with standard deviations on top of each bar).

Impact of Feature Extraction. In Figure 8, we compare
joint angle and joint position features in terms of their impact
on fall detection accuracy. We report results using the best
performing joint selection strategy for each combination of
feature type and kernel. Similar to that in Figure 7, the RBF
kernel consistently outperforms the others using either one of
the two features. The results show that joint angle and joint
position features are equally good for fall detection. This is
foreseeable since we can convert the representation of the two
features into each other without information loss. It appears
that the SVM classifier we are using is oblivious to either
type of feature representation.

Comparison of SVM Kernels. In Figure 9, we compare
the four SVM kernel functions in terms of their impact on fall
detection accuracy. For each kernel, we report the results using
the best performing combination of joint selection strategy and
feature extraction method. Consistent with that in Figure 8, we
can see that the RBF kernel achieves the highest accuracy with
the smallest standard deviation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a motion classification approach
to fall detection. We represented the motion of a person as a
sequence of body postures, each of which is described by a
set of body joints with measured rotation angles and spatial
positions. Under this representation, we built a database of
motions of both normal and fall activities using a motion
capture system. We experimented with several combinations of
joint selection strategies, feature extraction methods, and SVM
classifiers of different kernels for fall detection. The results
show that we can achieve high detection accuracy.

Currently, we select body joints relevant to fall detection
manually. This step can be automated using more involved
selection strategies in the future. We also plan to explore
feature selection methods that can reduce feature dimension
while maintaining sufficient discriminative power. In particular,
we are interested in validating if machine learned optimal
features for action classification align with human perception.

As a future direction, we would like to explore the possi-
bility of adapting the current framework into other motion cap-
turing/sensing hardware such as the Microsoft Kinect, which
does not require the user to wear any sensors and can facilitate
more practical in-home usage. The human motion captured by

Kinect is noisy, and therefore we will explore noise reduction
techniques [13] for more accurate motion identification.

Finally, in our current database, the motion are segmented
as a pre-process, and falling motion segments are identified. If
the system is to be applied in a real-world scenario, continuous
motion identification is necessary. We will research real-time
motion segmentation techniques in the future.
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