
IEEE TRANSACTIONS ON CYBERNETICS 1

Real-Time Posture Reconstruction for
Microsoft Kinect

Hubert P. H. Shum, Edmond S. L. Ho, Yang Jiang, and Shu Takagi

Abstract—The recent advancement of motion recognition using
Microsoft Kinect stimulates many new ideas in motion capture
and virtual reality applications. Utilizing a pattern recognition
algorithm, Kinect can determine the positions of different body
parts from the user. However, due to the use of a single depth
camera, recognition accuracy drops significantly when the parts
are occluded. This hugely limits the usability of applications that
involves interaction with external objects, such as sport training
or exercising systems. The problem becomes more critical when
Kinect incorrectly perceives the body parts. This is because
applications have limited information about the recognition
correctness, and using those parts to synthesize a body postures
would result in serious visual artifacts. In this paper, we propose
a new method to reconstruct valid movement from incomplete
and noisy postures captured by Kinect. We first design a set of
measurements that objectively evaluates the degree of reliability
on each tracked body part. By incorporating the reliability
estimation into a motion database query during run-time, we
obtain a set of similar postures that are kinematically valid.
These postures are used to construct a latent space, which is
known as the natural posture space in our system, with local
Principle Component Analysis (PCA). We finally apply frame-
based optimization in the space to synthesize a new posture that
closely resembles the true user posture while satisfying kinematic
constraints. Experimental results show that our method can
significantly improve the quality of the recognized posture under
severely occluded environments, such as a person exercising with
a basketball or moving in a small room.

Index Terms—Kinect, posture reconstruction, local principal
component analysis, human computer interaction.

I. I NTRODUCTION

USing the newly introduced Microsoft Kinect, it becomes
possible to recognize human movements with easy hard-

ware setup. This fuses a large number of new research ideas
on motion based systems, including entertainment applications
such as motion gaming, as well as serious applications like
sport training.

The major challenge of motion recognition with Kinect
is the noisiness and incompleteness of the tracked postures.
Kinect is a vision-based motion capture system using an
infrared sensor to obtain depth information. Therefore, it
suffers from similar problems with traditional optical motion
capturer, such as occlusions and mixing up of tracked body

Hubert P. H. Shum is with the Faculty of Engineering and
Environment, Northumbria University, United Kingdom, e-mail:
hubert.shum@northumbria.ac.uk

Edmond S. L. Ho is with the Department of Computer Science, Hong Kong
Baptist University, Hong Kong SAR, e-mail: edmond@comp.hkbu.edu.hk

Yang Jiang is with the Faculty of Engineering and Environment, Northum-
bria University, United Kingdom, e-mail: yang.jiang@northumbria.ac.uk

Shu Takagi is with the Department of Mechanical Engineering,The
University of Tokyo, Japan, email: takagi@mech.t.u-tokyo.ac.jp

parts. In our primary work [1], we report that a small amount
of noise can be corrected with pre-captured motions and a
physical simulation engine.

The posture recognition problem becomes more challenging
when the user interacts with external objects. This is because
Kinect has a single inferred sensor and every tracked part re-
quires a direct line of sight. Consequently, Kinect applications
usually require the user to face the sensor all the time without
holding any objects. This hugely limits the usability of the
applications, especially if we use Kinect to implement systems
that require handling of equipment such as sport training.
Imagine a user exercising with a basketball or a dumbbell
weight when some parts of the body are occluded from the
camera. Kinect will fail to accurately recognize the posture,
resulting in unreliable or missing body parts. Using such a
posture to construct a virtual character, or to interact with the
application, would result in serious artifacts.

While previous research can reconstruct broken postures
into more plausible ones, they cannot be directly applied
in the Kinect problem. First, the proportion of body parts
that are lost can be large and can be different from frame
to frame. Second, Kinect returns a pose consisting of both
correctly and incorrectly tracked parts, while the applications
have limited knowledge about the recognition correctness.As
a result, previous algorithms on low dimensional control that
assume a relatively stable control signal [2] would not work,
as the signal from Kinect is not consistent. On the other hand,
simply using all tracked parts [3] results in poor accuracy,
because some of them are incorrect.

In this paper, we propose a new method to measure the reli-
ability of the tracked body parts. This is particular important in
Kinect because the parts include a relative high number of false
positive. An advantage of our designed measurement is that
it relies on general behavioral information about the tracked
parts, making it applicable to different tracking frameworks
with different types of source data. Our measurement returns
a degree of reliability instead of a Boolean value, such thatwe
can make use of the parts that are neither completely correct
nor incorrect. This is essential to achieve good recognition
under extreme situations when many parts are lost.

Using the reliability measurement, we propose a new
method to correct broken postures with a motion database. We
first incorporate the calculated reliability value as weights into
a motion database query to extract a set of similar postures
that are kinematically valid. Then, using these postures, we
construct a local latent space called thenatural posture space
with local Principle Component Analysis (PCA). Because of
the high similarity of the source data, the constructed natural

2 IEEE TRANSACTIONS ON CYBERNETICS

posture space is in low dimensional and smooth. We optimize
in the space for a posture that fits well with the tracked parts
while satisfying kinematic constrains. Finally, the result is
passed to a physically simulated character for further enforcing
kinematics features such as segment length and movement
stability.

With our proposed framework, it is possible to utilize Kinect
for applications such as real-time sport training, in whichthe
users usually need to interact with large external objects.Ex-
perimental results show that our method performs effectively
under extreme situation, such as when a large portion of the
body is being occluded. We show practical examples when the
user interacts with a box, plays with a basketball, and movesin
a small room. We also give detailed analysis to show the high
accuracy on the synthesized movements. While we implement
our system and perform experiments with Kinect in this paper,
the framework is general and is applicable to other tracking
systems, such as the optical motion capturer.

The rest of the paper is organized as follow. We review
related research in Section II. We then give an overview of
our system and point out our major contributions in Section
III. The core of our framework involves four major parts. First,
we design a reliability measurement to evaluate the reliability
of the tracked body parts by Kinect (Section IV). Second,
we construct a natural posture space by querying a motion
database with the Kinect posture and the reliability value
(Section V). Third, we synthesize a new posture that fit well
with the Kinect posture while satisfying kinematics constraints
(Section VI). Forth, we apply a physical simulated character
as a kinematics filter to generate natural movements (Section
VII). Experimental results and system analysis are detailed
in Section VIII. Finally, we discuss our method and future
directions in Section IX.

II. RELATED WORK

In this section, we first review previous work on Kinect
based motion tracking. We then focus on the problem of
reconstructing postures from an incomplete or corrupted data
stream. We finally review the weighted principle component
analysis framework that we adopt in this research.

A. Motion Tracking with Kinect

Here, we review different Kinect-related research, focusing
on those related to motion analysis and synthesis. We point
out the tracking inaccuracy problem of Kinect and discuss
possible solutions.

Kinect uses an infrared sensor to capture a projected pattern
and construct a depth image, which describes the distance
between the sensor and each pixel. It fuses a wide variety
of new research, including gesture recognition and control
[4], natural user interface [5] and 3D surface reconstructions
[6], [7]. New algorithms are proposed to estimate human
postures from the single depth image [8], [9], [10], [11].
They provide economical ways for 3D motion acquisition. A
comprehensive review of Kinect research can be found in [12].
We obtained user postures using the Kinect SDK [13], which
involves training a classifier with a large amount of synthesized

data to identify different body parts [14]. These postures are
considered as source data in our system.

Postures recognized by Kinect are noisy. Raptis et al.
propose a dance motion classification framework for real-time
applications [15]. While the system is unaffected by the noise
of the input data, dance-specific assumptions have to be made
to achieve good robustness. Bailey et al. compare the perceived
quality of the animations generated by the motions captured
from Kinect and those from commercial optical motion capture
system [16]. They apply a Butterworth filter to smooth the
noisy motion. A similar analysis has been carried out by
Fern’ndez-Baena et al. for rehabilitation applications [17].
While the study suggests that Kinect tracking is reliable, it
assumes the motions to be performed in open area with no
occlusion, which is not possible for applications involving
highly dynamic movements and object manipulations.

A major reason of the tracking inconsistency is that body
parts are tracked separately. The posture recognized does not
necessary satisfy kinematic constraints such as segment length.
Ye et al. match the depth image with postures from a motion
database to identify different body parts [18]. However, the
method requires the full body posture to be clearly visible from
the depth image. Shum and Ho use a motion database to fill in
the missing degree of freedom in the Kinect tracked posture,
and apply a physical simulation engine to enforce kinematic
features [1]. Because of the lack of reliability measurement on
the Kinect tracked parts, the quality of the synthesized posture
is heavily affected whenever Kinect percepts incorrectly.Shen
et al. proposed an exemplar-based approach to correct 3D
poses estimated from depth images captured by Kinect [19].
Although the method improves wrongly recognized posture
from Kinect, only golf swinging motions are considered. It
is unclear if the algorithm works when the database contains
multiple classes of motion, and if the performance is consistent
across different types of target movements. Our research
targets in reconstructing postures from different motionsusing
a general purpose motion database.

B. Posture Reconstruction

Here, we discuss how human posture from low-dimensional
or corrupted source data can be reconstructed, and highlight
the need of a reliability measurement for the source data.

The full body postures of the user can be approximated by
a small number of sensors, such as the positions of a few
reflective markers [3], the readings of some inertial sensors
attached to the upper body [20], and the readings of 3D
accelerometers attached only to the limbs [2], [21]. Such a
posture reconstruction problem is challenging since the rest
of body has to be estimated. Due to the high-dimensionality
of human movements, it leads to an under-determined system
that contains many solutions.

To obtain the right solution that produces natural-looking
results, researchers have worked on creating a natural hu-
man posture space, and using pre-recorded human motion to
constraint the solution space. Chai and Hodgins [3] propose
a method based on the lazy learning algorithm [22] to re-
construct a full body posture from low-dimensional marker

REAL-TIME POSTURE RECONSTRUCTION FOR MICROSOFT KINECT 3

positions. Specifically, motion samples that are similar tothe
input signals are selected to construct a locally linear space
using Principal Component Analysis (PCA) [23], which is
then used as priors to constrain the reconstructed pose. Liu
et al. propose to create the local models during run-time
[20]. They reconstruct the new posture with the maximum
a posteriori framework (MAP), which takes into account
the spatial-temporal correlation patterns extracted fromthe
sample motions. The major challenge of these methods is to
construct the local models in real-time for every frame, which
is computational costly especially for larger motion database.

To tackle this performance issue, Wei and Chai [24] propose
to learn a probabilistic model as the pose priors from the
sample motions using the mixture of factor analyzers (MFAs)
[25], [26]. MFA partitions the entire configuration space into
multiple local regions and represents each region with a small
number of latent variables. Since the poses priors are pre-
computed by MFA, the run-time performance is significantly
improved. Grochow et al. [27] compute a probabilistic model
using the scaled Gaussian process latent variable model (SG-
PLVM) [28] from motion data, and find the most-likely pose
according to the low-dimensional constraints given by the
user. However, due to the high complexity of the method,
the training time increases nearly cubically with the size of
the training data, which limits the scale of the data set. Wu
et al. improve the performance by selecting representative
poses and train the pose priors with Gaussian Processes (GPs)
[29]. They further propose to use fully independent training
conditional (FITC) [30], [31] approximation to speed up the
training process of GPs. As a result, it becomes feasible to
learn the model from a large data set and cover a wider range
of movements.

While it is possible to reconstruct natural-looking postures
from low-dimensional input signals, these methods assume a
reliable low-dimensional input signals, whereas motions from
Kinect are noisy with heavy tracking error. A method to
identify incorrectly tracked parts is needed. Lou and Chai [32]
propose a data-driven method to correct noisy motion data
caused by outliers and missing markers. The system learns
a series of filter bases from sample motions, and spatial-
temporally optimized the corrupted motion data to remove the
noise. However, space-time optimization is computationally
costly, and can only be applied when the whole motion is
available, making it unsuitable for motions that are captured
on-the-fly. We propose a set of reliability measurement to
assess the body parts recognized by Kinect, and reconstruct
the posture using the more reliable parts.

C. Weighted Principal Component Analysis

Here, we review the work in weighted PCA (wPCA), which
takes the importance of the data into account when training
the low dimensional models. We adopt the algorithm to weight
body parts based on their respective reliability during the
motion reconstruction process.

Yue and Tomoyasu propose a weighting framework to
traditional PCA to improve its performance on fault detection
and correction problems [33]. They introduce a two-levels

weighting approach to maintain the accuracy and validity of
the PCA model over time. The training data are weighted
according to the importance in the sample-wise level and the
variable-wise level.

The presence of outliers can significantly degrade the con-
structed PCA model. Kriegel et al. evaluate the impact of
outliers and assign lower weights to the potential outliers
to reduce their influences [34]. Pinto da Costa et al. also
express similar concerns about PCA being sensitive towards
noises when being used to analyze gene expression data in
bioinformatics [35].

Forbes and Fiume propose using weighted PCA to improve
the motion searching accuracy [36]. Based on a query motion,
the system assigns heavier weight to more important body
parts, such as the hands in a carrying motion. It then projects
the sample motions and the query motion into the wPCA space
with the assigned weight. Notice that once the weight has
changed, the wPCA space has to be reconstructed. We propose
to compose a local PCA space during run-time to minimize
the space construction cost, and apply the concept of weight
to minimize the influence of mis-recognized body parts.

III. OVERVIEW

Figure 1 shows the overview of our system. We first evaluate
the reliability of different body parts in the Kinect recognized
posture, in which some parts are occluded. Based on the
reliability values, we conduct a database query to extract the K
nearest neighbour postures. The postures are used to construct
a natural posture space, with which we conduct a posture
optimization process to synthesize a correct posture. Finally,
we use the reconstructed posture to control a physically
simulated character that produces natural movements.

A. Contributions

In this paper, we have three major contributions:

• We propose a measurement for evaluating the reliability
of tracked body parts, which is represent in a continuous
scale. The measurement considers abnormal behaviours,
kinematics features and sensor status. It identifies false
positive tracked parts in Kinect for more accurate posture
reconstruction.

• We propose an algorithm to construct a natural posture
space with local PCA considering the reliability values. It
is a low dimensional space composed with pre-captured
posture samples that are kinematically similar to the
Kinect posture. It facilitates efficient and reliable posture
synthesis for real-time applications.

• We propose a posture reconstruction framework using
the natural posture space to reconstruct a valid posture
from incomplete and noisy Kinect data in real-time.
We optimize for a posture that corrects the non-reliable
body parts from Kinect, while satisfying the positions of
the reliable ones and obeying kinematics constraints. It
allows us to reconstruct the posture of a user even if it
is occluded.

4 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 1. The overview of the proposed framework to reconstructnoisy and incomplete Kinect posture.

IV. RELIABILITY MEASUREMENT

An incorrectly tracked body part (i.e. false positive) in a
motion recognition system is even more damaging than a
missed part, because it would incorrectly guide the system
to infer the posture. In this section, we explain our proposed
reliability measurement to evaluate the reliability of a tracked
body parts, such that we can identify false positives.

Although the actual implementation of the reliability terms
may vary in different motion capturing systems, they can
usually be classified into three groups:the behaviours term, the
kinematics term, andthe tracking states term. In the following,
we explain our design of different terms that evaluates the
posture returned by Kinect. We also discuss how the terms
could be adjusted to fit into other popular motion capture
systems.

A. Behaviours Reliability Term

The behaviours term refers to abnormal behaviour of a
tracked part. In Kinect, this abnormality can be represented
by the high frequency vibration of the body part positions,
which happens when Kinect cannot track the part accurately.
Here, we explain how we calculate the reliability value by
evaluating the vibration.

Because Kinect acquires the position of a body part based
on the depth pixels that are classified to it [14], when a
part is partly/fully occluded, the position cannot be estimated
accurately. This results in high frequency vibration of the
tracked position. Similarly, when Kinect wrongly recognized
an object as a body part, due to the lack of expected features
on the object, the detected position becomes very unstable.

Assumingpi(f), pi(f + 1) and pi(f + 2) to be the 3D
position of a tracked body parti in three successive frames,
we can calculate the displacement vectors as:

di(f) = pi(f + 1)− pi(f) (1)

di(f + 1) = pi(f + 2)− pi(f + 1) (2)

The acute angle between the two vectors can be calculated by
their dot product:

θi(j) =











di(f)·di(f+1)
|di(f)||di(f+1)| if |di(f)| > dmin

and |di(f + 1)| > dmin

0 otherwise

(3)

wheredmin is the minimum length of an acceptable displace-
ment vector, and is set to3cm in our experiment. It is used

to avoid getting a large angle change when the body part is
almost steady.

The behaviour term, which is represented as the amount of
vibration, is defined as:

Rbi(f) = 1−
max(min(

∑

fb

f=0
θi(f)

fb
, θroof)− θfloor, 0)

θroof − θfloor
(4)

whereRbi(f) ∈ [0.0, 1.0], fb is the total number of frames we
consider to detect vibration,θfloor is an acceptable amount of
rotation for each frame,θroof is the amount of rotation we
consider to be the most unacceptable. Empirically, we found
that settingfb = 3, θfloor = 90◦ and θroof = 135◦ gives a
good result.

We observe that tradition marker based optical motion
capture system, such as theMotionAnalysis Eaglesystem, also
exhibits similar symptoms when a marker is mis-tracked. For
example, the system sometimes mixes up close-by markers
and results in sudden switches of marker positions. Similarly,
an electro-magnetic motion capturer generates unstable marker
positions when there is any external interference, such as the
magnetic field generated by nearby electronic devices. Both
situations can be detected by Equation 4.

B. Kinematics Reliability Term

The kinematics term refers to the kinematic correctness of
the recognized posture. In Kinect, body parts are recognized
independently without considering the kinematic relationship
between parts. As a result, the segment length between two
neighbouring parts is not consistent across frames, especially
in the presence of incorrectly tracked parts. Here, we explain
how we analyze the segment length to identify those parts.

We obtain a posture to gather the reference segment lengths.
Kinect does not maintain pre-defined segment length for
different body segments. Thus, the captured postures from
users of different body sizes have different dimensions. The
reference segment lengths is obtained/updated whenever (1)
the user performed posture is similar to the predefined refer-
ence postures, and (2) all body parts are visible and tracked
by Kinect. In our system, we defined two reference postures,
which are a T-Pose (Figure 2 left) and a standard standing
pose (Figure 2 right). These two postures are chosen because
Kinect usually does not start tracking until either of them is
performed. Thus, using such postures as references does not
require any extra system initialization from the user.

REAL-TIME POSTURE RECONSTRUCTION FOR MICROSOFT KINECT 5

Fig. 2. The two reference postures for initializing segment lengths.

A body part can connect to multiple segments depending
on the skeleton structure, such as the hips connecting to three
segments. Assuming the body parti is connected tospart total

body segments, for each connecting segments, the segment
difference ratio at framef is calculated as:

ds(f) = min(
|ls(f)− ls ref |

ls ref

, 1) (5)

wherels ref is the reference segment length andls(f) is the
current segment length for segments at framef .

The kinematics reliability value of a body part is defined as
the mean segment different ratio for all connecting segments:

Rki(f) = 1−

∑spart total

s=0 ds(f)

spart total

(6)

whereRki(f) ∈ [0.0, 1.0].
Another possible implementation of the kinematics reliabil-

ity term is to consider the segment orientation limit. Human
joints have a limited rotational movement. With such limits
defined for each segment, one can calculate the kinematics
reliability value by evaluating how much the Kinect posture
violates the segment orientation limit. However, we found that
this implementation performs sub-optimally. This is because
(1) it requires complex initialization to obtain the orientation
limit of the user, and (2) the limit is usually very large, thus
becoming ineffective to tell if a part is mis-tracked.

Our kinematics term can also be applied in traditional opti-
cal motion capture system. A simple implementation could be
monitoring the distances between neighbouring markers in the
same body segment, and observing any abnormal changes. For
systems that conserve segment length such as the mechanical
systems, the segment orientation limit is the best choice.

C. Tracking State Reliability Term

For most motion capture system, the hardware provides
some indications on how well the posture is tracked. The
tracking state term refers to the hardware feedback of whether
a part is well tracked or not. Here, we explain how to apply
tracking feedback from Kinect to evaluate the reliability value.

Kinect provides basic information to tell if a body part is
tracked, inferred based on neighbouring parts, or not tracked
when it is completely not visible. The tracking state term of
part i at framef is defined as:

Rti(f) =











1.0 if tracked

0.0 if inferred

0.0 if not tracked

(7)

whereRti(f) ∈ [0.0, 1.0].

Fig. 3. Examples of the detected unreliable parts indicated as red square.

While it is possible to set a higher value for the inferred
parts, we find that those parts usually are not very accurate.
Comparing to a false positive, a false negative (i.e. wrongly
classifying a correctly tracked joint as incorrect) has very little
impact on the reconstruction system. Thus, we set the value
to zero for the inferred parts.

The implementation of the tracking state term depends
heavily on the hardware and the feedback it provides. For a
traditional optical motion capture system, the tracking state can
be defined as the number of cameras that can track a particular
marker. For accelerometer based system such as Wiimote, once
the applied force exceeds the sensor limit, the reading is cut
off. The tracking state can be defined as how far the applied
force is from the limit.

D. Reliability Rate

Here, we explain how we combine different terms to calcu-
late the reliability rate of each body part.

The reliability rate of a body parti is defined as:

Ri =

ftotal
∑

f=0

w(f)×min(Rbi(f), Rki(f), Rti(f)) (8)

whereRi ∈ [0.0, 1.0], ftotal is the total number of frames
to consider,w(f) is a Gaussian weight for framef with
the largest value for the most recent frame,Rbi(f), Rki(f),
Rti(f) are the reliability terms explained above. The use of
reliability values in previous frames with a Gaussian weight
provides a smoothing out effect. That is, when a body part
is mis-tracked, it takes a few frames for the reliability rate to
recover, and subsequently enhances the system stability. In our
system running at30Hz, ftotal is set to be6, which means
we consider a window of0.2 second.

Figure 3 shows an example of applying Equation 8 on the
body parts tracked by Kinect. To highlight the incorrectly
tracked part, we render a red square on each part with the
size proportional to1 − Ri. Notice that our system picks up
most mis-tracked parts accurately, such as the left hand that is
not accurately tracked in Figure 3 (Left) and wrongly tracked
in Figure 3 (Right).

V. NATURAL POSTURESPACE

In this section, we explain how we construct a natural
posture space that is used to synthesize natural posture. This
involves an offline process to prepare a motion database, as
well as two online processes to extract posture samples and
apply local Principle Component Analysis (PCA).

6 IEEE TRANSACTIONS ON CYBERNETICS

A. Motion Database

Here, we explain the offline process to prepare the motion
database.

We create the motion database with motions captured from
a traditional optical motion capture system. The captured
motions are retargeted to the Kinect skeleton structure using
commercial software, and the dimensions of body parts are
designed according to [37]. We remove the global rotation
along the vertical axis and the global 3D translation for
normalization. Each posture is represented with a set of body
parts positions.

The database is filtered to remove similar postures by
thresholding the sum of squared differences of body parts
positions. Apart from enhancing run-time efficiency, the major
purpose of the process is to control the data sample density in
posture space. If the density is unreasonably high, a database
query may retrieve overly similar postures, and thus lack ofthe
neccessary variation to construct a meaningful natural posture
space as explained in Section V-B. We will analyze the effect
of the filtering threshold on the quality of the synthesized
motion in Section VIII-D

The motions that should be contained in the database depend
on the target application. The idea is that we compose a
database with the movements that the users are expected to
perform. Our database includes motions of different classes
such as boxing and walking. The unfiltered database contains
roughly 21590 postures, which is then filtered into 2574.
The database is relatively compact due to the scope of the
target motion. However, if the application requires the user to
perform a wide variety of motion, such as dancing in different
style, a larger database will be needed. The implementation
details of our database can be found in Section VIII.

Notice that while our framework can support body posture
represented by orientations, we opt to use 3D positions. This is
because Kinect tracking is based on position. The orientation
estimation provided by Kinect is far less reliable than the
position one. For parts with short segment length, orientation
can easily flip over180◦ with a small amount of positional
error. We therefore synthesize posture using 3D positions,and
apply [1] to reconstruct the orientation, which will be detailed
in Section VII.

B. Local Principle Component Analysis

During run-time, we extract postures that are similar to the
user performed one from the database and construct the natural
posture space. This involves applying the reliability rateto
obtain similar postures and reducing their dimensions with
PCA.

Given a posture captured by Kinect, we evaluate the reli-
ability rate with Equation 8 for each body part, and obtain
the K nearest neighbours from the database. To compare the
Kinect posture with those in the database, we first normalize
it by removing the translation and vertical axis rotation of
the root, such that they become view point invariant. We then
retarget the Kinect posture to the standard body size used in
the motion database [1].

Different from traditional K nearest neighbour search, we
apply the reliability rate of a joint as a weight for finding
similar postures. The posture difference function is defined
as:

D(pd, pk) =

itotal
∑

i=0

Ri(p
d
i − pki)

2 (9)

where pd and pk are the database posture and the Kinect
posture respectively,itotal is the total number of body parts,
pdi and pki are the 3D body part position from the database
posture and Kinect posture respectively. With the use of the
reliability rate, we rely more on the correctly tracked parts,
while reducing the influence of the unreliable ones.

Since the extracted K postures are similar to each other,
we can represent them in a low dimensional space. We use
PCA to construct the reduced space, and name it the natural
posture space as it is constructed with real postures. The
major advantage of creating a posture space instead of using
individual posture directly is to allow synthesizing postures
that are not available in the motion database. The space
implicitly allows blending of postures, and thus can synthesize
in a much wider range. In Section VIII-D, we will analyze the
effect on changing the number of dimension used to represent
the reduced space.

We applied brute force search for the K nearest neighbours
because of the small size of the motion database. However,
in case a large database is used, brute force search will be
computationally costly. A possible solution is to quantize
the reliability rate into a number of discrete values, and
precompute a neighbour map for different combinations of
reliability rates in the body parts. This will enhance the run-
time efficiency, with the cost of extra memory usage for storing
the pre-computed neighbour map.

VI. POSTURESYNTHESIS

In this section, we explain how we synthesize a posture that
follows the tracked body parts while reconstructing missing or
unreliable parts. The synthesizing framework is constructed
as an optimization process that is driven by multiple energy
terms. We will first detail different terms we designed, and
then explain how we conduct the optimization process.

A. Control Term

Here, we explain the control term, which evaluates how well
the synthesized posture fit with the Kinect posture.

Each sample point on the natural posture space,qx, cor-
responds to a body posture in the full dimensional space,
px. px can be calculated by back projectingqx using the
projection matrix calculated by PCA when constructing the
natural posture space. To evaluate how wellqx fits with the
Kinect posture, we considerpx and apply the distance function
mentioned in Equation 9:

Ec = D(px, pk) (10)

wherepk is the Kinect posture.

REAL-TIME POSTURE RECONSTRUCTION FOR MICROSOFT KINECT 7

Notice that since the reliability rate is considered in Equa-
tion 9, we consider well tracked parts heavier than the unreli-
able ones. This prevents the synthesized posture being affected
by wrongly tracked body parts.

B. Style Term

Here, we explain the style term, which evaluates how well
the synthesized posture represents the posture style in the
natural posture space. This term is particular important when
the Kinect posture is noisy and incomplete, as it can help
defining the missing parts.

The natural posture space encodes the style of posture
intrinsically, defined by the K nearest neighbours that are used
to construct the space. To ensure the synthesized posturepx

follows the style, the style term is defined as the distance
betweenpx and its closest neighbour:

Es = min
n

∑itotal

i=0 (pxi − pni)
2

itotal
(11)

wherepn represents one of the k neighbours used to construct
the natural posture space,pxi andpni represent body parti in
the respective posture, anditotal is the total number of body
parts.

While previous works such as [3] use probability density
functions to represent the likelihood of the movement of a
part in a covariance matrix, we argue that it may not be a
good solution for our problem. This is because the samples
used to construct the space do not come from a continuous
motion. They are discrete neighbours that are close to the
Kinect posture, in which some parts may not be available.
Thus, the neighbours may not lay in a consistent probability
distribution. Our method discretely considers each neighbour
and minimizes the distance towards the closest neighbour. This
ensures that the synthesized posture exhibits similar style.

C. Kinematics Term

Here, we explain the kinematics term, which maintains the
kinematics features of the synthesized posture.

Similar to Section IV-B, we represent the kinematics re-
quirements as the segment length. The only difference is that
because the synthesized posture is from the natural posture
space, its segment sizes should be similar to the standard body
size used in the database. The kinematics term is thus defined
as:

Ek =

∑stotal

s=0 (lxs − ldatabases)2

stotal
(12)

where lxs is the length of segments in the synthesized pose,
ldatabases is the reference segment length of the standard body
size used in the database [37],stotal is the total number of
segments of the character.

It is also possible to define a segment orientation term to
make sure the synthesized posture obeys the orientation limits.
However, we found it unnecessary, because the use of the
style term defined in Section VI-B achieves a similar effect
to prevent violation of orientation limits. The segment length
term we implemented, however, is a far stricter requirement
and has to be enforced specifically.

D. Movement Continuity Term

Here, we explain the movement continuity term, which takes
into account the synthesized postures in the previous frames
to maintain smooth movement.

The movement continuity term minimizes the change of
displacement vector of every body part in the synthesized
postures. It is defined as:

Em =

∑itotal

i=0 ((pxi − px−1
i)− (px−1

i − px−2
i))2

itotal
(13)

=

∑itotal

i=0 (pxi − 2px−1
i + px−2

i)2

itotal
(14)

where pxi , px−1
i , px−2

i represent the position of body parti
for the current, one frame before current, and two frames
before current synthesized postures respectively,itotal is the
total number of body parts.

E. Optimization

Here, we explain how we synthesize the final posture by
optimization based on the terms explained above.

We applied a customized version of local stochastic search
algorithm [38], which is a variation of the random sampling
method [39], to optimize for the target posture. Given an initial
sample on the natural posture space, we randomly sample a
number of potential postures in the space for each iteration.
The optimization score of each sample is evaluated as a
weighted sum of the energy terms:

E = wcEc+ wsEs+ wkEk + wmEm (15)

wherewc, ws, wk, andwm are the weights. In our system,
they are set as 1.0, 0.5, 1.5 and 0.25 respectively. The
potential posture that minimizes the evaluation function will
be considered as the initial posture sample of the next iteration.
The optimization process continues until an optimal solution is
found, or the number of iterations reaches a predefined limit.
This allows us to control the trade-off between synthesis qual-
ity and computation time. We will provide detailed analysis
on how these values affect the system performance in Section
VIII-D.

There are some general principles for tuning the weight
in Equation 15. First, the kinematics terms should not be
violated as most character control systems in games and
animation applications conserve the segment lengths of the
characters. Thus, its weight is the highest. Second, the primary
purpose of the system is to reconstruct the Kinect posture,
with a secondary purpose to maintain a realistic style. This
explains why the weight of the former is larger than that of
the latter. Third, the movement continuity term is a trade-off
between temporal smoothness and system responsiveness. For
interactive applications, we should use the smallest possible
value to minimize the lag introduced to the tracking system,
as the term minimizes velocity change across frames.

Since our posture synthesis algorithm is a frame-based
approach as oppose to the spacetime optimization method [40],
it may suffer from posture inconsistency across frames. While
it is possible to dramatically increase the weight of the move-
ment continuity termwEm to enhance the smoothness of the

8 IEEE TRANSACTIONS ON CYBERNETICS

synthesized motion, it could over-constrain the optimization
process and reduce system responsiveness. To remedy this,
we use the previously synthesized posture as the initial sample
posture to start the optimization. As a result, the optimization
process always has to opportunity to explore postures that
are similar to the previous one. This approach, however,
cannot completely eliminate the high frequency vibration of
the synthesized movement. We utilize a physical simulation
system and a PD controller to track the reconstructed postures,
which ensures a natural and kinematic valid final result. More
details are given in Section VII.

While previous research suggest that the Covariance Matrix
Adaptation (CMA) method works well in optimizing control
parameters for character movement in the full dimensional
space [41], [42], it is unnecessary in our problem. This is
because PCA has already minimized the intrinsic redundancy
within the parameters in the latent space, and hence CMA
cannot produce significant improvements. On the other hand,
as discussed in previous research [43], simple gradient descent
usually does not work well with human motion optimization.
This is because of the non-linear features of the motion
evaluation process, as well as the presence of local optimal.
A discrete sampling approach is more reliable.

VII. PHYSICAL SIMULATION

Based on the synthesized posture in the previous section,
we adopt the physical modelling method in [1] to simulate
natural and kinematically valid motions. In this section, we
review the method and highlight the changes we made in this
paper.

The physically simulated character is used as a kinematic
filter to create natural movements. As in [1], we apply external
forces and torques to drive the character to the synthesized
posture. It has two major advantages comparing to simply
displaying the synthesized posture. First, because of the use
of a PD controller, the movement of the body parts obeys
Newton physics. Second, because we construct the characterin
a physical world, kinematics features such as segment lengths
are accurately maintained.

A. Physical World Modelling

Here, we explain how we model the physical world.
The physical environment is modelled with the Open Dy-

namics Engine [44]. We create an infinity large plane in the
ODE world as the floor plane, which provides supporting force
to the simulated characters. Gravity is implemented such that
when no control force is applied, the characters fall onto the
ground naturally.

Each character is represented by 19 body segments and 20
joints according to the Kinect skeleton definition. The sizeand
the mass of each segment are set according to [37]. Segments
are modelled with capsules for efficient collision detection,
and the joints are modelled with ball joints, which indicate
that each segment has 3 degrees of freedom in rotation.

B. Target Posture

Here, we explain the difference in constructing the target
posture between our method and [1].

In this paper, we utilize the body part positions synthesized
in the natural postures space as the target posture. The orien-
tation of the joint is obtained by calculating the weighted sum
of orientation from the K nearest neighbour used to construct
the natural posture space. The weight is defined as the inverse
of different between the synthesized posture and the neighbour
using Equation 9. Comparing to [1], which defines the target
posture as the posture that is most similar to the Kinect one
in the motion database, our method create much better results,
especially when the Kinect posture is being occluded.

C. PD Controller

Using the synthesized posture as the target posture, we
calculate the control force and torque for each body part, and
drive the character to fit into the target. Similar to [1], we
control the movement with 3 dimensional forces and the 1
dimensional torque along the body segment direction. This
facilitates easier control parameter tuning and more efficient
simulation.

In each time step, the control force for a parti is calculated
by a PD controller:

Fi = Ke(p
target
i − pcurrenti) +Kd(p

target′

i − pcurrent
′

i) (16)

where p
target
i is the target position of the part,pcurrenti is

the current position of the part,ptarget
′

i andpcurrent
′

i are the
respective derivative,Ke is the elasticity gain andKd is the
damping gain. A highKe can improve the responsiveness of
the character, while a highKd produce more stable move-
ments. We manually tune the smallest possibleKe andKd, as
a system with high control forces is usually unstable, and use
same values for all joints. Furthermore, the magnitude of the
resultant forceF is bounded by a predefined value to avoid
unexpected high control force while the target positions are
very different from the current ones.

The control torque along the axis of body parti is calculated
similarly:

Ti = Kǫ
i (θ

target
i − θcurrenti) +Kδ

i (θ
target′

i − θcurrent
′

i) (17)

whereθtargeti is the target rotation of the joint along the joint
axis,θcurrenti is the current rotation,θtarget

′

i andΘcurrent′

i are
the respective derivative,Kǫ

i andKδ
i are the hand tuned elas-

ticity gain and damping gain. Similar to the force calculation,
the torqueT is bounded by a predefined value.

During simulation, the physical simulation engine ODE
maintains the segment length and segment connectivity while
applying the calculated control forces and torques. The resul-
tant posture is the equilibrium state of the character, represent-
ing the posture that can satisfy the target posture the most.

VIII. E XPERIMENTAL RESULTS

In this section, we show experimental results obtained from
our system. We first show results of postures reconstruction

REAL-TIME POSTURE RECONSTRUCTION FOR MICROSOFT KINECT 9

Fig. 4. Posture reconstruction using our system when the user (a) performs different postures, (b) interacts with a box, (c) interacts with a piece of paper,
(d) plays a basketball, and (3) sits on a chair.

Upper Lower
Motions Examples Frames SD SD
Locomotion Run/Walk 3573 8.1 15.27
Object Handling Pick/Carry 1521 8.9 11.80
Upper Body Movement Point/Scratch 6607 17.8 6.6
Boxing Punch/Kick 7769 11.8 13.7
Sword Fighting Swing/Dodge 2120 16.3 13.4

TABLE I
DETAILS OF THE MOTION DATABASE IN OUR SYSTEM.

Kinect Dataset Frames Upper SD Lower SD
Basic Tracking (Figure 4a) 948 13.4 9.24
Box (Figure 4b) 897 12.26 6.39
Flip Chart (Figure 4c) 1098 13.24 7.38
Basketball (Figure 4d) 831 11.81 4.18
Chair (Figure 4e) 748 7.87 11.86
Office (Figure 7) 685 13.23 9.51

TABLE II
DETAILS OF THE K INECT TESTING DATA IN OUR SYSTEM.

when the user interacts with external objects. Next, we com-
pare our method with previously proposed algorithms. Finally,
we analyze the accuracy and performance of our system. The
readers are referred to the supplementary video for further
details.

The experiments were conducted with a laptop computer
with an Intel Core i7-2630 CPU (2.00GHz), 8GB RAM and a
GeForce GTX 560M graphic card. The system achieved real-
time performance and was capable of handling over 30 frames
per second (fps), although the actual frame rate was limited
by the Kinect hardware to 30 fps.

We use motions captured from traditional mocap to con-
struct our motion database, and those captured from Kinect
as our testing data. Our database consists of motions from
different classes. Table I shows the details including example
motions, number of frames, standard deviation of positional
movement in centimetre for the upper and lower body. The
overall average standard deviation in the whole database is
13.25cm for the upper body, and 11.63cm for the lower body.

The testing data from Kinect includes postures when the
user interacts with different objects. The details are shown in
Table II. The overall average standard deviation is 12.04cmfor
the upper body and 7.98cm for the lower body. These values
indicate that the upper body movement of the Kinect captures
is comparable to that of the database, while the lower body
movement is slightly constrained due to the relatively small
capturing area.

A. Posture Reconstruction

Here, we discuss the experiments for reconstructing the user
postures in different situations.

As shown in Figure 4, we rendered the Kinect skeleton
with purple body parts and yellow body segments. We used
red color to indicate body parts with low reliability value.The
reconstructed posture was rendered with the character in green
clothes. The two postures were placed side by side for easier
comparison.

We first tested how well our system reconstruct basic user
postures such as raising arms and legs (Figure 4a). Then, we
asked the user to interact with different objects, including a
box (Figure 4b), a flip chart (Figure 4b), a basketball (Figure
4c) and a chair (Figure 4e). During the interactions, Kinect
incorrectly considered the objects as part of the body. Our
reliability measurement successfully detected those unreliable
parts and reconstructs the posture accordingly.

B. Perceptual Comparison

Here, we compare our proposed algorithm with other motion
reconstruction approaches, and assess the perceptual accuracy
of each method using a survey-based evaluation [45].

We define method A as the approach proposed in [1].
Method B is an implementation of our proposed method
with the reliability evaluation functions disabled, whichis
comparable to previous works that optimize the posture with
all tracked parts without any reliability assessment such as [2]
and [3]. Our proposed algorithm is named as method C.

Fig. 6. The perceptual accuracy according to user studies for the data sets
using different reconstruction methods.

We conducted an evaluation experiment with 27 partici-
pants. The objective of the experiment was to evaluate the
relative perceptual accuracy among the three methods. During
the experiment, the participants were presented with the Kinect
color video, as well as the synthesized characters using method
A, B, and C one after another. The participants were not told
which method to be our algorithm. They graded the accuracy
by comparing the movement of the character and that of the

10 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 5. Reconstruction using (a) the left hand and foot, (b) both hands, (c) hands and feet, (d) hands, feet, elbows and knees, and (e) all body parts.

Fig. 7. The reconstructed postures using (a) method proposedin [1], (b) our
method without the reliability values, (c) our method.

Kinect user in a 9 point scale, with 1 being inaccurate and 9
being accurate.

Figure 6 shows the average accuracy rating from partic-
ipants for each testing data set, in which the vertical lines
represent standard derivation. Our proposed algorithm consis-
tently outperforms the other two. Considering all data sets, the
overall average perceptual accuracy of method A, B and C are
5.06, 5.20 and 6.20 respectively, with the standard derivation
of 1.63, 1.55 and 1.38.

We observe that for movement with less occlusion, such as
the basic tracking and the box data sets, our method does not
perform significantly better than method A. This is because
the major source of inaccuracy in simple environments is the
signal noise, and method A is good at filtering vibration in
body parts. However, in the office data set where serious
occlusion occurs, our method performs far better. Method
A does not construct a natural posture space for posture
optimization. The reconstructed postures are notably different
from the actual user movement (Figure 7a). Method B cannot
fully estimate the true posture of the user, as it is influenced by
the incorrectly tracked parts (Figure 7b). Method C accurately
identifies parts with low reliability value and corrects them
accordingly (Figure 7c).

C. Numerical Accuracy Analysis

Here, we analyze the numerical accuracy of the posture
reconstruction framework, as well as the overall accuracy
including the Kinect hardware error.

We define an error function between two postures by
considering the body parts position relative to their parents
in the skeleton hierarchy, as such a representation has been
shown effective in [46]:

e =

∑ftotal

f=0

∑itotal

i=0

∣

∣

(

p1i (f)− p1i′(f)
)

−
(

p2i (f)− p2i′(f)
)
∣

∣

ftotal × itotal
(18)

wherep1i (f) and p2i (f) are positions of parti at framef of
posture 1 and 2 respectively,i′ denotes the parent part,itotal

Setup Parts Used Difference (cm)
(a) Left Hand, Left Foot 6.38
(b) Hands 5.60
(c) Hands, Feet 4.52
(d) Hands, Feet, Elbows, Knees 4.15
(e) All Parts 3.90

TABLE III
ACCURACY OF THEPOSTURERECONSTRUCTIONFRAMEWORK.

Duration Diff. Diff. Percentage
Class (sec) Raw (cm) Reconstructed (cm) Enhanced

(a) 53.5 9.59 7.26 24.3%
(b) 52.8 10.89 7.44 31.6%
(c) 60.4 12.41 7.76 37.5%

TABLE IV
ACCURACY OF THEOVERALL SYSTEM.

is the total number of body parts,ftotal is the total number of
frames considered.

The first analysis measured the accuracy of our posture
reconstruction framework. We carefully recorded 20 seconds
of data from Kinect, trying our best to minimize Kinect
tracking error. Next, we reconstructed the postures using
different subsets of parts, which are shown as purple body
parts in Figure 5. We calculated the average error between
the reconstructed posture and the Kinect raw posture over the
whole capture using Equation 18. The results are shown in
Table III. We found that even with only a few body parts
such as setup (c), our system could reconstruct the full body
postures while maintaining a small error. However, setup
(a) and (b) sometimes failed to reconstruct the movement,
especially when the moving parts were not considered.

The second analysis evaluated the accuracy of the overall
system, considering the Kinect hardware as part of the system
component. We captured user movements with Kinect and
the Polhemus Liberty magnetic mocap at the same time. The
magnetic mocap was a wired system with 16 6D sensors. We
did not use an optical mocap because its infrared emitters
interfered with the Kinect one, severely degrading the quality
of both systems. We classified the captured movements into
three classes: (a) self-occluded and un-occluded movements,
(b) movements being occluded by environment objects, (c)
movements interacting with, and being occluded by, environ-
ment objects. Using Equation 18, we compared the Kinect raw
postures and the reconstructed postures with those obtained
from the magnetic mocap. The results are shown in Table IV.
As expected, the error of the raw postures was large in general,
and the value was even larger for more complex movements
such as those in class (c). For all classes of movement, our
system can correct the posture to a consistent quality.

Notice that due to the hardware implementation, the body

REAL-TIME POSTURE RECONSTRUCTION FOR MICROSOFT KINECT 11

Parameter Value
Number of Posture in Motion Database 21590
Number of Posture in Filtered Motion Database 2574
Number of Neighbour in K Nearest Neighbour Search30
Dimensionality of the Natural Posture Space 20
Maximum Number of Optimization Step 20
Number of Sample Per Optimization Step 100

TABLE V
PARAMETER USED IN OUR SYSTEM.

part positions detected by Kinect were never accurate, espe-
cially in the depth dimension. This explains the relativelyhigh
error with respect to the magnetic mocap. Our system obtained
input from Kinect and inherited the error from Kinect when
reconstructing the postures. Still, our system managed to bring
the postures towards to true ones.

D. Performance Analysis

Here, we analyze the effects of various parameters consid-
ering the reconstruction quality and computational time. We
also evaluate the computational cost of the overall system.

We first recorded 30 seconds of data from Kinect. Using
the recorded data, we tuned the parameters of the system and
evaluated the reconstructed postures (Figure 8). The average
optimization score (blue line) and the average frame time (red
line) were plotted. Notice that the optimization score in the
plots was in negative values.

Figure 8a shows that if the database is heavily filtered,
the reconstruction performance is poor, due to the lack of
relevant posture that can be used to construct the natural
posture space. With a database of reasonable size, which is
roughly 2000 postures, we can obtain much better results. The
optimization score does not improve significantly when the
database size increases further, because the postures become
redundant and do not contribute to the reconstruction process.
Figure 8b shows that using excessive number of neighbours
to construct the natural posture space has a negative effect
on the optimization score. This is because the system may
not be able to find so many neighbours that are similar to
the current Kinect posture. Figure 8c shows that given the
same amount of computational power, using a large number
of dimensions to represent the space results in under-sampling,
and thus the final results are degraded. Figure 8d shows that
the optimization score converges after around 20 optimization
steps. The frame time does not increase further beyond that
point because we terminate the optimization process once
the optimal solution is found. Figure 8e shows that the
performance of the optimization becomes consistent when the
number of sample per optimization steps is larger than 100.

Because of the intrinsic dependency among the parameters,
tuning the parameters requires multiple iterations. In each
iteration, they are tuned one by one for the best value. This
process is repeated until the system cannot be improved
further. Table V summarizes the values we used in our system.

Our tuned system runs in 27.7 ms per frame (36.7 frame
per second), which has a higher frame rate than real-time (30
frame per second). The proportions of computational cost of
different processes are shown in Figure 9. Optimizing the pos-
ture is the most computational costly, accounting for roughly

Fig. 9. The proportion of computational cost for different processes.

66% of the total processing time, while other processes are
relatively fast.

IX. CONCLUSION AND DISCUSSIONS

In this paper, we propose a new framework to automatically
reconstruct full body motion from corrupted motion capture
data. Our method evaluates the reliability of every tracked
body parts and creates a natural posture space to synthesize
a valid posture. We demonstrate the effectiveness of our
approach by reconstructing motion from incomplete and noisy
motion data acquired from the Microsoft Kinect. Experimental
results show that our method can successfully correct the input
motion captured from extreme conditions when a large portion
of the body is occluded. Our framework is computationally
efficient and achieves real-time performance, making it ap-
plicable to a wide variety of interactive applications suchas
motion gaming and sport training.

Our system can potentially enhance the user experience
in multi-player applications, because we can reconstruct the
postures when one player is occluded by another. This en-
ables dense user-user interactions in applications like dancing
games. The practical problem that has to be solved is the
computational cost, because the reconstruction time is linearly
proportional to the number of user in the scene. GPU based
optimization can be a potential solution.

We assume that the database contains postures that are
similar to the user performed ones. In case such postures are
not available, the natural posture space constructed may not
accurately estimate the correct posture of the user, and the
quality of the reconstructed motion may drop. This is a general
problem of data driven algorithms. One possible solution is
to insert correctly tracked Kinect postures into the motion
database during run-time, which enables the system to learn
and adapt to unexpected movements.

Fast movement reconstruction with Kinect is a challenging
problem. The depth camera of Kinect suffers from motion
blur when the user performs fast movement such as punching.
Figure 10 (Left) demonstrates the blurring effect of a waving
hand in comparison of a steady one. While our system can
reconstruct those postures, the decrease in Kinect tracking ac-
curacy does impact the resultant quality. Furthermore, because
of the 30 frame per second capturing limit, per frame velocity
of fast moving body parts is relatively large and contains more
artifacts. One may consider tuning the weight of the movement
continuity term to enhance system responsiveness.

Another challenging situation is user rotation. Our system
can handle roughly 45 degree of rotation, in which Kinect
usually manages to recognize a few body parts in the shadowed
side. If one side of the body is completely lost, the system can

12 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 8. The optimization score (left axis, blue line) and frametime in ms (right axis, red line) for different number of (a) filtered postures in the motion
database, (b) neighbours in the KNN search, (c) dimensions inthe natural posture space, (d) optimization steps, and (e) samples per optimization step.

Fig. 10. (Left) Motion blur problem of fast movements. (Right)An occasion
when the reliability measurement fails.

only predict based on the visible half. The accuracy depends
on the movement correlation of the two sides. Practically, this
problem can be solved with domain knowledge. In many ap-
plications such as console games, the class of user performed
motions is known in advance. The system can reconstruct the
postures using a database containing only that class of action,
instead of the general purpose database we used. This helps
to determine postures with few recongnized parts.

Because our measurement considers high level behaviours,
in the rare occasions when an external object moves similarly
as a body part, it may fail to detect the error. Figure 10 (Right)
shows a carefully constructed situation where Kinect regards
the flip chart as the lower body of the user. Our measurement
cannot detect all incorrect body parts, as they exhibits similar
movement features as the legs. One future direction is to assess
low level details to assist reliability measurement.

As explained throughout the paper, our framework is general
and can be applied in different motion capture systems. An-
other future direction is to apply it for enhancing the traditional
optical motion capture process, where missing or incorrectly
tracked markers have to be clean up manually.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive
suggestions. This project is partially supported by the Aca-
demic Staff Support Grant (Northumbria University) 100700-
IO114845, the Science Faculty Research Grant (Hong Kong
Baptist University) FRG1/12-13/055 and FRG2/12-13/078.

REFERENCES

[1] H. Shum and E. S. Ho, “Real-time physical modelling of character
movements with microsoft kinect,” inProceedings of the 18th ACM
symposium on Virtual reality software and technology, ser. VRST ’12.
New York, NY, USA: ACM, 2012, pp. 17–24. [Online]. Available:
http://doi.acm.org/10.1145/2407336.2407340

[2] H. P. H. Shum, T. Komura, and S. Takagi, “Fast accelerometer-based
motion recognition with a dual buffer framework,”The International
Journal of Virtual Reality, vol. 10, no. 3, pp. 17–24, September 2011.

[3] J. Chai and J. K. Hodgins, “Performance animation from low-
dimensional control signals,” inSIGGRAPH ’05: ACM SIGGRAPH 2005
Papers. New York, NY, USA: ACM, 2005, pp. 686–696.

[4] Z. Ren, J. Meng, J. Yuan, and Z. Zhang, “Robust hand gesture recogni-
tion with kinect sensor,” inProceedings of the 19th ACM international
conference on Multimedia, ser. MM ’11. New York, NY, USA: ACM,
2011, pp. 759–760.

[5] S. Kean, J. Hall, and P. Perry,Meet the Kinect: An Introduction to
Programming Natural User Interfaces, 1st ed. Berkely, CA, USA:
Apress, 2011.

[6] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P.Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon,
“Kinectfusion: real-time 3d reconstruction and interaction using a mov-
ing depth camera,” inProceedings of the 24th annual ACM symposium
on User interface software and technology, ser. UIST ’11. New York,
NY, USA: ACM, 2011, pp. 559–568.

[7] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges,
J. Shotton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in Mixed
and Augmented Reality (ISMAR), 2011 10th IEEE International Sympo-
sium on, oct. 2011, pp. 127 –136.

[8] M. Sun, P. Kohli, and J. Shotton, “Conditional regression forests for
human pose estimation,” inComputer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, 2012, pp. 3394–3401.

[9] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and A. Fitzgibbon, “Ef-
ficient regression of general-activity human poses from depth images,”
in Computer Vision (ICCV), 2011 IEEE International Conference on,
2011, pp. 415–422.

[10] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio,
R. Moore, P. Kohli, A. Criminisi, A. Kipman, and A. Blake, “Efficient
human pose estimation from single depth images,”IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2012.

[11] A. Baak, M. Muller, G. Bharaj, H.-P. Seidel, and C. Theobalt, “A
data-driven approach for real-time full body pose reconstruction from
a depth camera,” inProceedings of the 2011 International Conference
on Computer Vision, ser. ICCV ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 1092–1099. [Online]. Available:
http://dx.doi.org/10.1109/ICCV.2011.6126356

[12] J. Han, L. Shao, D. Xu, and J. Shotton, “Enhanced computervision with
microsoft kinect sensor: A review,”Cybernetics, IEEE Transactions on,
2013.

[13] Microsoft Corporation, “Kinect for windows SDK programming guide
version 1.5,” 2012.

[14] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake, “Real-time human pose recognition in
parts from single depth images,” inProceedings of the 2011 IEEE
Conference on Computer Vision and Pattern Recognition, ser. CVPR
’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 1297–
1304.

[15] M. Raptis, D. Kirovski, and H. Hoppe, “Real-time classification of dance
gestures from skeleton animation,” inProceedings of the 2011 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, ser. SCA
’11. New York, NY, USA: ACM, 2011, pp. 147–156.

[16] S. W. Bailey and B. Bodenheimer, “A comparison of motion capture
data recorded from a vicon system and a microsoft kinect sensor,” in
Proceedings of the ACM Symposium on Applied Perception, ser. SAP
’12. New York, NY, USA: ACM, 2012, pp. 121–121.

[17] A. Fern’ndez-Baena, A. Susin, and X. Lligadas, “Biomechanical vali-
dation of upper-body and lower-body joint movements of kinectmotion
capture data for rehabilitation treatments,” inIntelligent Networking and
Collaborative Systems (INCoS), 2012 4th International Conference on,
sept. 2012, pp. 656 –661.

REAL-TIME POSTURE RECONSTRUCTION FOR MICROSOFT KINECT 13

[18] M. Ye, X. Wang, R. Yang, L. Ren, and M. Pollefeys, “Accurate 3d pose
estimation from a single depth image,” inComputer Vision (ICCV), 2011
IEEE International Conference on, nov. 2011, pp. 731 –738.

[19] W. Shen, K. Deng, X. Bai, T. Leyvand, B. Guo, and Z. Tu, “Exemplar-
based human action pose correction and tagging,” inComputer Vision
and Pattern Recognition (CVPR), 2012 IEEE Conference on, 2012, pp.
1784–1791.

[20] H. Liu, X. Wei, J. Chai, I. Ha, and T. Rhee, “Realtime human motion
control with a small number of inertial sensors,” inSymposium on
Interactive 3D Graphics and Games, ser. I3D ’11. New York, NY,
USA: ACM, 2011, pp. 133–140.

[21] J. Tautges, A. Zinke, B. Krüger, J. Baumann, A. Weber, T. Helten,
M. Müller, H.-P. Seidel, and B. Eberhardt, “Motion reconstruction using
sparse accelerometer data,”ACM Trans. Graph., vol. 30, no. 3, pp. 18:1–
18:12, May 2011.

[22] D. W. Aha, “Editorial,” Artif. Intell. Rev., vol. 11, no. 1-5, pp. 7–10,
Feb. 1997.

[23] C. M. Bishop,Neural networks for pattern recognition. Oxford, UK:
Oxford University Press, 1996.

[24] X. K. Wei and J. Chai, “Intuitive interactive human-character posing with
millions of example poses,”IEEE Computer Graphics and Applications,
vol. 31, pp. 78–88, 2011.

[25] Z. Ghahramani and G. E. Hinton, “The EM algorithm for mixtures of
factor analyzers,” University of Toronto, Technical Report CRG-TR-96-
1, 1997.

[26] M. Lau, J. Chai, Y.-Q. Xu, and H.-Y. Shum, “Face poser: interactive
modeling of 3d facial expressions using model priors,” inProceedings
of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer
animation, ser. SCA ’07. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2007, pp. 161–170.

[27] K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popović, “Style-based
inverse kinematics,” inSIGGRAPH ’04: ACM SIGGRAPH 2004 Papers.
New York, NY, USA: ACM, 2004, pp. 522–531.

[28] N. D. Lawrence, “Gaussian process latent variable models for visuali-
sation of high dimensional data,” inNIPS, 2003.

[29] X. Wu, M. Tournier, and L. Reveret, “Natural character posing from
a large motion database,”Computer Graphics and Applications, IEEE,
vol. 31, no. 3, pp. 69 –77, may-june 2011.

[30] J. Quĩnonero Candela and C. E. Rasmussen, “A unifying view of sparse
approximate gaussian process regression,”J. Mach. Learn. Res., vol. 6,
pp. 1939–1959, Dec. 2005.

[31] Q. nonero Candela, C. E. Ramussen, and C. K. I. Williams, “Approx-
imation methods for gaussian process regression,”Large-Scale Kernel
Machines, pp. 203–223, 2007.

[32] H. Lou and J. Chai, “Example-based human motion denoising,” IEEE
Transactions on Visualization and Computer Graphics, vol. 16, no. 5,
pp. 870–879, Sep. 2010.

[33] H. Yue and M. Tomoyasu, “Weighted principal component analysis and
its applications to improve fdc performance,” inDecision and Control,
2004. CDC. 43rd IEEE Conference on, vol. 4, dec. 2004, pp. 4262 –
4267 Vol.4.

[34] H.-P. Kriegel, P. Kr̈oger, E. Schubert, and A. Zimek, “A general
framework for increasing the robustness of pca-based correlation clus-
tering algorithms,” inProceedings of the 20th international conference
on Scientific and Statistical Database Management, ser. SSDBM ’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 418–435.

[35] J. F. Pinto da Costa, H. Alonso, and L. Roque, “A weightedprinci-
pal component analysis and its application to gene expression data,”
IEEE/ACM Trans. Comput. Biol. Bioinformatics, vol. 8, no. 1, pp. 246–
252, Jan. 2011.

[36] K. Forbes and E. Fiume, “An efficient search algorithm formotion
data using weighted pca,” inProceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, ser. SCA
’05. New York, NY, USA: ACM, 2005, pp. 67–76.

[37] H. G. Armstrong, “Anthropometry and mass distribution forhuman
analogues. volume 1. military male aviators,” 1988.

[38] J. C. Spall,Introduction to Stochastic Search and Optimization, 1st ed.
New York, NY, USA: John Wiley & Sons, Inc., 2003.

[39] F. J. Solis and R. J.-B. Wets, “Minimization by random search tech-
niques,”Math. Oper. Res., vol. 6, no. 1, pp. 19–30, 1981.

[40] A. Witkin and M. Kass, “Spacetime constraints,” inSIGGRAPH ’88:
Proceedings of the 15th annual conference on Computer graphics and
interactive techniques. New York, NY, USA: ACM, 1988, pp. 159–168.

[41] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Optimizing walking
controllers,”ACM Trans. Graph., vol. 28, no. 5, pp. 168:1–168:8, Dec.
2009.

[42] H. P. H. Shum, T. Komura, T. Shiratori, and S. Takagi, “Physically-
based character control in low dimensional space,” inProceedings of
the Third international conference on Motion in games, ser. MIG’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 23–34.

[43] K. Yin, S. Coros, P. Beaudoin, and M. van de Panne, “Continuation
methods for adapting simulated skills,”ACM Trans. Graph.,
vol. 27, no. 3, pp. 81:1–81:7, Aug. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1360612.1360680

[44] R. Smith, “Open dynamics engine,” 2008, http://www.ode.org/. [Online].
Available: http://www.ode.org/

[45] L. Hoyet, R. McDonnell, and C. O’Sullivan, “Push it real: perceiving
causality in virtual interactions,”ACM Trans. Graph., vol. 31, no. 4, pp.
90:1–90:9, Jul. 2012.

[46] B. Yao and L. Fei-Fei, “Action recognition with exemplarbased 2.5d
graph matching,” inProceedings of the 12th European conference on
Computer Vision - Volume Part IV, ser. ECCV’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 173–186.

Hubert P. H. Shum is a Senior Lecturer (Assistant
Professor) in the Northumbria University. Before
joining the university, he worked as a Lecturer in the
University of Worcester, a post-doctoral researcher
in RIKEN Japan, as well as a research assistant
in the City University of Hong Kong. He received
his PhD degree from the University of Edinburgh.
His research interests include character animation,
machine learning and human computer interaction.

Edmond S. L. Ho received the BSc (2003), MPhil
(2006) and PhD (2011) degrees from the Hong
Kong Baptist University, City University of Hong
Kong and University of Edinburgh respectively. He
is currently a Research Assistant Professor in the De-
partment of Computer Science, Hong Kong Baptist
University. His research interests include character
animation, robotics, and human activity understand-
ing.

Yang Jiang is a Lecturer (Assistant Professor) of
Creative Media Technology in the Northumbria Uni-
versity. Her current research is focused on develop-
ing intelligent digital media processing algorithms,
via exploring the boundaries across computing, me-
dia, digital entertainment, artificial intelligence, and
image processing.

Shu Takagi is a Professor in the University of
Tokyo. He received his Doctor of Engineering from
the University of Tokyo in 1995. Since then, he had
worked as a research associate, a lecturer, as well
as an associate professor in the same university. His
research interests include fluid mechanics, computa-
tional biomechanics and medical ultrasound.

