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Manifold Regularized Experimental Design
for Active Learning
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Abstract— Various machine learning and data mining tasks in
classification require abundant data samples to be labeled for
training. Conventional active learning methods aim at labeling
the most informative samples for alleviating the labor of the
user. Many previous studies in active learning select one sample
after another in a greedy manner. However, this is not very
effective, because the classification models have to be retrained
for each newly labeled sample. Moreover, many popular active
learning approaches utilize the most uncertain samples by
leveraging the classification hyperplane of the classifier, which is
not appropriate, since the classification hyperplane is inaccurate
when the training data are small-sized. The problem of insuf-
ficient training data in real-world systems limits the potential
applications of these approaches. This paper presents a novel
method of active learning called manifold regularized experimen-
tal design (MRED), which can label multiple informative samples
at one time for training. In addition, MRED gives an explicit
geometric explanation for the selected samples to be labeled by
the user. Different from existing active learning methods, our
method avoids the intrinsic problems caused by insufficiently
labeled samples in real-world applications. Various experiments
on synthetic data sets, such as the Yale face database and the
Corel image database, have been carried out to show how MRED
outperforms existing methods.

Index Terms—Machine learning, active learning, manifold
regularization, face recognition, content-based image retrieval.

I. INTRODUCTION

N MANY real-world systems [1]-[7], the effort of labeling

samples is usually hard, even when a large number of
unlabeled data samples are readily available and provide very
useful information for the systems. Semi-supervised learning
is widely designed to significantly enhance the general per-
formance of conventional supervised learning by using abun-
dant unlabeled samples [8]-[10]. Transfer learning borrows
the knowledge from related domains to greatly improve the
performance of the systems that have insufficient training
samples [11]-[14]. Active learning alleviates the labor of the
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user in a different way by selecting the informative samples to
label [15]-[18]. Thus, instead of passively receiving the label
information, the system can actively decide which unlabeled
samples are the most informative ones and then obtain label
information from the user. In this way, the system achieves
the high classification performance while using as few training
samples as possible.

For active learning, the main challenge is finding an effec-
tive scheme to evaluate the informativeness and usefulness
of the unlabeled samples in the database. A popular scheme
for active learning methods is the uncertain criterion. The
systems with uncertain criterion actively select those samples
whose predicted label information is the most ambiguous
based on the current trained model [17], [19]-[22]. Support
Vector Machine based active learning (SVMactive) is one of
the most effective active learning methods in this category,
which is designed to find the uncertain samples with the
help of the classification hyperplane of the corresponding
Support Vector Machine (SVM) [17], [19]. During the past
decade, numerous research works have been conducted to
improve the performance of SVMactive for real-world applica-
tions [20]-[22]. However, the trained classification hyperplane
of the classifier is not usually stable when training data are
insufficient [23], [24]. In many real-world systems, the user
does not label abundant data samples. Moreover, these data
samples cannot be labeled very accurately [3], [25]. Therefore,
the classification hyperplane of the classifier is not reliable
for selecting the most informative samples with small-sized
labeled training data. Another problem is that since these
methods require a classification hyperplane to find the samples
with the most information, SVMactive can not be utilized
when labeled samples are not available.

To illustrate the principle of SVMactive, a simple synthetic
dataset is shown in Fig.1. Here, we have two labeled data
samples (i.e., the big solid circle for the sample with the
positive label while the big hollow circle for the sample with
the negative label) and a few unlabeled data samples (i.e.,
the small solid dots). The labeled data samples and unlabeled
samples are used to illustrate the training and testing data,
respectively. All six samples distribute along a line. Most of
the previous studies in active learning (i.e., SVMactive) select
the uncertain samples (i.e., A and B) one after another with
a greedy strategy but cannot select a group of representative
samples (i.e., B, C and D) in the database simultaneously.
Moreover, these methods require a classification hyperplane
to identify the uncertain data samples and thus cannot be used
when there are no labeled data.
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f: the optimal classification hyperplane
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Fig. 1. Anillustration of the most informative samples (i.e., uncertain samples
and representative samples). Previous work in active learning studies find
the uncertain data samples (i.e., A and B) one after another one greedily
using the optimal classification hyperplane of the classifier f. Our method
simultaneously selects a set of representative samples (i.e., B, C and D) in
the database iteratively without using the classification hyperplane of f.

Active learning is often considered as experimental design
in the machine learning community [26]. Optimum experimen-
tal design (OED) studies the selection of the most informative
samples in the database to measure since conducting an
experiment is usually expensive [26]. Conventional OED
contains three different OED methods, which maximize the
confidence of the predictive model when the measurement of
estimated parameter covariance matrixes is minimized [26].
However, conventional OED methods do not show the
informativeness of predictions on testing samples if the testing
samples are presented firstly. Transductive experimental
design (TED) [27], [28] was proposed to directly evaluate
the predictions on testing samples, and to give an explicit
geometric explanation to the selected samples for training.
TED has obtained impressive performance compared with
conventional OED approaches. Conventional OED methods
only assess the labeled samples but ignore the unlabeled
samples in the database, although these unlabeled samples
provide useful information. A large number of semi-supervised
learning approaches have been designed to improve the general
performance of supervised learning models by using the
manifold of unlabeled samples [9], [10], [29]-[34]. Moreover,
most of the conventional OED methods select one data
sample after another one [16], [35], which limit their potential
applications to various real-world systems [2], [4], [36], [37].

To address the intrinsic drawbacks in OED, this paper
presents an effective method for active learning called man-
ifold regularized experimental design (MRED) by using the
intrinsic manifold of the massive unlabeled samples. The new
method allows us to simultaneously select a group of the most
informative samples for training a classifier. Our method is
largely inspired by the recent manifold assumption [10], [38],
which plays an important role in semi-supervised learning
models to significantly improve the generalization ability
of conventional supervised learning in the machine learning
community. Different from the previous methods based on the
conventional manifold regularization [10] where the training
samples are pre-given by the system, our method selects
representative samples in the database for training. Moreover,
this method learns a data-dependent deformed kernel function
by using both a small number of labeled samples and
abundant unlabeled data samples. These samples construct a
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data-dependent kernel function warped by a data-dependent
norm to integrate the intrinsic manifold of unlabeled samples.
A set of the most representative samples can be labeled by
the user when the average prediction variance is minimized
by using the deformed kernel function. Different from the
TED methods [27], [28], MRED effectively utilizes the
unlabeled samples in the new data-dependent deformed
kernel space. Moreover, our method does not depend on any
label information of training samples. At the same time, the
sensitivity problem caused by insufficiently labeled samples
is effectively alleviated. Various experiments on synthetic
datasets, the Yale face database and the Corel image database
have shown the general performance of the proposed MRED
for real-world applications.

The main contributions of this work include the following:

o This paper has presented a novel method for active
learning called MRED to simultaneously select a group of
representative samples for training a classifier. Different
from the conventional manifold regularization methods
where the training samples are pre-given, our method can
find the most representative samples to label.

« We intend to select the most informative samples with
the global optimum, which are the most representative
samples in the database.

« We use the deformed kernel function to identify multiple
representative samples iteratively. Different from the pre-
vious SVMactive methods, our method does not require
any label information and avoids the sensitivity problem
caused by insufficiently labeled samples in SVMactive.

The rest of the paper is organized as follows: In Section 2,

we provide a brief review of the related work, i.e., active
learning, OED and TED. Then, we introduce the MRED
method in Section 3. Section 4 presents the experimental
results. Finally, we give the conclusions and suggestions for
future work in Section 5.

II. RELATED WORK

In this section, we give an overview of the conventional
problem for active learning in the machine learning community
and provide a review of OED and TED.

A. Active Learning

In the machine learning community, active learning is
useful in labeling a small number of informative samples
for obtaining sufficient information. In general, most of the
active learning methods aim at selecting uncertain samples
or representative samples for the user to label. Uncertain
samples are defined as the most ambiguous unlabeled samples
based on the current trained model. Representative samples
effectively represent the intrinsic structure of unlabeled sam-
ples. SVMactive is a very effective technique to select the
uncertain samples, which was very popular during the past
few years [17], [19]-[22]. Hoi et al. [39] presented a method
for active learning based on the batch model framework to
find a set of the most informative samples simultaneously,
which is fundamentally based on the kernel logistic regres-
sion model. To alleviate the problem of small sample size
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in relevance feedback (RF), Zhang et al. [25] proposed a
general active learning framework by using the intrinsic man-
ifold of the data to find the most informative samples in
the database as the training samples. However, this method
is specifically designed for a conventional binary classifica-
tion problem, i.e., RF in collaborative image retrieval (CIR).
Yang et al. [40] introduced a batch model multi-class active
learning method for a visual concept recognition task, which
can alleviate the problem of uncertainty sampling with a small
seed set size to evaluate the uncertainty of data samples.
Long and Gang [41] proposed a novel multi-annotator
Gaussian process model to deal with multi-class visual recog-
nition in the collaborative active learning framework with mul-
tiple annotators. Despite the vast research work in the past few
years, conventional active learning approaches need an initial
optimal classification hyperplane to find the useful samples.
To incorporate the geometrical structure of the data space,
Cai and He [42] proposed a Manifold Adaptive Experimental
Design (MAED) method by introducing a data-dependent
norm to integrate the unlabeled samples on reproducing kernel
Hilbert space (RKHS) for text categorization. However, this
method cannot show an explicit relationship between conven-
tional active learning methods and semisupervised learning
models, which is very important in handling the problems
associated with small-sized training data. To alleviate the labor
in defining multiple attributes in the large amount of data,
You et al. [43] introduced a diverse expected gradient active
learning method by combining an informativeness analysis and
a diversity analysis for relative attributes.

B. OED

Active learning is formalized as follows. Suppose that we
have a large number of unlabeled samples X in the high-
dimensional space R", where h is the dimensionality of
the high-dimensional space, the algorithm finds a subset of
samples Z € X, which usually contains multiple informative
samples for training. That is, if these samples z;(i = 1,...,1)
are labeled by the user and utilized as training samples, we
can effectively obtain the label information of the unlabeled
samples by using the auxiliary information.

We consider a linear regression problem as follows:

y=w'x+e, (1)

where y is the real-valued output, w € R" is the weight
parameters, x € R" is the variable and ¢ is the measurement
noise with zero mean and ¢ 2 variance. OED aims to find abun-
dant samples with the most information z1, z2, ..., z; from X
to learn a prediction function f(x) = w’x by minimizing
the expected prediction. Given a large number of informative
samples Z and the label information ¥ = {yy, y2, ..., ¥}, the
prediction function f is estimated with the minimization of
the objective function as follows: [44]:

[
Jw) = "z — ). @)
i=1

The optimal solution to this problem is given by [44]:
b= (z"2)"'z"y, 3)
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where Z = [z1,22,...,21] is the feature matrix and y =
[v1, y2, .. .,yz]T is the label information. It is verified that
w is an unbiased estimation of w and the covariance matrix
is shown as [27]:

Cov(d) =c2(Z2T2)7". 4)

OED only selects multiple samples with the most informa-
tion in the database by minimizing various measurements of
the estimated parameter covariance, i.e., Eq.(4). Three typical
criteria are the trace of C,, the determinant of C,, and the
maximum eignevalue of C,, [26].

C. TED

Conventional OED approaches do not give a very clear geo-
metric interpretation for these selected informative samples.
TED tends to select multiple representative samples when the
expected variance on the testing samples is minimized. Then,
a set of representative samples in the database are selected as
the most informative ones by directly minimizing the expected
prediction variance on the test samples. By considering the
regularized least squares formulation, TED is formulated as
follows:

k
b =argmin " (i — f ()7 + 7 lwl?, ©)
Y=l

where y > 0 is the parameter to balance the loss function and
the regularization term. It is verified that the solution to this
problem is given as follows [44]:

b=Z"z+yn""'2"y, (©)

where I is an identity matrix to enhance the stability of the
solution. The average prediction covariance matrix of the test
samples X is given by

Cov(w)~c(ZTZ+y D)7\ (7

TED tends to select the samples by minimizing the expected
predictive variance on the given test samples. Let X =
[x1,...,x,17, the average predictive variance of TED for
training samples is shown as follows:

1 n
- inTCov (0)x;
i=1

%

0'2 ! 1
7inT(ZTZ+ yI) X
i=1
2

%Tr (X(ZTZ+yI)1XT) (8)

Then, TED is formulated as the following optimization
problem:

min Tr (X (ZTZ—i—yI)_lXT). ©)

It is verified that the optimization problem cannot be solved
effectively. After some derivations, this problem can be
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TABLE I
IMPORTANT NOTATIONS AND VARIABLES IN THIS PAPER

Notations and Variables Descriptions
X ={x1,...,2n} € R A set of unlabeled data samples in the high-dimensional space R™
Z={z1,...,21} C X A subset of the most informative samples in X
o; = (ajn,. .-, ai)n)T The reconstruction coefficient
B=(B1,--,8n)T The most informative samples’ selection coefficient
y = f(z) A binary classifier used to predict the relationship from a sample « to its label y
y The label information
w The weight vector
v The coefficient to trade off the loss function term and the regularization term ||w]|”
Y2 The coefficient to trade off the loss function term and the regularization term |jwl|7
Hy The original RKHS
Hg The deformed RKHS
L The graph Laplacian matrix for training samples
w The data adjacency graph matrix for training samples
D The diagonal matrix of the graph Laplacian
o) The mapping function of the reproducing kernel Hilbert space

given as [27]:

n
min > lxi — Zoy |* + pilley . (10)
1

a;eR!,Z “

i=

n
The term > |lx; — Zai|?* in Eq. (10) illustrates that the

data sampleslgélected by TED can reconstruct the abundant
unlabeled samples in the database. In other words, the selected
samples with the most information z; (i = 1, ..., [) reconstruct
the data x; precisely. The second term llai > shows that
the TED penalizes the norm of the original reconstruction
coefficients, and thus it effectively selects the samples with
large norm.

III. MRED FOR ACTIVE LEARNING

In this section, we introduce a new method for active learn-
ing called MRED, which effectively finds multiple informative
samples iteratively in the database for training. Compared
with the popular SVMactive, our method avoids the problems
caused by insufficiently labeled samples and generates more
effective solutions for various real-world applications. Some
important notations are summarized in Table 1.

A. Active Learning Problem

Suppose that we have a binary classification problem, a clas-
sification model is usually learned to predict the relationship
between the sample x and its label y € {—1, 1} via

y = sign (f(x)), (1)

where the classifier is simply formulated as f(x) = w’ x. The
bias term can be integrated into this formulation by replacing
the weights and feature vector as in [28]. Given a set of
labeled samples z, ..., z;, the least-squares SVM (LSSVM)

is equivalent to the least-squares ridge regression (LSRR) [45],
which learns f(x) by estimating w via
I
w*=argmin( () = > Tz =)+ plwl? ), (12
v i=1
where y1 is a trade-off parameter to balance the loss function
and the regularization term, and y; > 0. In general, the active
learning problem is defined as the following. Given multiple
unlabeled samples X = {x1,..., x,} in the high-dimensional
space R", we want to find a subset of samples Z = {z1, ..., 21}
that contains a set of samples with the most information to be
labeled. In general, these samples can significantly enhance
the performance of the system if they are labeled by the user
and adopted as the training samples.

B. MRED for Active Learning

In this subsection, we present a new method for active
learning by using the intrinsic manifold of a large number of
samples in the database to select the most informative samples
to label. The proposed method is largely motivated by the
recent research on manifold regularization [10], [38], which
plays an important role in improving the generalization per-
formance of supervised learning for semi-supervised learning
models, i.e,

1
— T,. _ v.)2 2
o = argmin [ 7 () = X @z =7+ el

+72 loll7

13)

where the ||w||% is a smooth regularization penalty term to
incorporate the intrinsic manifold of the abundant unlabeled
samples. Parameters y; and y, are used to trade off the loss

!
. 2
function > (w'z; — y;)", llwll* and |lw||7. The term [w]|?
i=1
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plays an important role in various semi-supervised learning
studies. It is usually used to model the output smoothness of
the classifier along the intrinsic manifold estimated from both
a small number of labeled samples and a large number of
unlabeled samples in the database [10], [38].

Our new method is similar with that of the Laplacian
regularized LSRR in [10]. However, the informative samples
in the database to be labeled can be effectively selected by
MRED. Different from the popular active learning methods
in the machine learning community, the new method can
alleviate the labor of the user by using the intrinsic manifold
structure of a large number of unlabeled samples [10],
[29]-[31], [38], [46], [47]. In many real-world applications,
the system effectively finds a set of the most informative
samples to label, which is actually an active learning problem.
After that, when these informative samples are labeled by
the user, our system utilizes all of the data samples including
both a small number of labeled samples and a large number
of unlabeled samples to learn a classification model, which
is actually a semi-supervised learning problem.

To integrate the intrinsic geometric structure of abundant
unlabeled samples, many methods have been proposed in the
literature [47]-[49]. In this work, we first design an effective
RKHS deformed by a kernel Gram matrix K, and then find a
solution to solve this problem by selecting a set of the most
informative samples to label. In the following paragraphs, we
first discuss how to integrate the intrinsic manifold of abundant
unlabeled samples into the kernel space. Then, we also discuss
how to find the informative samples z;(i = 1,...,[) to label.

Kernel methods are useful techniques in discovering the
intrinsic nonlinear manifold structure of the samples by
embedding the original data into a higher dimensional kernel
space [50]. Although the kernel methods can capture the
intrinsic manifold of the database, the intrinsic nonlinear
manifold captured by the kernel function may not be consistent
with the intrinsic manifold structure of the data [10], [47].
In this paper, we employ a data-dependent deformed kernel
function to incorporate the manifold structure of abundant
unlabeled samples, which is constructed by a conventional
kernel function from all the samples including a small number
of labeled data samples and a large number of unlabeled
samples with an effective kernel deformation principle [47].

We use Hg and H g to denote the original RKHS and
the new kernel space, respectively. Reference [47] assumes
the relationship between these two kinds of kernel spaces as
follows:

k(xi,xj) =k(xi,xj) — k(I + MK) "Mk,  (14)

where k(-,-) is the conventional kernel function on both
the labeled and unlabeled samples defined in Hgx with its
associated kernel Gram matrix K = [k(x;, X;)]uxn, kx; 1S
defined as ky;, = [k(x;, x1), ..., (xi, x2)]7. Tt is important to
note that all popular kernels (i.e., Gaussian kernel, polynomial
kernel and linear kernel) can be transformed to the new
kernel space. The second term in Eq. (14) is the deformed
regularization term given by a data-dependent norm and is
designed to incorporate the intrinsic manifold of the data.
y is a deformation parameter to balance the loss of the kernel
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function and the deformation term, and / is used to enhance
the stability of the solution. The key problem here is how to
choose M, which is designed to integrate the manifold of the
samples in the database X.

As suggested by [10] and [47], we adopt the graph Lapla-
cian L to capture the intrinsic manifold of unlabeled samples.
In general, the graph Laplacian L is defined as L = D — W.
The matrix W € R" x R" is the data adjacency graph, and each
element W;; is an edge weight between two corresponding
samples x; and x;. In the matrix D € R" x R", the i entry
D;; = 27=1 W;;. Different extensions of W were introduced
in [51]. Here, we give a typical one as follows:

15)

Wi — 1, ifxj e (Xj) or Xj € (xi)
v 0, otherwise,

where N(x;) is used to denote the k neighboring samples of
the given sample x;. The graph Laplacian term smooths the
output of the classification model as follows:

FILE =" (F0a) = f )Wy

i=1

(16)

As shown in [51], the definition in Eq. (16) corresponds to
the approximation of a manifold on which the data samples X
may reside. Motivated by [47], by setting M = L, K can
be used to design different algorithms for semi-supervised
classification, and the new kernel can reinterpret them within
the supervised learning models. In this paper, we formulate
it as a new active learning method with a semi-supervised
learning model for supervised learning in the new kernel space,
that is,

1
* = argmin {J(ﬁ)) = Z (D" $(zi) — yt’)2 +7 HuA)Hz} g
IZ)EH[Z i=1

A7)

where $(z;) indicates the data sample z; in the high dimen-
sional kernel space Hg, which shows the intrinsic manifold
structure of a large number of the unlabeled samples in
the database. Motivated by the theorem in representation
learning [52], we notice that w* is defined as a linear combi-
nation of (/g(z,-),i =1,...,I:

1
D= 0idz) = $2), (18)
i=1

where v = [v1,...,0/]7 € R is the expansion coefficient.
By bringing Eq. (18) into Eq. (17), we have

~ 2 ~
w* = argmin{J (v) = HKZD - yH +y0' K0}, (19)

weHg

where y = [y1, ..., y/]7 is the label of the training samples,
and Kz € R is constructed by the labeled set $(Z) =
[6(z1), ..., P(z;)] with the entries calculated as in the new
kernel Gram matrix K. By setting %2 = 0, we solve the
problem of Eq. (19) as follows:

¥ = (K. +y1 D)7y, (20)
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Generally, given an input data sample x, we obtain the label
information of this sample in the following:

1
fO) =D kx,zip*, @1)
i=1

where k(-,-) is the new data-dependent kernel given in
Eq. (14). Thus, Eq. (21) will be considered as the classification
result for the sample x.

C. MRED Solution

To find multiple informative samples ¢(z;),i = 1,...,![
in the database for training, we first interpret the active
learning method using the conventional supervised learning
models in I:I,g, ie., Eq. (19). Motivated by TED [27], we
find the informative samples by minimizing the expected
prediction variance on the test data. Similar to Eq. (10), the
new optimization problem can be reformulated to find the

optimal solution as follows:

2
+ 1]l

(22)

n
min > |6(x) - $(Z)e
a;eR! im1

Consequently, similar to TED, the data samples selected
by MRED reconstruct the abundant unlabeled samples in the
database. In other words, MRED tends to select a set of repre-
sentative samples ¢(Z) that can be used to span a linear space
to retain most of the information of ¢(X) in H %+ The new
method gives an explicit geometric explanation to the selected
samples $(Z) as TED. MRED effectively integrates the
geometric information of abundant unlabeled samples in the
database by using the deformed kernel space [47]. Moreover,
different from previous SVMactive methods, MRED does
not require any label information y;(i = 1,...,1), but only
depends on the training samples ¢(Z) = [d(z1), ..., d(z)],
which effectively alleviates the different potential problems led
by insufficiently labeled samples in real-world applications.

Motivated by [28], by introducing the auxiliary variables
L = (P1,...,0n) as the selection coefficients of the data
samples, Eq. (22) is reformulated as:

S ; 2 -y
i 2 [0 = B (000 #X) aey
stfpip=0, j=1,...,n, (23)
where o; = (a1, ..., a,-,n)T is the samples selection coef-

ficient. As shown in [53], the |[f]|; results in a sparse
coefficient f. When f; = 0, all a; ,...,a, ; should be 0.
Otherwise, the objective function goes to infinity, which means
the j* sample is not identified as the most representative
ones. In the objective function, both the first term (i.e., the
square loss function) and the third term (i.e., the /; norm)
are convex. A summation of convex functions is still convex.
As demonstrated in [28], the Hessian of the second term is
positive semidefinite and we can know that the second term is
also convex. Finally, we get the global optimal solution since
the objective function of Eq. (23) is convex. In the following
parts, we discuss how to solve this problem step by step.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 2, FEBRUARY 2017

We define Dy as a diagonal matrix with entries 81, ..., B,
and thus,
nog?
> 2l =al Dyl (24)
B
j=1"

To solve this problem, we take the derivative of Eq. (23)
with a;. By requiring this derivative to be zero, we get

—26(X) T p(xi) +2¢(X) $(X)ai +2Dp'a; = 0.  (25)
Finally, we have
ai = (D5 +3073X0)) BRI @8

In view of ¢(X)T$(X) = K, Eq. (26) is reformulated as

0 = (Dﬂ’l + K)7'K;. (27)
Then, by taking the derivative of Eq. (23) with £; and
requiring this derivative be zero, we get

a

n 2.
S (—H+i=0.
i=1 'Bj

At last, we obtain the most informative samples selection
coefficient as follows:

’Bj = V Z:;l aiz,j//l’

where a; and f; are calculated iteratively according to
Eq. (27) and Eq. (29). Because the objective function of
Eq. (23) is convex, we get the global optimum iteratively.

The samples can be ranked by following the selection
coefficient . The top [ samples are considered as the infor-
mative samples Z in the database. These selected samples are
regarded as the most informative samples, which are utilized
to train a classifier f according to Eq. (19) and Eq. (21.Finally
the classifier are used to do the classification.

As shown in Algorithm 1, In Step 1, the computational
complexity of constructing the k nearest neighbor graph
is O(kn?), where n is the number of unlabeled samples.
In Step 2, the computational complexity of computing the
conventional kernel Gram matrix is O(n?). In Step 3, the
computational complexity of computing the data-dependent
kernel Gram matrix K is O(n3), and it is 0(tn3) in Step 4,
where ¢ is the iteration number. Since ¢ is usually a small
number, MRED converges very quickly. Therefore, the overall
computational complexity of MRED is O (n%).

(28)

(29)

IV. EXPERIMENTAL RESULTS

In this section, we compare the proposed method with state-
of-the-art active learning methods. We evaluate the effective-
ness of the new method based on synthetic datasets, the Yale
face database and the Corel image database.

A. Synthetic Datasets

To show the performance of MRED in finding the most
informative samples, we compare the proposed MRED with



ZHANG et al.: MRED FOR ACTIVE LEARNING

975

Algorithm 1 MRED for Active Learning

Input: The n unlabeled data samples X, the number of the selected most information data samples [, the number of the nearest neighbor

data samples k

Step 1: Construct a nearest neighbor Laplacian graph with the weight matrix W as calculated in Eq. (15) on the unlabeled samples X and

calculate

Step 2: Construct the kernel Gram matrix K with an selected input kernel type and let M = L.
Step 3: Construct the data-dependent deformed kernel Gram matrix K according to Eq. (14).

Step 4: Let u; be the ¢th column vector of K and initialize o ; = 1.

Step 4.1: Repeat
Step 4.2: Compute (; according to Eq. (29), i.e., ; =

n 2
i=1 9‘i7j A

Step 4.3: Compute o according to Eq. (27), i.e., os = (D' + K) 7' K.

Step 4.4: Until Convergence

Step 5: Rank the samples in X by following 8;(j = 1,...,n) in a descending order and then return the top [ samples as the selected most

informative ones Z.

Output The [ selected most informative samples can be labeled as the training samples.

o
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Performance of several active learning methods in finding the most informative samples. The red circles represent the most informative samples

found by A-OED, TED, and MRED in synthetic datasets. The numbers near the selected samples indicate the orders how they were selected. (a) the 2-circle
synthetic dataset; (b) A-OED can select 6 informative samples on the large-sized green circle; (c) TED can find 6 informative samples on the small-sized
blue circle; (d) MRED can find 3 informative samples on the small-sized blue circle and 3 informative samples on the large-sized green circle, respectively.

two related active learning approaches, i.e., A-OED and TED.
It should be noted that SVMactive cannot be applied to this
task since labeled samples are usually insufficient. The results
are illustrated in Fig. 2. The most informative samples selected
by each method are marked with red circles. The numbers near
the selected informative samples denote the order of selection.
As shown in Fig. 2, A-OED and TED select samples from
the small-sized blue circle and the large-sized blue circle,
respectively. Three data samples on the small-sized blue circle
and three samples on the large-sized green circle are selected
by MRED. Inspired by Eq. (22), we notice that the data
samples selected by MRED reconstruct the unlabeled samples
in the database with the minimum prediction variance, and
thus these samples are the most representative ones. As shown
in Fig. 2, MRED selects the informative samples, which show
much better performance in representing the distribution of
the original dataset (i.e., the small-sized blue circle and the
large-sized green circle).

B. Real-World Databases

In this subsection, we conduct real-world experiments on
two real-world databases to show the performance of different
active learning methods.

1) Face Recognition: In this subsection, we first use the
samples found by these methods as training samples to train
a classifier. Then the unselected samples are adopted as the
testing samples. In this experiment, we use the one-versus-all

scheme to deal with the multi-class classification problem.
If there are ¢ classes in the training samples, we train ¢
different two-class classifiers and each two-class classifier
separates one class from all different classes. These
¢ classifiers are used to classify this testing sample, and its
label is given based on the largest output value from the
c classifiers. SVM [45] and Laplacian regularized LSRR [10]
are used as the classifiers to evaluate the effectiveness of
different active learning methods.

The Yale face database [54] is used to evaluate the effective-
ness of compared methods for face recognition. This database
includes 165 grayscale images of 15 different individuals, with
11 images per person. In our implementation, each face image
is normalized by fixing the position of 2 eyes and scaled to the
size of 32 x 32 pixels. Thus, each face image is represented
in a 1,024-dimensional feature space. Fig. 3 illustrates some
face images from the Yale face database.

To evaluate the effectiveness of different active learning
methods, 20 subsets are randomly generated from the original
database. For each subset, 10 images are randomly chosen
from each class to form the subset. Therefore, 150 images
exist in each subset, and each method is applied to select a
given number k = 5, 10, ..., 50 of training faces. In the exper-
iment, average precision (AP) and standard deviation (SD) are
adopted to evaluate the effectiveness of the compared methods.

Figs. 4 (a) and (b) show the APs of different active learning
methods versus the number of training data by using the SVM
and Laplacian regularized LSRR, respectively. As we can



976

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 2, FEBRUARY 2017

Fig. 3.
07 T T T T T T
-
0651
061
0.551
= 05r
o
3 0.45F
o
3
< 04}
e ——MRED
03 ——TED
—=—SVMactive
0'25( —a-A0D
07 . . . i ; —Random Sampling
i 10 15 20 25 30 35 40 45 50
Number of training samples
()

Eleven images of one person in the Yale face database and the images are aligned well by fixing the positions of the two eyes.

0.65
06F
0.55+
0.5F
= 045+
i
3 04
o
g
<035
i ——MRED
0.25 - ——TED
a —e—SVMactive
0.2 —-=—A0D
; ; ; : ; —Random Sampling
5 10 15 20 25 30 35 40 45 50
Number of training samples
(b)

Fig. 4. Performance comparison of different active learning approaches (i.e., MRED, TED, SVMactive, A-OED and Random Sampling) on the Yale face
database. The face images found by the active learning algorithms are adopted as the training samples and these unselected images are used as the testing

samples.
TABLE II
PERFORMANCE COMPARISON OF DIFFERENT ACTIVE LEARNING ALGORITHMS (i.e., MRED, TED, SV Mactive,
A-OED AND RANDOM SAMPLING) ON YALE FACE DATABASE (APs + SDs(PERCENT))
K The classification accuracy by SVM The classification accuracy by Laplacian regularized LSRR
Random AOD SVMactive TED MRED Random AOD SVMactive TED MRED
5 2565+322 | 2352+20 | 2301 32 | Z137+£3.1 | 211153210 | 2331423 | 2167 £21 | 2141 +273 | 2005 24 | 1945+ 21
10 | 3058 +31 | 3242+32 | 2672 +43 | 3227+13 | 3684 +23 | 27150 +32 | 2003 + 24 | 2400+ 43 | 2054 +23 | 33.63 + 24
15| 3548 + 28 | 3790 +3.1 | 3904 +23 | 4565 +35 | 4887 +45 | 3157 £ 28 | 3393 £ 34 | 3563 £ 32 | 41.49 £ 3.5 | 4436 + 3.6
20 | 36.14 £32 | 4283 +£45 [ 453714 | 5211 £43 | 5423 £33 | 3198+ 13 [ 3829 £ 28 | 4096 £ 1.5 | 4737 £ 28 | 49.12 £ 25
2514002 £21 | 451227 [ 491543 | 560523 [ 5853 £ 1.6 | 3546 £32 | 4023 £37 | 4442 £ 53 | 5068 £ 24 | 5279 + 34
30 | 41.23 £ 1.5 | 4747 £ 42 | 5236 £ 2.8 | 59.95 3.8 | 61.60 £ 3.4 | 3660 £25 | 42.11 £ 24 | 4693 £ 47 | 5364 £ 3.7 | 5575 £ 1.3
354462143 | 4498 113 | 5444 £ 34 | 61.77 £ 43 | 64.12 £ 3.7 | 3953 £ 48 | 4384 £ 27 | 4874 £ 32 | 5551 £29 | 57.72 £ 4.1
40 | 47.03 +26 | 5052 +43 [ 5582 +34 | 6177 +43 | 6412 +3.7 | 3953 +4.8 | 4384 + 27 | 4874 +32 | 5551 £ 29 | 57.72 + 4.1
45 | 4828 £ 34 | 5194 £38 | 5712 £ 21 | 6523 =45 | 6646 £{34 | 4253 =43 | 4623 £42 | 51.02 £ 32 | 5882 + 3.8 | 59.88 £ 3.2
50 | 49.18 £ 28 | 4792 +23 | 5812+ 34 | 6677 =23 | 67.82 £2.1 | 4333 £28 [ 4705+ 43 | 5190 £ 4.1 | 5993 £ 43 | 60.81 £ 3.1

see, MRED significantly outperforms the other related active
learning methods in most cases. Compared with TED, MRED
consistently shows better performance with the increase of the
number of training samples.

The performance difference becomes larger when the num-
ber of training samples increases. However, when only 5 most
informative samples are selected by the active learning meth-
ods, some classes should not have any labeled samples.
Therefore, on this occasion, all of these active learning meth-
ods cannot obtain good performance. When the amount of
selected informative samples increases, the performance of all
compared methods increase. Therefore, the performance of the
system can consistently improve by using the most informative
samples selected by the active learning methods.

Table II shows the detailed APs and SDs for each active
learning method. As we can notice, when the initially labeled
set is small-sized, the random sampling method outperforms
other related methods. This is mainly because the initially
trained model is not very accurate given a small number

of labeled samples. However, when there are only 20-35
most informative samples, our MRED method outperforms
the other active learning methods which require more than
50 selected informative samples. With a large number of
labeled samples, the initial model can be more accurate. Thus,
the most representative samples selected by our method can
provide the largest amount of new information. Therefore, we
conclude that the labeling efforts of the user are alleviated by
our MRED method.

2) Content-Based Image Retrieval (CBIR): In this subsec-
tion, we show how to use the proposed MRED for a CBIR
task. We first give a brief description of the Corel database
and the low-level feature representations.

The original Corel gallery is collected as a real-world
image database and widely used as a benchmark database to
demonstrate the effectiveness of the CBIR system in the past
decade [24], [55]-[57]. We group the images into 80 different
categories according to the ground truth of the images. Some
example images are illustrated in Fig. 5.
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Fig. 5.

Some images in the Corel database.

We utilize three different kinds of visual features,
i.e., color [58], local descriptors [59] and shape [60] to
represent the images. The color moment feature vector is firstly
adopted to represent the color information. 240-D Webber
Local Descriptors [59] are used to describe the local visual
descriptors of images. The edge directional histogram from
the Y component is employed as the shape information.
These visual features can characterize the contents of the
images from different aspects. These three different low-level
visual features are combined into a 510-dimensional vector to
represent the images in the database.

The original Corel image database is divided into five
subsets to evaluate the compared methods. In each round of
RF, we select one subset as the query subset, and use the other
four subsets as the evaluation database. We randomly select
500 images as the query subset and do the image retrieval task.
The system can retrieve and rank the images in the database.

To evaluate the performance of our MRED, we compare
the new MRED with MAED, TED, Locally Linear Recon-
struction (LLR) [35], LSRR and SVMactive. Out of these six
methods, MRED, MAED, LLR, LapROD, TED and SVMac-
tive are considered as the conventional active learning based
methods, whereas LSRR is a standard classification method.
We label the first three relevant images in top twenty images
as the positive samples, and label all other irrelevant images as
the negative samples. For conventional active learning-based
RF methods, the system selects the informative samples
automatically. In experiments, we use AP and SD to evaluate
the performance of the compared methods. AP is considered
as the percentage of relevant images in top images presented
to the user and is calculated as the averaged value of all query
images. SD describes the stability of different methods. In the
following, we show the performance of the compared methods
using the APs and SDs from top 10 to top 60. All results are
computed by averaging the results of 5-fold cross validation.

Fig. 6 and Fig. 7 show the compared performance of
different methods. As shown in Fig. 6, our MRED consis-
tently outperforms all other compared methods. Three different
methods, MRED, MAED and TED are developed by following
the conventional LSRR; however, these three methods can
select the informative samples for training an effective classi-
fier, and thus can significantly outperform the original LSRR.
Because our MRED uses the informative samples as training
samples by leveraging the manifold of the database, our
method can show much better performance than the original
TED. Because the classification hyperplane of SVMactive is
not as good when the training data are small-sized, SVMactive
does not outperform both MRED and TED. MRED and TED
can label the representative samples in the database, which do
not depend on the label information and is more appropriate
for real-world applications. SVMactive can not be applied in
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TABLE III

APs (PERCENT) IN TOP N RESULTS OF SIX ALGORITHMS
(i.e., MRED, MAED, TED, LLR, LSRR, SVMactive)
AFTER THE NINTH ROUND OF RF

Algorithms MRED MAED TED LLR LSRR SVMactive
Top 10 88.09 86.31 84.53 87.87 70.80 78.05
Top 20 78.49 76.69 75.32 76.60 62.66 74.11
Top 30 72.05 70.59 69.13 69.59 52.14 67.71
Top 40 66.83 65.48 64.13 64.16 45.13 59.53
Top 50 62.43 61.16 59.90 59.70 40.15 52.84
Top 60 54.95 53.84 52.73 52.14 32.87 43.47
Top 70 51.58 50.53 49.49 48.91 30.18 39.89
Top 80 48.58 47.60 46.62 45.98 27.88 36.95
Top 90 45.97 45.04 44.11 4337 26.01 34.48

the first round of RF since it requires an initial hyperplane.
In the experiment, for SVMactive, we first use the standard
SVM to build an initial hyperplane. Since MRED can find the
informative samples for training the classifier, it shows much
better performance for most of the results in experiments.

We can see that MRED outperforms other methods among
the top 10 to top 40 results as shown in Fig. 7. For other
results, MRED is similar to other related approaches. We can
notice that MRED shows its effectiveness in finding the most
informative samples of the database.

In [17], the system requires the user to label a large
number of unlabeled samples for training a classifier. Then
the uncertain samples are labeled by the user. Basically, the
negative samples outnumbers than the positive ones. The user
also would not like to label a large number of samples in
each round of RF. Therefore, the system selects 3 relevant
images and all irrelevant images in top 20 images as positive
and negative samples, respectively, which can simulate the
real-world CBIR systems.

The detailed results of the compared algorithms after nine
rounds of RF are shown in Table IIl. As given in Table III,
MRED achieves better performance compared with other
approaches for all top results. MAED can also obtain sat-
isfactory performance, as compared with TED, LSRR and
SVMactive. Therefore, we can conclude that the proposed
MRED shows the better performance in labeling the most
representative samples in the database for the user to label.

We also show some qualitative results of CBIR. In this
experiment, some query images are randomly selected, e.g.,
tiger, lion, wolf, and castle. The RF is automatically conducted
based on the ground truth of images. In CBIR, four rounds
of RF are performed automatically. The positive and negative
samples are selected from the relevant and irrelevant images
in the first screen, which contains 20 images in total. All
of these positive and negative samples contain 20 images
in total. In general, we select about five positive and five
negative feedback samples based on the ground truth of the
images. The experimental results are shown in Fig. 8. The
query images are given as the first images of corresponding
rows. We give the results of the initial results from top 1 to 9
without RF, SVMactive and MRED by using four rounds
of RF, respectively. We also highlighted the incorrect results
by red boxes. The new MRED shows much better perfor-
mance for CBIR compared with related methods. For the
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157, 2 and 3" query images, 9 relevant images are produced
out of top 9 retrieved images. For the 4" query image,
the system produces 8 relevant images out of top 9 images.
SVMactive also achieves comparable performance compared
with the initial results. Therefore, the performance of CBIR
can be significantly improved by labeling the most informative
samples by our MRED.

C. Discussions
In the machine learning community, there are usually

two research directions for active learning [17], [19]-[22],
[26]-[28]. Conventional SVM-based active learning methods
can only select uncertain samples to label by using the
optimal hyperplane [17], [19]. Different from the SVM based
active learning methods, MRED explores the whole database
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—

Fig. 8.

Top 9 results for 4 different query images based on different active learning methods after 4 rounds of RF. The first row for each query image is

the initial image retrieval result without RFE. The second row for each query image is the image retrieval result based on SVMactive. The third row for each

query image is the image retrieval result based on MRED.

and show much better performance when dealing with a small
number of training samples by selecting the most representa-
tive samples. Similar to MRED, TED directly evaluates the
predictions on testing samples and also gives a very clear
geometric explanation to the selected samples [27], [28].
However, conventional TED [27], [28] only assesses the
labeled samples but ignores the unlabeled samples in the
database. LLR reconstructs each sample by the linear
combination of its neighbors [35]. The representative samples
are defined as those whose coordinates can be used to best
reconstruct every other sample. However, this method is
still not very appropriate since the classification model is
inaccurate when training data are small-sized. This definitely
affects the applications to real-world applications. Different
from the conventional manifold regularization framework
in [61], our method effectively selects the most informative

samples in the database for the user to label. Then, the system
utilizes all of the data samples including both a small number
of labeled samples and a larger number of unlabeled samples
to learn a classification model, which can be considered as a
semisupervised learning problem. Similar to semisupervised
learning, the conventional kernel deformed method [47]
effectively utilizes the auxiliary information of unlabeled
samples, which significantly improves the performance of
conventional active learning when the size of training samples
is small.

V. CONCLUSIONS

This paper presents an effective method for active learning
called manifold regularized experimental design (MRED) to
alleviate the labor of the user by using the most informative
samples for training a classifier. Compared with other popular
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active learning methods, which only focus on selecting one
sample in each iteration, our method allows multiple infor-
mative samples to be selected iteratively. The new method
is largely inspired by the popular manifold assumption in
the machine learning community, which plays an important
role in semi-supervised models to significantly enhance the
generalization of conventional supervised learning. Different
from the previous SVMactive methods, our method does not
depend on any label information of training samples and
can avoid different problems caused by insufficiently labeled
training samples. The new method is more appropriate and
useful for different real-world applications. Various experi-
ments on both synthetic datasets and real-world databases
have demonstrated the performance of our proposed MRED.
In future, we will extend our method to image classification
and image annotation tasks.
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