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Abstract
Deep space missions face significant communication delays that disrupt both operational workflows
and psychological support for crew members. Unlike low Earth orbit operations, delays ranging from
several minutes to nearly an hour make real-time communication with mission control infeasible,
forcing crews to act with greater independence under uncertain conditions. This position paper
examines how human-in-the-loop AI, digital twins, and edge AI can be integrated to mitigate these
delays while maintaining astronaut autonomy and engagement. We argue that human-in-the-loop
AI enables decision-making processes that are responsive to local context while remaining adaptable
to changing mission demands. Digital twins offer real-time simulation and predictive modelling
capabilities, allowing astronauts to explore options and troubleshoot without waiting for ground
input. Edge AI brings computation closer to data sources, enabling low-latency inference onboard
spacecraft for time-critical decisions. These ideas are explored through two use cases: using deepfakes
to support emotionally resonant communication with loved ones, and applying visual-language
models for onboard fault diagnosis and adaptive task replanning. We conclude with reflections on
system design challenges under constrained and high-stakes conditions.
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1 Introduction

Human spaceflight and exploration have seen a renewed interest from government space
agencies and industry. While Low Earth Orbit (LEO) has been the main focus for recent
human spaceflight activities, the new Space Race aims to place humans in lunar orbit,
Mars, and the lunar surface for long-term establishment. These targets require advanced
technical capabilities. The Artemis missions will involve spacesuits with numerous sensors
for transmitting multi-modal data, for visual sensing, life support, and fault detection [16].
The Gateway space station will support human missions ranging from 30 to 90 days and
autonomous operations while not staffed [32]. But no matter the nature and place of the
spaceflight operation, there is a significant capability that must be met: the need for robust
communication. This includes communications between the Mission Control Centre (MCC)
and astronauts, as well as communications between astronauts with local spacecraft systems
such as robotic arms.

There exist various challenges to effective communications in space, both environmental
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Figure 1 The challenge of communication delay in space operations, as illustrated by a hypothetical
mission to Mars.

and technical [47]. The most prominent challenge in maintaining communications in the
space is signal delay. Signals, (including commands, telemetry, voice, and video), can take
minutes to hours of travel between MCC and distant spacecraft via the Deep Space Network
(DSN). Significant communication delays in deep-space missions pose major challenges for
real-time data exchange and operational efficiency (Fig. 1). As a spacecraft moves farther
from Earth, these delays increase; for example, after 90 and 480 days of travel (covering 0.4
and 2.7 Astronomical Units), one-way signal delays can reach 4 and 22 minutes, respectively
[43][64].

Dealing with communication delays is very important in the context of human
spaceflight, especially for longer-term missions further from Earth. Research performed on
the ISS has shown that communication delays of 50 seconds, which correspond to delays that
could be present in deep space missions, can negatively affect the crew’s behaviour, leading
to task performance degradation, stress, and deteriorating mood [44]. Communication delays
can be challenging not only for astronauts, but for the MCC as well. This has been showcased
in mission analog studies, where increased communication delays did affect the MCC task
performance, as well as unavoidably increased their workload, elevated stress levels, and
led to task failure [35][21]. These studies mention astronaut compliance issues as a result
of communication delays, leading to a lack of command acknowledgement. Some other
spaceflight concerns related to communication delays are impacts on team cohesion and
impacts on emergent medical assistance from the MCC [57].

These delays necessitate autonomous and adaptive solutions to maintain mission effective-
ness while ensuring human oversight and decision-making remain integral [64]. Indeed, the
outcome of some studies involving real astronauts [44] suggested “increase crew autonomy”
and “reduce back-and-forth communications” as ways to address communication delays and
the resulting performance degradation and related stress. One astronaut in the study also
stated: “I think if we fly to Mars we are going to have a spaceship that is more autonomous
than the ISS. So you don’t have as much low-level comm. with the ground on each of the
steps of the procedures”. When asked what type of tools would help with communication
delays, the astronauts stated the need for a “recording-tool” and “text or video-based com-
munications” as well as that “the AMO [autonomous mission operations] software” helps
increase their autonomy. It is evident that increased autonomy could mitigate some effects
of communication delays, by reducing the number of times the communication takes place.
To tackle this challenge, in this paper, we discuss how AI could be leveraged to provide more
autonomy to the crew. AI has been explored before as a prominent tool to solve challenges
in human spaceflight [53], but in this paper, we focus on the usage of AI and its potential to
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address communication delays in human spaceflight. Recent advances in human-in-the-loop
AI offer promising ways to bridge these communication gaps by balancing automation with
human expertise, including designs that put humans in decision-making processes. Rather
than fully autonomous systems making decisions in isolation, AI enables astronauts and
mission controllers to guide, adapt, and refine AI-driven processes in real time, even under
significant latency constraints. This hybrid approach enhances mission resilience, allowing
crews to interact with AI systems that learn from human feedback and adjust to evolving
mission needs.

Communications between the MCC and crew take place for various purposes: some im-
portant purposes include task planning, system monitoring and fault management, astronaut
health monitoring, and communication with family members. Each type of communication
can have different modalities, such as voice commands, video feeds, log transcripts, monitoring
signals, etc. This paper focuses on categorising communications into two types: task-oriented
and social-oriented. Task-oriented communication focuses on operational efficiency, such
as teleoperating robotic arms onboard. Social-oriented communication, on the other hand,
supports crew psychological well-being, as astronauts seek connection with people on Earth,
especially family members. Solutions like AI-driven Delay-Tolerant Networks [3][13].and
Enhanced Communication Protocols [60][26] incorporate human-in-the-loop AI to ensure
critical tasks are performed with precision, even in delayed-response environments. Space
Braiding [51] is a recent initiative aimed at fostering meaningful remote interactions by
leveraging AI while keeping human intent at the core of communication design.

In the following sections, we first review the literature on the use of AI in space in
general and communication delays in particular, examining their potential and limitations
in addressing this critical challenge for deep space exploration. Specifically, we examine
the applicability of Digital Twins and Edge AI in addressing space communication delays.
Next, we present our proposed solutions through two use cases: one explores task-oriented
communication, applying the concept of backtracking to robotic arm operations, while
the other focuses on social-oriented communication, investigating the potential benefits of
deepfakes in casual conversations with social contacts on Earth.

2 Literature Review

2.1 AI in Space
The uses of AI in most aspects of spaceflight have been showcased and described before. A
recent literature review categorised different AI methodologies and algorithms, and matched
them with technical problems in satellite engineering where they could provide a solution
[61]. This review focused more on technical aspects of satellite engineering, rather than
operations and issues in human spaceflight. The review by Furano et al. focused on AI
applications and challenges for embedded systems in space [33]. The potential of AI in
facilitating mission operations and space exploration is described by Russo et al. [72]. AI
has also been introduced in the phases of spacecraft design, with an example being an expert
system as an assistant in the process of engineering design [9].

In the field of space communications, Fontanesi et al. have presented a very detailed
review of the application of AI in communication issues [28]. They categorised different
AI methodologies, described common hardware and task-related problems in satellite com-
munications, mentioned the state-of-the-art in AI to solve these problems, and provided
other relevant reviews. But even this detailed review did not mention the challenges and
opportunities for AI in mitigating communication delays, or the implications in human
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spaceflight.
AI has also been proposed in the context of addressing challenges in human spaceflight.

Some notable applications include deploying autonomous AI agents for task planning and
scheduling, onboard system fault detection and management, and AI-powered robotic as-
sistants onboard the ISS. A prominent example is the NASA Autonomous Systems and
Operations project (ASO) that deployed AI methods for increasing crew autonomy and
automating operations both in deep space mission analogs and onboard the ISS [29]. Finally,
various robotic assistants have been deployed onboard the ISS to help astronauts with
everyday tasks, such as Robonaut2 [22], SPHERES [78], Astrobee [12], Int-Ball [58] and
Int-Ball2 [39]. Again, these efforts of introducing AI and increased autonomy onboard the
ISS did not address communication delay issues.

Due to the sensitive and high-stakes nature of space missions, responsible AI design is
essential [23]. Graham and Thangavel [36] argue that while AI offers significant advantages
for space applications, its deployment presents unique risks that require tailored responsible
AI frameworks. Balancing the prevention of harm with mechanisms for accountability and
remediation is necessary. Oche et al. [61] emphasised the importance of responsible AI
considerations when applied to key areas of space missions, including spacecraft health
monitoring, remote sensing, satellite communications, and robotic autonomous systems.

2.2 AI for Space Communication Delays
One primary approach to addressing communication delays involves integrating AI into
spacecraft systems to enable autonomous decision-making. Since real-time communication
over vast interplanetary distances is impractical, AI allows spacecraft to perform critical
functions independently. For instance, AI algorithms can autonomously process scientific
data, adjust mission parameters, and manage unexpected events, ensuring mission continuity
despite communication lags [8]. NASA and the German Aerospace Center (DLR) have
been developing intelligent AI assistants, such as the Mars Exploration Telemetry-Driven
Information System (METIS), to monitor spacecraft systems, detect anomalies, and support
astronaut autonomy by reducing reliance on mission control [8]. AI is also being leveraged to
develop advanced communication protocols that can dynamically adapt to space environments.
AI-driven systems can optimise data transmission by selecting underutilised frequency bands,
minimising interference, and maximizing available bandwidth. This adaptability is crucial for
maintaining robust communication links despite challenges such as space weather fluctuations
and resource constraints [29]. NASA’s cognitive radio technology exemplifies this approach,
using AI to make real-time decisions about spectrum use and improving resilience against
signal degradation [56].

Delay-Tolerant Networking (DTN) is a networking paradigm designed to function effect-
ively over long distances and intermittent connections, making it particularly suited for space
missions [3]. AI-enhanced DTN protocols have been developed to improve routing efficiency
and data delivery in these challenging conditions. For example, AI-based routing mechanisms
can predict network disruptions and dynamically adjust data paths, increasing the reliability
of space communications [13]. ESA and NASA are actively researching AI-augmented DTN
models to enhance interplanetary communication, ensuring stable data transmission despite
extreme delays [3].

In addition to technical advances, innovative communication tools such as Space Braiding
have been introduced to mitigate the psychological and operational impacts of communication
delays on astronauts. Space Braiding creates the illusion of real-time conversation by
intelligently managing pre-recorded message exchanges, thereby preserving a natural dialogue
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flow despite inherent delays [70]. Recent studies funded by ESA have demonstrated the
effectiveness of Space Braiding in improving crew well-being, enabling effective problem-
solving under high-latency conditions, and facilitating psychological support through therapist-
guided sessions during simulated Mars missions [51].

AI’s role extends to optimising satellite communication networks by analysing vast
amounts of operational data and predicting potential issues such as signal interference and
bandwidth allocation. For example, AI systems can dynamically adjust satellite parameters
to maintain optimal communication links, thereby reducing latency and enhancing data
throughput [28]. Research has highlighted the potential of AI in improving the efficiency
of satellite communication networks by addressing challenges such as resource management
and network control [45]. Additionally, integration with Augmented Reality (AR) tools
can enable astronauts to interact with communication data in real time, further enhancing
operational efficiency [8].

2.3 Human-in-the-loop AI for Space Missions
Unlike fully autonomous systems, which operate without human intervention, human-in-
the-loop AI combines human intuition, expertise, and situational awareness with AI’s
computational capabilities. This approach ensures that mission-critical decisions remain
aligned with human intent while benefiting from AI’s ability to process vast amounts of data
and make rapid adjustments.

One concrete example of this approach is AI-assisted spacecraft navigation, as seen in
NASA’s autonomous navigation systems. Traditional deep-space navigation relies heavily
on Earth-based tracking and ground control for trajectory adjustments. However, long
communication delays make immediate course corrections impractical. NASA’s AutoNav
system, originally deployed on the Deep Space 1 probe and later refined for Mars rovers like
Perseverance, enables spacecraft to autonomously adjust their paths. Despite its autonomy,
AutoNav remains under human oversight; mission planners set high-level goals, and the AI
executes navigation while continuously sending updates back to Earth for validation [11][55].

A similar hybrid model is applied in AI-supported fault detection and recovery, an
essential function in spacecraft operations where failures can have catastrophic consequences.
ESA has been testing AI-based fault detection through OPS-SAT, a mission that allows
ground controllers to interact with and fine-tune AI decisions when anomalies arise [25] [30].
Meanwhile, NASA’s R5 Valkyrie, a humanoid robot designed for deep-space exploration,
is capable of performing routine maintenance tasks on spacecraft. However, rather than
operating in full autonomy, Valkyrie allows astronauts and mission controllers to modify its
actions through isolation of remote commands [69].

Medical decision-making in space is another domain where human-in-the-loop AI proves
invaluable. Long-duration missions require astronauts to manage their own healthcare without
immediate guidance from Earth [59]. To address this, NASA has developed the Clinical
Decision Support System (CDSS), which assists astronauts by analysing physiological data,
identifying potential health risks, and recommending treatments [71]. However, instead of
relying entirely on AI-generated diagnoses, astronauts remain actively involved by providing
symptom inputs and cross-checking AI-generated recommendations against available medical
guidelines and consultations with ground-based physicians.

Beyond operational efficiency, human-in-the-loop AI is also being explored for maintaining
crew psychological well-being during long-duration missions. The Space Braiding initiative
[60][26], for instance, leverages AI to filter and adapt asynchronous messages from family
members, ensuring that astronauts receive meaningful and supportive communication even
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under delayed conditions.
By integrating human oversight into AI-driven processes, deep-space missions can retain

flexibility, enhance operational safety, and preserve the psychological well-being of astronauts
despite communication delays.

2.4 Digital Twins and Space Communication Delays

Digital Twins (DTs) offer a powerful solution by enabling real-time simulation, predictive
modelling, and autonomous decision-making. Virtual replicas of spacecraft, planetary rovers,
or habitats allow engineers and astronauts to anticipate challenges and reduce reliance
on Earth-based commands [52]. One of the primary advantages of DTs is their ability to
support local decision-making and autonomy. With long signal travel times, spacecraft
cannot always wait for instructions from mission control. Instead, onboard DTs can simulate
potential outcomes of various actions in real time, enabling spacecraft or planetary rovers to
make informed decisions without immediate human input. This capability enhances mission
efficiency and reduces risks associated with delays [68].

DTs also play a crucial role in predictive maintenance and fault detection [79]. By
continuously monitoring spacecraft components and systems, they can identify signs of wear
or potential failures before they become critical. Engineers can then test repair strategies
in a virtual environment before executing them in space, minimizing the need for extensive
back-and-forth communication with Earth [52].

In addition to supporting real-time operations, DTs enhance training and simulations on
Earth. Mission control teams can interact with highly detailed virtual replicas of spacecraft or
space habitats, allowing them to test responses to unforeseen conditions without direct input
from the remote system. Astronauts can also use DTs to rehearse tasks before performing
them in space, improving their success rate and reducing the risk of errors[67].

Another advantage is optimised data compression and synchronisation. Instead of
transmitting vast amounts of raw data back to Earth, DTs can preprocess and filter critical
information, significantly reducing bandwidth requirements. Spacecraft can also update
themselves using pre-programmed decision models within their DT framework, allowing them
to function more independently [74].

Looking ahead, human-AI collaboration in space habitats will be an essential aspect of
future missions. Mars bases or lunar settlements could integrate DTs to manage life-support
systems, optimise resource utilization, and respond to emergencies autonomously [37]. By
reducing dependence on real-time Earth intervention, these AI-driven systems will enable
sustainable long-term human presence in space.

Several space agencies and private companies are already leveraging DTs to mitigate
communication delays and enhance autonomy in space missions. In NASA’s Artemis Program,
DTs are being developed to autonomously monitor lunar spacecraft, habitats, and the planned
Lunar Gateway station, enabling predictive maintenance and operational efficiency. For
NASA’s Mars Rover missions, the Perseverance Rover’s Earth-based DT allows engineers to
simulate commands and troubleshoot issues remotely before execution, minimising delays
caused by long communication times.

Similarly, Digital Twin Earths (DTEs) are high-fidelity models that predict environmental
changes in Earth’s atmosphere, reducing the need for continuous real-time satellite data
transmission [7]. Similarly, Boeing’s Digital Twin of the CST-100 Starliner spacecraft supports
pre-emptive testing of navigation, life support, and propulsion systems, ensuring safer and
more reliable space travel [18].
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Lockheed Martin’s Orion spacecraft also benefits from a DT, which aids in testing
flight scenarios and emergency procedures, enhancing mission preparedness [66]. Meanwhile,
SpaceX Starship employs AI-driven DTs, allowing the spacecraft to autonomously detect
and address structural or operational issues during deep-space missions [4]. These advances
collectively contribute to greater autonomy, efficiency, and resilience in space exploration.

2.5 Edge AI and Space Communication Latency
The term Edge AI is inspired by edge computing, the process of moving the computational
and storage systems of a computer network closer to the “edge”, i.e. the point of deployment
where the data come from. Similarly, Edge AI refers to the deployment of AI models closer
to the source of data collection, usually as part of an embedded computer [34]. This solution
can mitigate communication delays, as data transferring between the user, storage, and
computation system is significantly reduced.

This idea is not new, and it is typically associated with Internet-of-Things (IOT) networks.
Due to the large amounts of data generated by each device, different data types collected,
limited communication bandwidth, varying processing capabilities of each device, and variable
power demands, communication between devices can have increased latency. A mitigation
technique example is the usage of AI algorithms as a routing task agent in systems according
to each device’s task request number, power consumption, available battery and other
resources [6]. An extensive review paper on ways of mitigating latency, arising both from
computational constraints and communication constraints is presented by Shi et al [75]. In
the review, the mitigation methods are categorised into methods for communication-efficient
Edge AI systems that optimise the AI algorithms, and methods that optimise the data
processing systems and principles.

Since satellites are remote systems with embedded processing capabilities, Edge AI can
offer a promising solution for the communication delay problem. In a similar way with
ground communications, Edge AI could be used to determine what data types need to be
prioritised for transmission, how they could be compressed/optimised, how to plan and
schedule link operations, and how to take advantage of novel computing architectures and
processing capabilities in space. The increased launches and usage of satellite constellations
has made this need more relevant. A recent paper outlines the processing and memory
requirements that modern onboard AI/ML systems must meet to enable edge computing
and AI integration in satellite communications. It also discusses the technical challenges in
satellite communications that these systems could help address [62][40]. Leveraging AI and
edge computing has been proposed to enable scheduling optimisation between ground stations
and satellites, in the context of a satellite constellation network [83]. An Edge AI architecture
for satellite constellations in LEO can also help constellations make AI inference onboard,
rather than downlinking the data to a ground server that runs an inference algorithm, then
having the inference result uplinked and distributed to end-users through the constellation
[84].

Our position in this paper is that Edge AI could be leveraged more for communications
in human spaceflight. The simplest way this can happen is by exploiting the constellation
communication results and paradigms mentioned above: the space station can be simultan-
eously another computation/communication module in the constellation, the edge where
data is collected, and the end user. A recent user case of interest is space crew health
assessment. Edge AI could be used to gather health and biometric data from the crew and
perform inference on each crewmember’s health condition. Training for such a system could
be performed by medical data on Earth, and the inference system could be performed in
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space [82] through a constellation network or other high-performing embedded processors
and Edge TPUs [46]. Since Edge processors would offload computing data, medical diagnosis
can be performed using many different data types, such as EEG and other biosensing signals,
camera images, voice commands, and text data. Data transformation, processing, and AI
inference could be performed either onboard or using a constellation, providing a first medical
state report, minimising the need to contact the MCC, and providing additional information
when contacted.

3 User Cases

To showcase the applicability of AI as a delay-mitigation measure, we discuss two hypothetical
human spaceflight user cases. The first user case addresses social-based communications, and
the second task-based communications. We propose the usage of AI agents based on similar
scenarios in terrestrial applications.

3.1 User Case 1: Deepfakes for Social-oriented Communications in
Deep Space Exploration

While initial studies on Space Braiding [51] funded by agencies such as the UKSA, ESA
and NASA highlight its potential, key areas require more empirical validation to assess its
long-term impact on communication efficiency, team cohesion for various group sizes, and
astronaut well-being. As a text-based tool, Space Braiding may be well-suited for task-
oriented communication but less effective for social interactions, such as conversations with
family and friends, where voice and video communication are more natural and emotionally
engaging. Research into more accessible interfaces that support multimodal communication
could help address this limitation. A viable alternative can be deepfakes.

Deepfakes are highly realistic digital creations that utilise AI, complex algorithms, and
advanced data processing techniques [65]. These technologies enable the seamless integra-
tion of an individual’s real-world visual and auditory characteristics into carefully crafted
artificial environments, producing media that appear strikingly authentic [80]. Combined
with generative AI techniques such as conversation agents and human behaviour synthesis,
deepfakes enable the creation of believable virtual agents that can conduct supportive conver-
sations. Despite concerns about their potential for manipulation, deepfakes are not inherently
deceptive or malicious [38]. In fact, they can be used positively in cultural applications,
entertainment, and even psychological well-being [15].

Recent research has explored how people emotionally engage with deepfakes, even when
they are fully aware of their artificial nature. Using neuropsychological methods, Eiserbeck et
al. [24] examined how recognising AI-generated faces influences emotional processing. Their
findings suggest that participants perceived smiling faces labelled as “fake” as less positive
and reacted to them more slowly. However, their responses to angry faces were consistent,
regardless of whether the faces were real or artificial. Soto-Sanfiel et al. [77] investigated
human interactions with deepfakes across different genres, such as celebrities, advertising,
and politics. Their study revealed that immersive narratives and familiarity with the content
can enhance engagement and enjoyment.

Building on this potential, we propose utilising deepfakes to address the psychological
needs of spacecraft crews by enabling emotional connections with their loved ones during
long missions. Family members and friends can continuously record videos of daily activities,
which will be stored in a database. These recordings will serve as training data for AI
models to generate deepfake avatars that accurately replicate their appearances, voices, and
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behaviours. When a crew member wishes to interact with a family member, the system will
retrieve relevant content and render it as a fully immersive 3D simulation with advanced
re-enactment techniques [19]. By integrating these AI-generated representations into a
virtual environment and leveraging the power of Edge AI, the system can create a lifelike and
emotionally engaging experience, helping astronauts feel more connected to their families
despite the vast physical distance, thereby sustaining their mental health.

However, the ethical implications of using deepfakes in this context must be carefully
considered [50][20]. Consent is a critical factor—family members and friends must have
full control over how their likenesses are used and be able to withdraw permission at any
time. Additionally, prolonged interaction with AI-generated representations may blur the
boundaries between reality and simulation [38], potentially affecting astronauts’ emotional
well-being upon returning to Earth. There is also the risk of unintended psychological effects,
such as over-reliance on artificial interactions at the expense of genuine human connection
[81] . Hence, safeguards must be implemented, including clear guidelines for ethical use,
regular psychological assessments, and mechanisms to ensure that deepfake interactions
support rather than replace authentic relationships [2].

At the same time, given the applied nature of the system, responsible AI [23] design
must be considered. Modern conversational agents retain “memory” of previous interactions
and personalise behaviour using techniques such as retrieval-augmented generation [49].
This typically involves accessing past conversation logs and user-specific information, which
may be sensitive. It is, therefore, essential to protect such data through privacy-preserving
methods and to incorporate robustness measures against adversarial attacks that could
expose confidential content. Additionally, as re-enactment techniques [19] are used to
enable emotionally engaging interactions, care must be taken to ensure that the synthesised
behaviours remain faithful to the original reference material. In such cases, explainable or
interpretable AI [1] can be used to trace which data contributed to a particular dialogue or
generated output. Finally, as the aim is to create deepfakes that faithfully represent a wide
spectrum of behaviours and appearances, it is important to incorporate bias-aware AI design.

To further mitigate psychological and ethical risks, a layered approach combining pre-
mission training, contextual framing, and adaptive system design is recommended.
Astronauts should be prepared in advance to understand the emotional limits and affordances
of interacting with synthetic agents, reducing the risk of over-attachment [48]. Deepfake
interactions could include subtle sensory cues to reinforce their artificial nature, enabling
users to assess authenticity without disrupting emotional engagement [42]. Continuous
psychological monitoring can inform dynamic adjustments to interaction frequency and
tone, supporting individual mental health needs [5]. Moreover, governance should involve
interdisciplinary oversight—ethicists, psychologists, and user representatives—to ensure
responsible use and protect those whose likenesses are involved [27]. This ensures that
deepfakes are used to augment, not replace, authentic relationships in space.

Furthermore, we identify two key research challenges. First, while most deepfake research
to date has focused on mimicking visual and auditory signals [17], one significant sensory
modality remains largely overlooked: olfaction [54]. Although smell cues may be subtle,
they can play a crucial role in evoking a sense of social presence, for example, through
familiar scents such as perfume, aftershave, or shampoo. These smells often trigger emotional
reminiscence and a sense of connection to loved ones. We argue that incorporating olfactory
signals into deepfake experiences could further enhance emotional engagement [10]. Second,
everyday life on Earth includes a range of emotionally charged experiences, both positive and
negative. To help astronauts feel more “at home” during long missions, deepfake-enabled
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interactions should reflect this emotional diversity. Relying solely on overly comforting or
idealized content could distort astronauts’ perception and memory of social relationships,
potentially making it more difficult to readjust to real-world interactions upon returning
to Earth. The challenge lies in finding the right balance between positive and less positive
interaction episodes to maintain emotional authenticity.

3.2 User Case 2: Task Planning and Backtracking in a Deep Space
Scenario

Novel AI systems could be used in human spaceflight in fault management, recovery, and
replanning during the execution of mission tasks. Automated planning of mission operations
is not new, with various systems being already heavily used in spaceflight, such as NASA’s
ASPEN [31] and CLASP [63] task scheduling and planning systems. Such systems have
extended capabilities of fault prediction and replanning. However, in some cases, the MCC
still needs to be contacted in case a failure is external, task-related, and has elevated risk for
the rest of the mission operations.

A prominent example is the recent micrometeoroid damage of the Space Station Remote
Manipulator System (SSRMS, also known as Canadarm2). On May 12th 2021, astronauts
onboard the ISS reported damage on the protective covering of the manipulator, caused
by micrometeoroid impact. The damage was reported during a routine inspection, and
high-resolution images of the damage were taken and sent to the MCC to assess the damage.
The assessment of the images and the resulting state of the arm took more than two weeks,
before the MCC concluded that the arm’s performance was not affected, and that near-term
operations could resume. Should such a failure take place on a lunar mission or mission
to Mars, the communication latency in transmitting the fault images, combined with the
time to perform fault analysis by the MCC could result in significant mission delays with
potentially serious consequences.

This effect could be mitigated if the fault images were uploaded to an onboard server,
where an AI agent could perform risk assessment. More specifically, Visual Language Models
could be a fitting solution. Visual Language Models are generative AI models that can reason
under both visual and text-based modalities [85]. They combine vision encoding with Large
Language Models (LLMs) and can generate text responses from the combination of a given
image and a text prompt. Their significance lies in their capability to handle both known
problems in computer vision, such as out-of-class classification, and providing generative
responses to tackle problems such as image summarisation and description. They have very
recently started to be used as anomaly detection systems [41] and are being introduced to
some more risk-averse industries and hazardous workspaces [14].

As fault detection systems, VLMs would be fed with a diagnostics image, such as a set of
plots showing the change of a critical variable over time, and a text prompt. VLM would
then reason over the fault detected after analysing the provided image and the text prompt,
giving a generative response over the fault type and management. If such a system was used
in the case of the ISS arm example, the astronauts could feed the images showing the arm
damage to a VLM, along with graph data from diagnostics plots, and a text prompt asking
whether the arm is operational. The result of the VLM could influence their decision to
continue with the scheduled operations without the need to contact the MCC, saving 14
days of operation time. Such systems would be valuable in cases of limited or very delayed
communications, such as on future Mars missions.

Finally, task replanning after fault detection is another spaceflight operation that could
benefit from AI and VLMs. Mission operation planners already incorporate some replanning
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capabilities based on potential fault cases, mostly related to system failures and faults. VLMs
could instead be incorporated into the existing mission planners, to provide capabilities based
on task failures. Such a paradigm has recently been demonstrated in robotic manipulation,
where a robot extracts an image of a failed task, such as an unsuccessful grasp, identifies the
task-specific failure mode, and replans an action to resolve it [76].

It should be noted that VLMs, similar to most learning-based algorithms, have significant
implementation and reliability challenges that would need to be resolved before they are
applied in the critical environment of space. One core limitation would be the lack of data:
VLMs require vast amounts of data to be trained. In the context of spaceflight, the data
required for training a VLM as a fault detection tool, such as user manuals and fault diagrams,
may be too few for meaningful training or not accessible due to regulatory and commercial
constraints. Model "hallucinations", meaning structurally consistent but not meaningful
answers, should also be addressed in VLMs. These concerns were addressed in the context
of LLMs in space operations, by the authors in [73]. To deal with the lack of data, the
authors used a vector embedding of space systems documents combined with user queries
on pre-trained LLMs, to evaluate their performance in answering queries related to system
handbook search. To evaluate the hallucination performance, the authors inserted known
information (system wiki pages, software documentation ea) into the vector embedding,
and compared the answers to the inserted. The authors showed that LLMs returned useful
answers while searching system handbooks, but with unpredictable and high hallucination
rates, that depend on the prompt provided by the user. The authors stated that LLMs
could be used as co-pilots in space operations, but the results depend on prompt engineering,
potentially requiring hyperparameter tuning or re-training.

4 Conclusion

This paper offers a position on the integration of AI solutions to tackle challenges in space
communications delay for human spaceflight. Our analysis focused on the need for resilient
communication delays in human spaceflight, and we categorised these needs as task-based
and social-based, i.e. as needs related to the mission objectives and operations, and needs
related to the social communication between space crew and Earth. We provided a set of
promising recent technologies that address these delays, from the fields of Human-in-the-loop
AI, Digital twins, and Edge AI literature. We also described how cutting-edge technologies
of deepfakes and VLMs could be integrated with existing spaceflight systems to mitigate
the challenges posed by communication delays in deep space mission scenarios. Our paper
provides a starting point for discussions in the introduction of novel AI techniques in human
spaceflight for delay mitigation, as well as insights on the technologies that are most promising
in this direction.
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