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Real-Time Posture Reconstruction for
Microsoft Kinect

Hubert P. H. Shum, Edmond S. L. Ho, Yang Jiang, and Shu Takagi

Abstract—The recent advancement of motion recognition using parts. In our primary work [1], we report that a small amount
Microsoft Kinect stimulates many new ideas in motion capture of noise can be corrected with pre-captured motions and a
and virtual reality applications. Utilizing a pattern recognition physical simulation engine

algorithm, Kinect can determine the positions of different body Th t iti bl b hall .
parts from the user. However, due to the use of a single depth € posture r_ecognl lon _pro em ecomes mor(_a C_ allenging
camera, recognition accuracy drops significantly when the parts When the user interacts with external objects. This is begau
are occluded. This hugely limits the usability of applications that Kinect has a single inferred sensor and every tracked part re
involves interaction with external objects, such as sport training quires a direct line of sight. Consequently, Kinect appiaes

or exercising systems. The problem becomes more critical when usually require the user to face the sensor all the time witho

Kinect incorrectly perceives the body parts. This is because . . . S I
applications have limited information about the recognition holding any objects. This hugely limits the usability of the

correctness, and using those parts to synthesize a body postsr @pplications, especially if we use Kinect to implement ejrst
would result in serious visual artifacts. In this paper, we propose that require handling of equipment such as sport training.

a new method to reconstruct valid movement from incomplete |magine a user exercising with a basketball or a dumbbell
and noisy postures captured by Kinect. We first design a set of weight when some parts of the body are occluded from the

measurements that objectively evaluates the degree of reliability Kinect will fail t tel e th
on each tracked body part. By incorporating the reliability ~camera. Kinect will fail to accurately recognize the postur

estimation into a motion database query during run-time, we resulting in unreliable or missing body parts.. Using SHCh a
obtain a set of similar postures that are kinematically valid. posture to construct a virtual character, or to interach e
These postures are used to construct a latent space, which isgpplication, would result in serious artifacts.

known as the natural posture space in our system, with local  “\wpile previous research can reconstruct broken postures

Principle Component Analysis (PCA). We finally apply frame- . - . .
based optimization in the space to synthesize a new posture that!nto more plausible ones, they cannot be directly applied

closely resembles the true user posture while satisfying kinematic in the Kinect problem. First, the proportion of body parts
constraints. Experimental results show that our method can that are lost can be large and can be different from frame

significantly improve the quality of the recognized posture under to frame. Second, Kinect returns a pose consisting of both
severely occluded er_wirqnments, such as a person exercising Withcorrectly and incorrectly tracked parts, while the applias
a basketball or moving in a small room. have limited knowledge about the recognition correctnAss.
Index Terms—Kinect, posture reconstruction, local principal 3 result, previous algorithms on low dimensional contraitth
component analysis, human computer interaction. assume a relatively stable control signal [2] would not work
as the signal from Kinect is not consistent. On the other hand
I. INTRODUCTION simply using all tracked parts [3] results in poor accuracy,

Sing the newly introduced Microsoft Kinect, it becomef€cause some of them are incorrect. _
possible to recognize human movements with easy harg!" this paper, we propose a new method to measure the reli-

ware setup. This fuses a large number of new research id@QU!ty of the tracked body parts. This is particular importin
on motion based systems, including entertainment apjgitat Kinect because the parts include a relative high numbersé fa

such as motion gaming, as well as serious applications IiRQSit_ive- An advantage Of.our Qesigneq measurement is that
sport training. it relies on general behavioral information about the teatk
The major challenge of motion recognition with KinecParts: making it applicable to different tracking frameksor

is the noisiness and incompleteness of the tracked postut¥dh different types of source data. Our measurement return
Kinect is a vision-based motion capture system using Z-degree of reliability instead ofaBooIgan value, suchwet
infrared sensor to obtain depth information. Therefore, & Make use of the parts that are neither completely correct
suffers from similar problems with traditional optical riast 1O incorrect. This is essential to achieve good recogmitio

capturer, such as occlusions and mixing up of tracked boHQde_r extreme s!tua}t_lons when many parts are lost.
Using the reliability measurement, we propose a new
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posture space is in low dimensional and smooth. We optimidata to identify different body parts [14]. These postures a
in the space for a posture that fits well with the tracked pantsnsidered as source data in our system.
while satisfying kinematic constrains. Finally, the resis Postures recognized by Kinect are noisy. Raptis et al.
passed to a physically simulated character for furtherreiffg propose a dance motion classification framework for reaéti
kinematics features such as segment length and movemamplications [15]. While the system is unaffected by the @ois
stability. of the input data, dance-specific assumptions have to be made
With our proposed framework, it is possible to utilize Kihecto achieve good robustness. Bailey et al. compare the pectei
for applications such as real-time sport training, in whith quality of the animations generated by the motions captured
users usually need to interact with large external objéexts. from Kinect and those from commercial optical motion cagtur
perimental results show that our method performs effelgtivesystem [16]. They apply a Butterworth filter to smooth the
under extreme situation, such as when a large portion of theisy motion. A similar analysis has been carried out by
body is being occluded. We show practical examples when thern’ndez-Baena et al. for rehabilitation applicationg][1
user interacts with a box, plays with a basketball, and moveswhile the study suggests that Kinect tracking is reliable, it
a small room. We also give detailed analysis to show the higksumes the motions to be performed in open area with no
accuracy on the synthesized movements. While we implemeatlusion, which is not possible for applications involyin
our system and perform experiments with Kinect in this papétighly dynamic movements and object manipulations.
the framework is general and is applicable to other tracking A major reason of the tracking inconsistency is that body
systems, such as the optical motion capturer. parts are tracked separately. The posture recognized ades n
The rest of the paper is organized as follow. We reviewecessary satisfy kinematic constraints such as segnmathle
related research in Section Il. We then give an overview &k et al. match the depth image with postures from a motion
our system and point out our major contributions in Sectiafatabase to identify different body parts [18]. Howevee th
[Il. The core of our framework involves four major parts.gtjr method requires the full body posture to be clearly visibberf
we design a reliability measurement to evaluate the rdifipbi the depth image. Shum and Ho use a motion database to fill in
of the tracked body parts by Kinect (Section 1V). Secondhe missing degree of freedom in the Kinect tracked posture,
we construct a natural posture space by querying a motiand apply a physical simulation engine to enforce kinematic
database with the Kinect posture and the reliability valifeatures [1]. Because of the lack of reliability measurenoen
(Section V). Third, we synthesize a new posture that fit wethe Kinect tracked parts, the quality of the synthesizedyses
with the Kinect posture while satisfying kinematics coastits is heavily affected whenever Kinect percepts incorre&lyen
(Section VI). Forth, we apply a physical simulated chanmactet al. proposed an exemplar-based approach to correct 3D
as a kinematics filter to generate natural movements (Sectjgoses estimated from depth images captured by Kinect [19].
VII). Experimental results and system analysis are detail@lthough the method improves wrongly recognized posture
in Section VIII. Finally, we discuss our method and futurérom Kinect, only golf swinging motions are considered. It

directions in Section IX. is unclear if the algorithm works when the database contains
multiple classes of motion, and if the performance is cdesis
1. RELATED WORK across different types of target movements. Our research

In this section, we first review previous work on Kinecfargets in reconstructing postures from different motiosisg
based motion tracking. We then focus on the problem gfgeneral purpose motion database.
reconstructing postures from an incomplete or corrupted da
stream. We finally review the weighted principle componem. Posture Reconstruction

analysis framework that we adopt in this research. . . .
Here, we discuss how human posture from low-dimensional

or corrupted source data can be reconstructed, and highligh

A. Motion Tracking with Kinect the need of a reliability measurement for the source data.

Here, we review different Kinect-related research, foegsi  The full body postures of the user can be approximated by
on those related to motion analysis and synthesis. We poénissmall number of sensors, such as the positions of a few
out the tracking inaccuracy problem of Kinect and discuseflective markers [3], the readings of some inertial sensor
possible solutions. attached to the upper body [20], and the readings of 3D

Kinect uses an infrared sensor to capture a projected pattaccelerometers attached only to the limbs [2], [21]. Such a
and construct a depth image, which describes the distanm®sture reconstruction problem is challenging since tlst re
between the sensor and each pixel. It fuses a wide variefybody has to be estimated. Due to the high-dimensionality
of new research, including gesture recognition and contr@l human movements, it leads to an under-determined system
[4], natural user interface [5] and 3D surface reconstamsti that contains many solutions.
[6], [7]. New algorithms are proposed to estimate human To obtain the right solution that produces natural-looking
postures from the single depth image [8], [9], [10], [11]results, researchers have worked on creating a natural hu-
They provide economical ways for 3D motion acquisition. Anan posture space, and using pre-recorded human motion to
comprehensive review of Kinect research can be found in [12pnstraint the solution space. Chai and Hodgins [3] propose
We obtained user postures using the Kinect SDK [13], which method based on the lazy learning algorithm [22] to re-
involves training a classifier with a large amount of synibed construct a full body posture from low-dimensional marker



REAL-TIME POSTURE RECONSTRUCTION FOR MICROSOFT KINECT 3

positions. Specifically, motion samples that are similatht® weighting approach to maintain the accuracy and validity of
input signals are selected to construct a locally lineacspahe PCA model over time. The training data are weighted
using Principal Component Analysis (PCA) [23], which isccording to the importance in the sample-wise level and the
then used as priors to constrain the reconstructed pose. l@riable-wise level.

et al. propose to create the local models during run-timeThe presence of outliers can significantly degrade the con-
[20]. They reconstruct the new posture with the maximustructed PCA model. Kriegel et al. evaluate the impact of
a posteriori framework (MAP), which takes into accounputliers and assign lower weights to the potential outliers
the spatial-temporal correlation patterns extracted fii to reduce their influences [34]. Pinto da Costa et al. also
sample motions. The major challenge of these methods iselgpress similar concerns about PCA being sensitive towards
construct the local models in real-time for every frame,alihi noises when being used to analyze gene expression data in
is computational costly especially for larger motion datsda  bioinformatics [35].

To tackle this performance issue, Wei and Chai [24] proposeForbes and Fiume propose using weighted PCA to improve
to learn a probabilistic model as the pose priors from the motion searching accuracy [36]. Based on a query motion,
sample motions using the mixture of factor analyzers (MFA#)e system assigns heavier weight to more important body
[25], [26]. MFA partitions the entire configuration spaceoin parts, such as the hands in a carrying motion. It then pject
multiple local regions and represents each region with dlsmgne sample motions and the query motion into the wPCA space
number of latent variables. Since the poses priors are pugth the assigned weight. Notice that once the weight has
computed by MFA, the run-time performance is significantlghanged, the wPCA space has to be reconstructed. We propose
improved. Grochow et al. [27] compute a probabilistic modeb compose a local PCA space during run-time to minimize
using the scaled Gaussian process latent variable model (%62 space construction cost, and apply the concept of weight
PLVM) [28] from motion data, and find the most-likely pos&o minimize the influence of mis-recognized body parts.
according to the low-dimensional constraints given by the
user. However, due to the high complexity of the method,
the training time increases nearly cubically with the sife o 1. OVERVIEW

the training data, which limits the scale of the data set. WU gjq,,re 1 shows the overview of our system. We first evaluate
et al. improve the performance by selecting representatiye, reliability of different body parts in the Kinect recaged
poses and train the pose priors with Gaussian Processe} (Cﬂ?ﬁture, in which some parts are occluded. Based on the
[29]. They further propose to use fully independent training iapility values, we conduct a database query to extreett
conditional (FITC) [30], [31] approximation to speed up theyaarest neighbour postures. The postures are used tounstr
training process of GPs. As a result, it becomes fgasible d%natural posture space, with which we conduct a posture
learn the model from a large data set and cover a wider raNgStimization process to synthesize a correct posture.lifina

of movements. we use the reconstructed posture to control a physically

While it is possible to reconstruct natural-looking posturegimjated character that produces natural movements.
from low-dimensional input signals, these methods assume a

reliable low-dimensional input signals, whereas motiaasnf

Kinect are noisy with heavy tracking error. A method t@\. Contributions
identify incorrectly tracked parts is needed. Lou and CBaj | . ) o

propose a data-driven method to correct noisy motion datall this paper, we have three major contributions:

caused by outliers and missing markers. The system learns We propose a measurement for evaluating the reliability
a series of filter bases from sample motions, and spatial- of tracked body parts, which is represent in a continuous
temporally optimized the corrupted motion data to remowe th  scale. The measurement considers abnormal behaviours,
noise. However, space-time optimization is computatignal kinematics features and sensor status. It identifies false
costly, and can only be applied when the whole motion is  positive tracked parts in Kinect for more accurate posture
available, making it unsuitable for motions that are cagdur reconstruction.

on-the-fly. We propose a set of reliability measurement toe We propose an algorithm to construct a natural posture
assess the body parts recognized by Kinect, and reconstruct space with local PCA considering the reliability values. It
the posture using the more reliable parts. is a low dimensional space composed with pre-captured
posture samples that are kinematically similar to the
Kinect posture. It facilitates efficient and reliable pastu
synthesis for real-time applications.

Here, we review the work in weighted PCA (WPCA), which « We propose a posture reconstruction framework using
takes the importance of the data into account when training the natural posture space to reconstruct a valid posture
the low dimensional models. We adopt the algorithm to weight from incomplete and noisy Kinect data in real-time.
body parts based on their respective reliability during the We optimize for a posture that corrects the non-reliable

C. Weighted Principal Component Analysis

motion reconstruction process. body parts from Kinect, while satisfying the positions of
Yue and Tomoyasu propose a weighting framework to the reliable ones and obeying kinematics constraints. It
traditional PCA to improve its performance on fault detewcti allows us to reconstruct the posture of a user even if it

and correction problems [33]. They introduce a two-levels is occluded.
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Fig. 1. The overview of the proposed framework to reconstnaisy and incomplete Kinect posture.

IV. RELIABILITY MEASUREMENT to avoid getting a large angle change when the body part is

An incorrectly tracked body part (i.e. false positive) in &most steady.
motion recognition system is even more damaging than alhe behaviour term, which is represented as the amount of
missed part, because it would incorrectly guide the systeffpration, is defined as:
to infer the posture. In this section, we explain our proplose ’ o g,(f)
reliability measurement to evaluate the reliability of acked Rbu(f) =1 max(min(=L=7——, 0,007) — 01001, 0) @
body parts, such that we can identify false positives. ol Oroof — O fioor

Although the actual implementation of the reliability term .
may vary in different motion capturing systems, they caWher_ERbi(f) € [O'O’_l'o]’,f” IS the' total number of frames we
usually be classified into three groupise behaviours terthe cons_lder to detect V|brat|on9,flo_o,. is an acceptable amount of
kinematics termandthe tracking states ternin the following, 'otation for each framef,., is the amount of rotation we
we explain our design of different terms that evaluates t§@nsider to be the most unacceptable. Empirically, we found
posture returned by Kinect. We also discuss how the terfhiat settingf, = 3, 0100, = 90° and 6,0y = 135° gives a

could be adjusted to fit into other popular motion captufo0d result. N _ ,
systems. We observe that tradition marker based optical motion

capture system, such as thi@tionAnalysis Eagleystem, also
. o exhibits similar symptoms when a marker is mis-tracked. For
A. Behaviours Reliability Term example, the system sometimes mixes up close-by markers

The behaviours term refers to abnormal behaviour of gnd results in sudden switches of marker positions. Sityjlar
tracked part. In Kinect, this abnormality can be represgéntan electro-magnetic motion capturer generates unstabikema
by the high frequency vibration of the body part positiongositions when there is any external interference, sucthes t
which happens when Kinect cannot track the part accuratalyagnetic field generated by nearby electronic devices. Both
Here, we explain how we calculate the reliability value bygituations can be detected by Equation 4.
evaluating the vibration.

Because Kinect acquires the position of a body part bas
on the depth pixels that are classified to it [14], when
part is partly/fully occluded, the position cannot be estied The kinematics term refers to the kinematic correctness of
accurately. This results in high frequency vibration of ththe recognized posture. In Kinect, body parts are recognize
tracked position. Similarly, when Kinect wrongly recogeiz independently without considering the kinematic relatuip
an object as a body part, due to the lack of expected featuhg$ween parts. As a result, the segment length between two
on the object, the detected position becomes very unstablgieighbouring parts is not consistent across frames, esfyeci

Assuming p;(f), p:(f + 1) and p;(f + 2) to be the 3D in the presence of incorrectly tracked parts. Here, we é@xpla
position of a tracked body paitin three successive frameshow we analyze the segment length to identify those parts.

d . . N
§. Kinematics Reliability Term

we can calculate the displacement vectors as: We obtain a posture to gather the reference segment lengths.
Kinect does not maintain pre-defined segment length for

di(f) = pi(f+1) =pi(f) @) different body segments. Thus, the captured postures from
di(f+1) = p(f+2)—p(f+1) (2) users of different body sizes have different dimensions Th

The acute angle between the two vectors can be calculated, %yrence segment lengths 'S Obt?"”ed’ updated whene)/er (1
their dot product: the user performed posture is similar to the predefined-refer

ence postures, and (2) all body parts are visible and tracked
% if |di(f)] > dmin by Kinect. In our system, we defined two reference postures,
0:(j) = and |d;(f + 1)| > dpin (3) which are a T-Pose (Figure 2 left) and a standard standing
pose (Figure 2 right). These two postures are chosen because
Kinect usually does not start tracking until either of thesn i
whered, ;. is the minimum length of an acceptable displaceperformed. Thus, using such postures as references does not

ment vector, and is set t8&e¢m in our experiment. It is used require any extra system initialization from the user.

0 otherwise



REAL-TIME POSTURE RECONSTRUCTION FOR MICROSOFT KINECT 5

B3 BF 7 1

ool .

Fig. 2. The two reference postures for initializing segmenmigths. Fig. 3. Examples of the detected unreliable parts indicateckd square.

A body part can connect to multiple segments dependingwhile it is possible to set a higher value for the inferred
on the skeleton structure, such as the hips connecting ¢e thparts, we find that those parts usually are not very accurate.
segments. Assuming the body pais connected 1.+ totat  Comparing to a false positive, a false negative (i.e. wrpngl
body segments, for each connecting segmerthe segment classifying a correctly tracked joint as incorrect) hasylitle

difference ratio at fram¢ is calculated as: impact on the reconstruction system. Thus, we set the value
() = b reg] to zero for the inferred parts.
ds(f) = min( ——,1) (5)  The implementation of the tracking state term depends

ls re . . .
et heavily on the hardware and the feedback it provides. For a

wherel, s is the reference segment length andf) is the  {ragitional optical motion capture system, the trackiragestan
current segment length for segmenat frame f. be defined as the number of cameras that can track a particular
The kinematics reliability value of a body part is defined asarker. For accelerometer based system such as Wiimote, onc
the mean segment different ratio for all connecting segmenghe applied force exceeds the sensor limit, the readingtis cu
S \Sparitotal g (f) off. The tracking state can be defined as how far the applied
RE;(f)=1- (6) force is from the limit.

Spart_total

where RE;(f) € [0.0,1.0].
Another possible implementation of the kinematics reliabiD. Reliability Rate
|ty term is to consider the Segment orientation limit. Human Here, we exp|ain how we combine different terms to calcu-
joints have a limited rotational movement. With such limitate the reliability rate of each body part.
defined for each segment, one can calculate the kinematicshe reliability rate of a body partis defined as:
reliability value by evaluating how much the Kinect posture
violates the segment orientation limit. However, we fouinalt t Jeotar )
this implementation performs sub-optimally. This is besmu % = Z w(f) x min(Rb;(f), Rki(f), Bti(f)) (®)
(2) it requires complex initialization to obtain the oriatibn f=0
limit of the user, and (2) the limit is usually very large, huwhere R; € [0.0,1.0], fiota: is the total number of frames
becoming ineffective to tell if a part is mis-tracked. to consider,w(f) is a Gaussian weight for fram¢ with
Our kinematics term can also be applied in traditional optihe largest value for the most recent frang, (f), Rk:(f),
cal motion capture system. A simple implementation could by, (7) are the reliability terms explained above. The use of
monitoring the distances between neighbouring markersen teliability values in previous frames with a Gaussian weigh
same body segment, and observing any abnormal changes.grgides a smoothing out effect. That is, when a body part
systems that conserve segment length such as the mechaniCalis-tracked, it takes a few frames for the reliabilityerao
systems, the segment orientation limit is the best choice. recover, and Subsequenﬂy enhances the System Stahmmyl”
system running aB0H z, fi.iq; IS Set to be6, which means
C. Tracking State Reliability Term we consider a window of.2 second.
For most motion capture system, the hardware providesF'guré 3 shows an example of applying Equation 8 on the
some indications on how well the posture is tracked. TH®dY parts tracked by Kinect. To highlight the incorrectly
tracking state term refers to the hardware feedback of venetfifacked part, we render a red square on each part with the

a part is well tracked or not. Here, we explain how to app/§iZ€ Proportional tal — R;. Notice that our system picks up
tracking feedback from Kinect to evaluate the reliabiliglue. MOSt mis-tracked parts accurately, such as the left haridstha

Kinect provides basic information to tell if a body part id'0t @ccurately tracked in Figure 3 (Left) and wrongly tratke

tracked, inferred based on neighbouring parts, or not éackin Figure 3 (Right).
when it is completely not visible. The tracking state term of

parti at framef is defined as: V. NATURAL POSTURESPACE
1.0 if tracked In this section, we explain how we construct a natural
Rt;(f) ={0.0 if inferred (7) Posture space that is used to synthesize natural postui®. Th

involves an offline process to prepare a motion database, as
well as two online processes to extract posture samples and
where Rt;(f) € [0.0,1.0]. apply local Principle Component Analysis (PCA).

0.0 if not tracked
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A. Motion Database Different from traditional K nearest neighbour search, we
&Qply the reliability rate of a joint as a weight for finding

Here, we explain the offline process to prepare the moti . . . . .
P P prep Similar postures. The posture difference function is define

database. s
We create the motion database with motions captured from’
a traditional optical motion capture system. The captured ttotal
d k d k\2
motions are retargeted to the Kinect skeleton structuregusi D%, p*) =Y Ri(pf —pf) 9)
=0

commercial software, and the dimensions of body parts are

designed according to [37]. We remove the global rotatiqghere p¢ and p* are the database posture and the Kinect
along the vertical axis and the glObaI 3D translation f%osture respectivehi,total is the total number of body parts,
normalizgti'on. Each pOStUre is represented with a set Oyb% and piﬂ are the 3D body part position from the database
parts positions. posture and Kinect posture respectively. With the use of the

The database is filtered to remove similar postures yliability rate, we rely more on the correctly tracked part
thresholding the sum of squared differences of body patile reducing the influence of the unreliable ones.
positions. Apart from enhancing run-time efficiency, thgana  Since the extracted K postures are similar to each other,
purpose of the process is to control the data sample demsityye can represent them in a low dimensional space. We use
posture space. If the density is unreasonably high, a ds¢abpCA to construct the reduced space, and name it the natural
query may retrieve overly similar postures, and thus ladkef posture space as it is constructed with real postures. The
neccessary variation to construct a meaningful naturalup®s major advantage of creating a posture space instead of using
space as explained in Section V-B. We will analyze the effegidividual posture directly is to allow synthesizing pasts
of the filtering threshold on the quality of the synthesizeghat are not available in the motion database. The space
motion in Section VIII-D implicitly allows blending of postures, and thus can systhe

The motions that should be contained in the database dep@ne much wider range. In Section VIII-D, we will analyze the
on the target application. The idea is that we composeeffect on changing the number of dimension used to represent
database with the movements that the users are expecte¢htéoreduced space.
perform. Our database includes motions of different ckasse we applied brute force search for the K nearest neighbours
such as boxing and walking. The unfiltered database contajiicause of the small size of the motion database. However,
roughly 21590 postures, which is then filtered into 2574n case a large database is used, brute force search will be
The database is relatively compact due to the scope of #§mputationally costly. A possible solution is to quantize
target motion. However, if the application requires theruse the reliability rate into a number of discrete values, and
perform a wide variety of motion, such as dancing in différerecompute a neighbour map for different combinations of
style, a larger database will be needed. The implementatigfliability rates in the body parts. This will enhance the-ru
details of our database can be found in Section VIII. time efficiency, with the cost of extra memory usage for sigri

Notice that while our framework can support body postunge pre-computed neighbour map.
represented by orientations, we opt to use 3D positions ishi
because Kinect tracking is based on position. The oriemtati
estimation provided by Kinect is far less reliable than the
position one. For parts with short segment length, origariat  In this section, we explain how we synthesize a posture that
can easily flip overl80° with a small amount of positional follows the tracked body parts while reconstructing migsin
error. We therefore synthesize posture using 3D positiang, unreliable parts. The synthesizing framework is consgaict
apply [1] to reconstruct the orientation, which will be detd as an optimization process that is driven by multiple energy
in Section VII. terms. We will first detail different terms we designed, and

then explain how we conduct the optimization process.

VI. POSTURESYNTHESIS

B. Local Principle Component Analysis
) _ o A. Control Term
During run-time, we extract postures that are similar to the

user performed one from the database and construct theahatuhrHere’ r‘:"e _exr:jlaln the cof_ntro_l ;t]erltln, which evaluates how well
posture space. This involves applying the reliability rege 1€ Synthesized posture fit with the Kinect posture.

obtain similar postures and reducing their dimensions with E2ch sample point on the natural posture space,cor-
PCA. responds to a body posture in the full dimensional space,

eﬁ‘f' p* can be calculated by back projecting using the

ability rate with Equation 8 for each body part, and obtaiRrojection matrix calculated by PCA whenﬂcgnstrycting the
the K nearest neighbours from the database. To compare %ural posture space. jc'jo ;val(tjjate Tov;ﬁ Wf”f'ts W'tfh th(_a
Kinect posture with those in the database, we first normaligénECt posture, we consider and apply the distance function

it by removing the translation and vertical axis rotation Orlnentloned in Equation 9:

the root, such that they become view point invariant. We then Ec=D@p®,p") (10)
retarget the Kinect posture to the standard body size used in

the motion database [1]. wherep” is the Kinect posture.

Given a posture captured by Kinect, we evaluate the r
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Notice that since the reliability rate is considered in Equ@. Movement Continuity Term

tion 9, we consider well tracked parts heavier than the unrel Here we explain the movement continuity term, which takes
able ones. This prevents the synthesized posture beingedfe jhio account the synthesized postures in the previous Same

by wrongly tracked body parts. to maintain smooth movement.
The movement continuity term minimizes the change of

B. Style Term displacement vector of every body part in the synthesized
Here, we explain the style term, which evaluates how welostures. It is defined as:

the synthesized posture represents the posture style in the Z?”m((p@ ot = (prt — pt2))2

natural posture space. This term is particular importangrwh Em = =0 ! L ! ! (13)

the Kinect posture is noisy and incomplete, as it can help ; ftl‘)t‘” L

defining the missing parts. _ ety — 2 P )? (14)
The natural posture space encodes the style of posture Utotal

intrinsically, defined by the K nearest neighbours that aedu where p?, p”~ 1, p*~2 represent the position of body pait

. 1! 3 ' 7
to construct the space. To ensure the synthesized posturéor the current, one frame before current, and two frames
follows the style, the style term is defined as the distanggfore current synthesized postures respectivigly,; is the

betweenp” and its closest neighbour: total number of body parts.
i 2 (o = )’
Es =min trotal (1) E. optimization

wherep™ represents one of the k neighbours used to constructiere, we explain how we synthesize the final posture by
the natural posture spacg andp!* represent body paitin  optimization based on the terms explained above.
the respective posture, arng,.; is the total number of body ~We applied a customized version of local stochastic search
parts. algorithm [38], which is a variation of the random sampling
While previous works such as [3] use probability densitjnethod [39], to optimize for the target posture. Given atiahi
functions to represent the likelihood of the movement of $ample on the natural posture space, we randomly sample a
part in a covariance matrix, we argue that it may not be raimber of potential postures in the space for each iteration
good solution for our problem. This is because the sampl€Be optimization score of each sample is evaluated as a
used to construct the space do not come from a continuoMeighted sum of the energy terms:
mption. They are disgrete neighbours that are close .to the E = w,Ec+ w,Es + wyEk + w,, Em (15)
Kinect posture, in which some parts may not be available.
Thus, the neighbours may not lay in a consistent probabilihere w., ws, wy, andw,, are the weights. In our system,
distribution. Our method discretely considers each neighb they are set as 1.0, 0.5, 1.5 and 0.25 respectively. The
and minimizes the distance towards the closest neighbais. Tpotential posture that minimizes the evaluation functiati w
ensures that the synthesized posture exhibits similag.styl be considered as the initial posture sample of the nextiiera
The optimization process continues until an optimal soluts

C. Kinematics Term found, or the number of iterations reaches a predefined. limit
Here, we explain the kinematics term, which maintains thTehIS allows us to control the trade-off between synthesal-qu

ity and computation time. We will provide detailed analysis

kinematics features of the synthesized posture. . .
Similar to Section IV-B, we represent the kinematics rao-/n how these values affect the system performance in Section
' II-D.

uirements as the segment length. The only difference is t o . :
d g 9 y here are some general principles for tuning the weight

because the synthesized posture is from the natural postur . f ' .
y P post quation 15. First, the kinematics terms should not be

space, its segment sizes should be similar to the standasd be! :
OAated as most character control systems in games and

size used in the database. The kinematics term is thus defif& . L
as: animation applications conserve the segment lengths of the
Storel 11w rdatabases? characters. Thus, its weight is the highest. Second, tiegpyi
2o U5 = 1 ) (12) burpose of the system is to reconstruct the Kinect posture,
Stotal with a secondary purpose to maintain a realistic style. This

wherel? is the length of segment in the synthesized pose,explains why the weight of the former is larger than that of
[database js the reference segment length of the standard bothe latter. Third, the movement continuity term is a tradfe-o
size used in the database [3%],:,; IS the total number of between temporal smoothness and system responsiveness. Fo
segments of the character. interactive applications, we should use the smallest plessi

It is also possible to define a segment orientation term wlue to minimize the lag introduced to the tracking system,
make sure the synthesized posture obeys the orientatid@s.limas the term minimizes velocity change across frames.
However, we found it unnecessary, because the use of th&ince our posture synthesis algorithm is a frame-based
style term defined in Section VI-B achieves a similar effe@pproach as oppose to the spacetime optimization methdd [40
to prevent violation of orientation limits. The segmentdén it may suffer from posture inconsistency across frames. &Vhil
term we implemented, however, is a far stricter requiremeibtis possible to dramatically increase the weight of the ezov
and has to be enforced specifically. ment continuity termwg,, to enhance the smoothness of the

Ek =
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synthesized motion, it could over-constrain the optimiirat B. Target Posture

process and reduce system responsiveness. To remedy tifere e explain the difference in constructing the target
we use the previously synthesized posture as the |n|t|aplsaamIoosture between our method and [1].

posture to start the optimization. As a result, the optitdzra In this paper, we utilize the body part positions synthegize
process always has to opportunity to explore postures thalihe natural postures space as the target posture. The orie
are similar to the previous one. This approach, howeveLinn of the joint is obtained by calculating the weighteghs
cannot completely eliminate the high frequency vibratidn Qy o ientation from the K nearest neighbour used to construc
the synthesized movement. We utilize a physical simulatigpe na¢ra) posture space. The weight is defined as the wvers
system and a PD controller to track the reconstructed PESIUN ¢ different between the synthesized posture and the neighb
whic.h ensures a natural and kinematic valid final result.eMo[jSmg Equation 9. Comparing to [1], which defines the target
details are given in Section VII. . posture as the posture that is most similar to the Kinect one
While previous research suggest that the Covariance Matfixthe motion database, our method create much better sesult

Adaptation (CMA) method works well in optimizing CO””OlespeciaIIy when the Kinect posture is being occluded.
parameters for character movement in the full dimensional

space [41], [42], it is unnecessary in our problem. This is
because PCA has already minimized the intrinsic redundarfey PD Controller
within the parameters in the latent space, and hence CMAUsing the synthesized posture as the target posture, we
cannot produce significant improvements. On the other har@iculate the control force and torque for each body pad, an
as discussed in previous research [43], simple gradiesedes drive the character to fit into the target. Similar to [1], we
usually does not work well with human motion optimizationcontrol the movement with 3 dimensional forces and the 1
This is because of the non-linear features of the motiafimensional torque along the body segment direction. This
evaluation process, as well as the presence of local optinfakilitates easier control parameter tuning and more efiici
A discrete sampling approach is more reliable. simulation.
In each time step, the control force for a par$ calculated
by a PD controller:
VIl. PHYSICAL SIMULATION , .
F =K, (pfm‘get _ ngurrent) + Kd(pﬁarget _ pgm-rent ) (16)
Based on the synthesized posture in the previous section, target : -~ current
we adopt the physical modelling method in [1] to simulat¥Nere »; is the target position of the par"” IS
natural and kinematically valid motions. In this sectiore wthe current position of the park,”"*" andps* """ are the
review the method and highlight the changes we made in tfigspective derivativel, is the elasticity gain and(; is the
paper. damping gain. A highK'. can improve the responsiveness of
The physically simulated character is used as a kinemalfté character, while a higli’; produce more stable move-

filter to create natural movements. As in [1], we apply exaernments. We manually tune the smallest possibleand K4, as
forces and torques to drive the character to the synthesiZ&§yStém with high control forces is usually unstable, arel us
posture. It has two major advantages comparing to simpi¢me values for fall joints. Furthermore, t_he magnitude ef t.h
displaying the synthesized posture. First, because of see (esultant forch is bounded by a predeflned value .t(_) avoid
of a PD controller, the movement of the body parts obe>;,g1exp_ected high control force while the target positiors ar
Newton physics. Second, because we construct the chairact&fe’y different from the current ones. _
a physical world, kinematics features such as segmentrengt 1he control torque along the axis of body pais calculated

are accurately maintained. similarly:
Ti _ K;(Qfarget o 0icurrent) =+ K?(gfarget’ _ qurrent/) (17)

A. Physical World Modelling whered!“"9" is the target rotation of the joint along the joint
Here, we explain how we model the physical world axis, 07" is the current rotatiord;*"*"' and©;""*""" are
' P phy ’ the respective derivatives{ and K¢ are the hand tuned elas-

The physical environment is modelled with the Open D¥;ciry gain and damping gain. Similar to the force calcudati
namics Engine [44]. We create an infinity large plane in tf‘me torqueT is bounded by a predefined value.

ODE world as the floor plane, which provides supporting force During simulation, the physical simulation engine ODE

tohthe S|mulated| ?hara(_:ters. IG_rgvnK IS |rr]nplement$0|I| suah ﬂ?naintains the segment length and segment connectivityewhil
when (;‘O contrI? orce is applied, the characters fall on® ty . ing the calculated control forces and torques. Thelres
ground naturally. tant posture is the equilibrium state of the character,asgmt-

~ Each character is represented by 19 body segments andgdihe posture that can satisfy the target posture the most.
joints according to the Kinect skeleton definition. The sinel

the mass of each segment are set according to [37]. Segments
are modelled with capsules for efficient collision detettio

and the joints are modelled with ball joints, which indicate In this section, we show experimental results obtained from
that each segment has 3 degrees of freedom in rotation. our system. We first show results of postures reconstruction

VIIl. EXPERIMENTAL RESULTS
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Fig. 4. Posture reconstruction using our system when the (a3eerforms different postures, (b) interacts with a bay,ifteracts with a piece of paper,
(d) plays a basketball, and (3) sits on a chair.

Upper | Lower

Motions Examples Frames | SD sD As shown in Figure 4, we rendered the Kinect skeleton

Locomotion Run/Walk 3573 8.1 15.27 with purple body parts and yellow body segments. We used
Sbjectga;dlli\?g Eiqk/thgrry A (132(2)% 53-798 (1316-80 red color to indicate body parts with low reliability valuiEhe
pper coay ovement oint/Scratc! . . . P
Boxing punch/kick | 7769 118 13.7 reconstructed posture was rendered with _the char_acteeﬂfngr _
Sword Fighting Swing/Dodge | 2120 16.3 13.4 clothes. The two postures were placed side by side for easier
TABLET comparison.

DETAILS OF THE MOTION DATABASE IN OUR SYSTEM . .
We first tested how well our system reconstruct basic user

postures such as raising arms and legs (Figure 4a). Then, we

EZ‘SS‘T?:éi‘fn‘g e g:laSmes Ll"gzer sD '502"1’1“ SD asked the user to interact with different objects, inclgdin

Box (Figure 4b) 897 12.26 6.39 box (Figure 4b), a flip chart (Figure 4Db), a baskeraII (ngur

Flip Chart (Figure 4c) 1098 13.24 7.38 4c) and a chair (Figure 4e). During the interactions, Kinect

Basketball (Figure 4d) | 831 11.81 4.18 incorrectly considered the objects as part of the body. Our

Chair (Figure 4e) 748 7.87 11.86 T .

Office (Figure 7) 685 13.23 951 reliability measurement successfully detecFed thoseliaibte
ABLE Tl parts and reconstructs the posture accordingly.

DETAILS OF THEKINECT TESTING DATA IN OUR SYSTEM

B. Perceptual Comparison

when the user interacts with external objects. Next, we com-Here, we compare our proposed algorithm with other motion
pare our method with previously proposed algorithms. Bmnal reconstruction approaches, and assess the perceptush@ccu
we analyze the accuracy and performance of our system. Tdieeach method using a survey-based evaluation [45].
readers are referred to the supplementary video for furthelWe define method A as the approach proposed in [1].
details. Method B is an implementation of our proposed method
The experiments were conducted with a laptop computeith the reliability evaluation functions disabled, whigh
with an Intel Core i7-2630 CPU (2.00GHz), 8GB RAM and @omparable to previous works that optimize the posture with
GeForce GTX 560M graphic card. The system achieved realt tracked parts without any reliability assessment sicfRh
time performance and was capable of handling over 30 framesd [3]. Our proposed algorithm is named as method C.
per second (fps), although the actual frame rate was limited

by the Kinect hardware to 30 fps. 9 B Method A B Method B B Method C —
We use motions captured from traditional mocap to con- .8 T

struct our motion database, and those captured from Kinect § 7 1 1 1 -

. . . 36 T 1 il T

as our testing data. Our database consists of motions from 2 | J |

different classes. Table | shows the details including gseam 3 > J

motions, number of frames, standard deviation of positiona §:

movement in centimetre for the upper and lower body. The &,

overall average standard deviation in the whole database is ; , ‘ ‘

13.25cm for the upper body, and 11.63cm for the lower body. Basic Box  Flip Chart Basketball Chair  Office
The testing data from Kinect includes postures when the Tracking

user interacts with different objects. The details are show 6 Th | | diothiod

ot ; Fig. 6. The perceptual accuracy according to user studie ata sets
Table Il. The overall average standard deviation is 12.0#om using different reconstruction methods.
the upper body and 7.98cm for the lower body. These values

indicate that the upper body movement of the Kinect captures\\e conducted an evaluation experiment with 27 partici-

is comparable to that of the database, while the lower bogynts. The objective of the experiment was to evaluate the

capturing area. the experiment, the participants were presented with thedi
) color video, as well as the synthesized characters usingadet
A. Posture Reconstruction A, B, and C one after another. The participants were not told

Here, we discuss the experiments for reconstructing thie usénich method to be our algorithm. They graded the accuracy
postures in different situations. by comparing the movement of the character and that of the
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W o FIEY= 5

Fig. 5. Reconstruction using (a) the left hand and foot, @hthands, (c) hands and feet, (d) hands, feet, elbows areskaad (e) all body parts.

Setup | Parts Used Difference (cm)
(a) Left Hand, Left Foot 6.38
(b) Hands 5.60
(c) Hands, Feet 4.52
(d) Hands, Feet, Elbows, Knees 4.15
(e) All Parts 3.90
TABLE TN

ACCURACY OF THEPOSTURERECONSTRUCTIONFRAMEWORK.

Fig. 7. The reconstructed postures using (a) method propogdd, (b) our

method without the reliability values, (c) our method. Class g:gtlon ggfw (cm) ggféonstructe d (cm) Eﬁ:‘c::ggge
(@ [ 535 9.59 7.26 24.3%
(b) | 52.8 10.89 7.44 31.6%
Kinect user in a 9 point scale, with 1 being inaccurate and|9 (¢) | 60.4 12.41 - LEJIS 37.5%

being accurate.

Figure 6 shows the average accuracy rating from partic-
ipants for each testing data set, in which the vertical lines
represent standard derivation. Our proposed algorithnsisen )
tently outperforms the other two. Considering all data,ges 1S the total number of body partg,.. is the total number of
overall average perceptual accuracy of method A, B and C 4/@mes considered.

5.06, 5.20 and 6.20 respectively, with the standard déoivat 1he first analysis measured the accuracy of our posture
of 1.63. 1.55 and 1.38. reconstruction framework. We carefully recorded 20 sesond

We observe that for movement with less occlusion, such Qfs data from Kinect, trying our best to minimize Klnec_t
i:kmg error. Next, we reconstructed the postures using

the basic tracking and the box data sets, our method does %%erent subsets of parts, which are shown as purple body

perform significantly better than method A. This is becaugé in Ei 5 Wi lculated th b

the major source of inaccuracy in simple environments is tﬁgrts in Figure 5 € calcu gti tK_e average error etwein
signal noise, and method A is good at filtering vibration if{'® "econstructed posture and the Kinect raw posture oeer tt
body parts. However, in the office data set where serio%"oIe capture using Equation 18' The results are shown in
occlusion occurs, our method performs far better. MethJ@ble lll. We found that even with only a few body parts

A does not construct a natural posture space for postlfl‘éCh as setu'p ©). our §¥stem could reconstruct the full body
optimization. The reconstructed postures are notablymfit posturzs t\)N hile m?"”ta'”]j”_‘f da small error. Hc;]wever, Setup
from the actual user movement (Figure 7a). Method B cann(t‘?t) an ”( ) ;omehtlmes ane to reconstruct t gdmo:;ement,
fully estimate the true posture of the user, as it is influerne especially when the moving parts were not considered.

the incorrectly tracked parts (Figure 7b). Method C acalyat The second ar_1alysis e\_/aluated the accuracy of the overall
identifies parts with low reliability value and corrects itine system, considering the Kinect hardware as paf‘ of t_he syste
accordingly (Figure 7c). component. We captured user movements with Kinect and

the Polhemus Liberty magnetic mocap at the same time. The
magnetic mocap was a wired system with 16 6D sensors. We
C. Numerical Accuracy Analysis did not use an optical mocap because its infrared emitters

Here, we analyze the numerical accuracy of the postdfgerfered with the Kinect one, severely degrading the igual

reconstruction framework, as well as the overall accura§¥ bothlsystems. Welfclassl|f:jeddthe dcapturecil ?ot;/ements mtto
including the Kinect hardware error. ree classes: (a) self-occluded and un-occluded movemen

We define an error function between two postures b) movements being occluded by environment objects, (c)

considering the body parts position relative to their pmenmgxerSZLst;ane;ﬁ\Ctlgg l:/g:iz’nalng \l/)vir::?);cgfedde;jh:ﬁiﬁgzltr?;w
in the skeleton hierarchy, as such a representation has been ) . 9Eq ' pare .
o i postures and the reconstructed postures with those obtaine
shown effective in [46]: ) .
from the magnetic mocap. The results are shown in Table IV.
Z]{t:otoal Soitotal (P}(f) —pl, (f)) _ (pg(f) —p? (f)) ’ As expected, the error of the raw postures was large in genera
€= (18)and the value was even larger for more complex movements
such as those in class (c). For all classes of movement, our
wherep!(f) and p?(f) are positions of part at frame f of system can correct the posture to a consistent quality.

posture 1 and 2 respectively, denotes the parent pakt,;q; Notice that due to the hardware implementation, the body

ACCURACY OF THEOVERALL SYSTEM.

ftotal X itotal
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Parameter Value
Number of Posture in Motion Database 21590 K Nearest Neighbours Search
Number of Posture in Filtered Motion Database 2574 H Natural Posture Space Construction
Number of Neighbour in K Nearest Neighbour Searct80 4 Posture Optimization
Dimensionality of the Natural Posture Space 20 \ Physical Model Solving
Maximum Number of Optimization Step 20 Others (e.g. Rendering)
Number of Sample Per Optimization Step 100
TABLE V
PARAMETER USED IN OUR SYSTEM Fig. 9. The proportion of computational cost for differenogesses.

part positions detected by Kinect were never accurate,-esf8% ©Of the total processing time, while other processes are
cially in the depth dimension. This explains the relativeigh elatively fast.

error with respect to the magnetic mocap. Our system oldaine

input from Kinect and inherited the error from Kinect when IX. CONCLUSION AND DISCUSSIONS

reconstructing the postures. Still, our system managedngb |n this paper, we propose a new framework to automatically

the postures towards to true ones. reconstruct full body motion from corrupted motion capture
data. Our method evaluates the reliability of every tracked

D. Performance Analysis body parts and creates a natural posture space to synthesize

Here, we analyze the effects of various parameters consid-valid posture. We demonstrate the effectiveness of our
ering the reconstruction quality and computational timez Wapproach by reconstructing motion from incomplete andynois
also evaluate the computational cost of the overall system.motion data acquired from the Microsoft Kinect. Experinant

We first recorded 30 seconds of data from Kinect. Usingsults show that our method can successfully correct et in
the recorded data, we tuned the parameters of the system gradion captured from extreme conditions when a large portio
evaluated the reconstructed postures (Figure 8). The gweraf the body is occluded. Our framework is computationally
optimization score (blue line) and the average frame tirad (refficient and achieves real-time performance, making it ap-
line) were plotted. Notice that the optimization score ie thplicable to a wide variety of interactive applications suh
plots was in negative values. motion gaming and sport training.

Figure 8a shows that if the database is heavily filtered, Our system can potentially enhance the user experience
the reconstruction performance is poor, due to the lack of multi-player applications, because we can reconstruet t
relevant posture that can be used to construct the natypabtures when one player is occluded by another. This en-
posture space. With a database of reasonable size, whiclabites dense user-user interactions in applications likeidg
roughly 2000 postures, we can obtain much better resules. Tdames. The practical problem that has to be solved is the
optimization score does not improve significantly when theomputational cost, because the reconstruction time ésitig
database size increases further, because the posturaséeqwoportional to the number of user in the scene. GPU based
redundant and do not contribute to the reconstruction ceoptimization can be a potential solution.

Figure 8b shows that using excessive number of neighbourdVe assume that the database contains postures that are
to construct the natural posture space has a negative effgotilar to the user performed ones. In case such postures are
on the optimization score. This is because the system magt available, the natural posture space constructed may no
not be able to find so many neighbours that are similar &gcurately estimate the correct posture of the user, and the
the current Kinect posture. Figure 8c shows that given tlggiality of the reconstructed motion may drop. This is a gaher
same amount of computational power, using a large numi@oblem of data driven algorithms. One possible solution is
of dimensions to represent the space results in under-gagnplto insert correctly tracked Kinect postures into the motion
and thus the final results are degraded. Figure 8d shows tHatabase during run-time, which enables the system to learn
the optimization score converges after around 20 optiicizat and adapt to unexpected movements.

steps. The frame time does not increase further beyond thaFast movement reconstruction with Kinect is a challenging
point because we terminate the optimization process onu®blem. The depth camera of Kinect suffers from motion
the optimal solution is found. Figure 8e shows that thlelur when the user performs fast movement such as punching.
performance of the optimization becomes consistent when tRigure 10 (Left) demonstrates the blurring effect of a wgvin
number of sample per optimization steps is larger than 1001and in comparison of a steady one. While our system can

Because of the intrinsic dependency among the parameteesonstruct those postures, the decrease in Kinect trgeldn
tuning the parameters requires multiple iterations. Inheacuracy does impact the resultant quality. Furthermoreabse
iteration, they are tuned one by one for the best value. Thifthe 30 frame per second capturing limit, per frame vejocit
process is repeated until the system cannot be improvefdfast moving body parts is relatively large and containseno
further. Table V summarizes the values we used in our systeantifacts. One may consider tuning the weight of the movamen

Our tuned system runs in 27.7 ms per frame (36.7 frangentinuity term to enhance system responsiveness.
per second), which has a higher frame rate than real-time (30Another challenging situation is user rotation. Our system
frame per second). The proportions of computational cost cdn handle roughly 45 degree of rotation, in which Kinect
different processes are shown in Figure 9. Optimizing tre paisually manages to recognize a few body parts in the shadowed
ture is the most computational costly, accounting for rdughside. If one side of the body is completely lost, the system ca
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Fig. 10. (Left) Motion blur problem of fast movements. (Right) occasion
when the reliability measurement fails.

(3]

(4]

(5]

(6]

only predict based on the visible half. The accuracy depends
on the movement correlation of the two sides. Practicdiiy t

problem can be solved with domain knowledge. In many a

J. Chai and J. K. Hodgins, “Performance animation from low-
dimensional control signals,” iIBIGGRAPH '05: ACM SIGGRAPH 2005
Papers New York, NY, USA: ACM, 2005, pp. 686—696.

Z. Ren, J. Meng, J. Yuan, and Z. Zhang, “Robust hand gestrogni-
tion with kinect sensor,” irProceedings of the 19th ACM international
conference on Multimedjaser. MM "11. New York, NY, USA: ACM,
2011, pp. 759-760.

S. Kean, J. Hall, and P. Perrjfleet the Kinect: An Introduction to
Programming Natural User Interfacedst ed. Berkely, CA, USA:
Apress, 2011.

S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, Kohli,

J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitogibb
“Kinectfusion: real-time 3d reconstruction and interaotigsing a mov-
ing depth camera,” ifProceedings of the 24th annual ACM symposium
on User interface software and technologgr. UIST '11. New York,
NY, USA: ACM, 2011, pp. 559-568.

1 R. A. Newcombe, A. J. Davison, S. lzadi, P. Kohli, O. Hillig,

plications such as console games, the class of user peidorme
motions is known in advance. The system can reconstruct the

postures using a database containing only that class @macti

J. Shotton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon
“Kinectfusion: Real-time dense surface mapping and trackingMixed
and Augmented Reality (ISMAR), 2011 10th IEEE Internati@yanpo-
sium on oct. 2011, pp. 127 —-136.

instead of the general purpose database we used. This hejgsM. Sun, P. Kohli, and J. Shotton, “Conditional regressimrests for
to determine postures with few recongnized parts.

Because our measurement considers high level behaviou
in the rare occasions when an external object moves similar
as a body part, it may fail to detect the error. Figure 10 (Bigh
shows a carefully constructed situation where Kinect mégar[lo

i

the flip chart as the lower body of the user. Our measurement
cannot detect all incorrect body parts, as they exhibitslaim
movement features as the legs. One future direction is m;as%ll]

low

level details to assist reliability measurement.

As explained throughout the paper, our framework is general
and can be applied in different motion capture systems. An-
other future direction is to apply it for enhancing the ttemtial
optical motion capture process, where missing or incdgrec{12]
tracked markers have to be clean up manually.
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