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Abstract—This paper proposes a new methodology for synthesiz- min-max based approach [1]. As opposed to a combined objec-
ing animations of multiple characters, allowing them to intelli- tive function in [1], the competitiveness and cooperatassn
gently compete with one another in dense environments, while of the actions are evaluated separately by different abect

still satisfying requirements set by an animator. To achieve these . : -
two conflicting objectives simultaneously, our method separately functions (Section VI). Our proposed method integrates the

evaluates the competition and collaboration of the interactions, functions during the evaluation process (Section V).

integrating the scores to select an action that maximizes both . . . .
criteria. We extend the idea of min-max search, normally used ONne Of the advantages of our system is that it is an interactiv

for strategic games such as chess. Using our method, animatorsSystem that can reflect updates of the motion data set, action
can efficiently produce scenes of dense character interactions scores, and the parameters of the constraints/objectnatiun
such as those in collective sports or martial arts. The method jmmediately. This feature is highly demanded by animators.
is especially effective for producing animations along story lines, preyioys methods based on precomputation [4] or learning
where the characters must follow multiple objectives, while still . .
accommodating geometric and kinematic constraints from the [2], [3], [5] require a huge amount of recomputation to reﬂe.c
environment. any updates of the parameters or data set. In order to achieve
this, we choose to use a short horizon optimization using a
rich set of actions. This increases the controllability bé t
. INTRODUCTION characters and avoids wobbling or the repetition of similar
series of actions due to quantization error, which tend to

Method_s_ WhiCh synth_esize an?mat?ons of multip_le chara;cte,qappen when using precomputation-based approaches Jj2], [4
competitively interacting are in high demand in the COMs] for persistent, long interactions.

puter animation and game industries. Due to the difficulties

associated with capturing dense interactions throughanotiT® demonstrate the effectiveness of our method, we simulate
capture, methods based on optimization have been applied?@i0us competitive interactions between multiple cheena;
combine singly captured motions into competitive intecag.  including boxing matches, sword fighting, chasing one agvoth

In our preliminary research [1], we reported that the mirRnd @& mass-game scene where the characters locally fight

max based optimization is effective for simulating comipei seriously with each other while moving based on a predefined
interactions of multiple characters rule to create a large scale texture. We also show that the

. . . ) ] method is effective for creating animations along storgdin
One major difficulty is that from the animator's point ofi, \which high level instructions are given.

view, such scenes have counteracting requirements - thety wi

to show serious fighting between the characters at the local

level, while maintaining precise control over the scene by Il. RELATED WORK

specifying the location and movements of the crowd at the

global level. This means that the characters need to compb@tion editing and synthesis has become a huge research
for their own interests while collaborating with one anathe2®@ With many applications in computer graphics, robotics
to achieve the requirements of the animator. Our previo@§d biomechanics. Recently, a lot of data-driven techrsiqae
approach [1] and other optimization-based approaches RSHt; retarget [6]-{8] or synthesize new sequences of chera
multi-character control [2], [3] fall short at managing thénotion using pre-captured motion data [9]-[14] are being
cooperativeness and the competitiveness simultaneolrsly.Proposed. The Motion Graph approach [9]-{11] is a method
these methods, an objective function is defined based on fReinteractively reproduce continuous motions of chamscte
interests of individual characters and they select actthas Pased on a graph that is automatically generated from agptur
benefit them the most in the future. If we add a cooperatif@otion data. Since the Motion Graph produces a lot of
objective function that rewards the characters for follmyvihe ©dges and nodes without any context, it becomes difficult to
instruction of the animators, the competing characterktuyil control the character as the user wishes. Recently, threrefo
to penalize each other in achieving these goals. As a resM‘{P,rkS to resolve such problems by introducing hierarchical

they do not cooperate well to follow the animator's plan. ~ Structures [15], [16] and interpolating the motions in thene
category [14], [17], [18] are proposed. Most of these meshod

In this research we propose a new method to achieve compgdndie characters in the scene individually, and extessioe
itiveness and cooperativeness, as an extension to OUDPEVingeded to apply them to control multiple characters closely
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Fig. 1. The overview of the proposed method to simulate conietitteractions

difficult to handle because of the large degrees of freedopharacters: First, it requires a huge amount of precomputa-
the close contacts that can cause penetrations of the bodies to find the optimal actions at every state - basically
and the complexity of selecting an optimal action that rssulthe state space increases exponentially proportional ¢o th
in realistic animation. Here we review different methods fadimensionality. As a result, abstraction of the state based
creating scenes of multiple characters closely intergatith  sampling [2], [5], [24] or basis functions [3] must be used.
one another. If the abstraction is too rough, the actions are not optimal

. . L and the resulting animation can appear awkward. Second, if
a) Capturing multi-character animationSome research hast ere are changes in system parameters such as the objective

peen d(_)ne in capturing .th.e motions Of. two characters CI.O.S? ctions, body size and available actions, the precongpute
interacting, and synthesizing new motions using probstisli results are no longer valid - the time consuming process

methods [19], [20]. Since the motions of several people hawve ;¢ evaluating all the state transitions and rewards must be

be captured simultaneously, there are limitations on tpedy repeated from the beginning. Therefore, in this study,iast

of actions which can be successfully recorded. Therefo_rgf, applying quantization and precomputation, we examitee th

lB?ecise status of each character by expanding the seaech tre
based on the available set of actions during runtime. Algiou

b) Combining Singly Captured MotionsWhen simulating the simulation has to be paused from time to time for the tree
the interactions of multiple characters based on indiigiua €xpansion process, the system can adapt to the updates in the
captured motions, the main problem is determining when ystem parameters and return the optimal series of actions.

pick a particular action. One solution is to dgfine a rﬁwafgﬁ Controlling Scenes of Multiple Character$he advantage
fl:]nctlon that ev:;luates how much Eagh E\ctlonb benefits t Four approach for controlling characters, is that we cam Si
c aLgctzr_ In eac Lstate A rr;an%/ met (I) S have been p;OpOEI%?e realistic competition while enabling cooperationoaig
in this direction. Lee et al. [2] simulates a scene of W racters to satisfy the directions given by the animatbr.

boxers fighting with each other using singly captured ShadcfWough many methods enable animators to edit the trajestori

boxing. r-:—heyd pr:pp(r)]S(? functions to .guide Ithez chalracters &P a crowd [27], arrange the formation of characters [28],
approach an 't_t elr o'ppc')r?ent. Liu et al. [_ 1] aternatel[)ég] or design / edit the interactions of characters [4],]]30
computes the motions of individual characters in closeaint [31], there has been no approach which can construct a scene

by using spacetime opt|m|_zat|on. Treuille et al. _[3] PrOR@ \\here the characters competing locally while cooperating t
method to control pedestrian characters to avoid one anotg%hieve the demands from animators

using walking motion. Shum et al. [1] propose to use game
tree expansion to intelligently control characters. Tragpgr A recent research by Kim et al. [32] also introduces a user-
extends the work of Shum et al. [1] to generate charactets witiendly interface for animators to plan and adjust intéicats
counteracting objectives. among multiple characters. However, since the charactees h

) ) . no intelligence, every interaction has to be specified mianua
¢) Reinforcement LearningAmong the research synthesmngoy the animator. Our research focuses on controlling the

multi-character animations by optimization, [2] and [3kp5racters intelligently so that they automatically iat#rand
are based on reinforcement learning. In reinforcemennieag) ., high level commands

ing [22], rewards are defined for each character and the

characters select their actions so that their accumulatedrd

in the future is maximized. The rewards and transitions to I1l. SYSTEM OVERVIEW

different states are examined, and the policy that deteysin

the action at every state is precomputed. As a result, threour system, every character has its own action level Nhotio
characters can select the best action in real-time. It hes aGraph [1], in which the edges represent semantic actions. Th
been used to control pedestrians to avoid obstacles in theeractions of each character are simulated by expantiag t
streets [23], [24], training a computer-controlled figbtdR25], game tree and evaluating the states in the future. For the
[26], and to simulate cooperative and competitive intéoast evaluation of the future states, we prepare two functions -
between characters [5]. There are several problems wittgusthe competitive function and the cooperative function. The
reinforcement learning to simulate the close interactiohs former simulates intelligence for competitive behaviavsjle

them to simulate close interactions have been developed.



the latter allows the characters to achieve common goalisided by double support phases. If the sum of squares of
such as instructions given by an animator. The functions atee acceleration of the joints between two segments is above
integrated in the min-max framework to decide the action af predefined threshold at the moment of segmentation, the
the character. segments are merged, since the body can be conductingsattack
afnd defences. Finally, we classify the actions accordintye¢o

The outline of our system is shown in Figure 1. It consists ?rajectories of the joints with large accelerations,

five steps:
, i We build a Motion Graph [9]-[11] at the action level rather
1) Capture the motpn 9f a single aptor. ) than at the frame level, as in [15], [16], [33]. This is done
2) Segme_nt th_e motlon_mto semantlt_: actions, and orgam@ extracting the starting poses and the ending poses of the
the actions in an action level Motlon Graph. ) actions and grouping similar poses together. Let us cadl thi
3) Expand the game free to predict future states of INterafsta structure the action level Motion Graph (Figure 2), in

tion. " ) L which the edges represent actions and the nodes represent
4) Apply the competitive and cooperative objective fun nostures. Planning based on such a graph is similar to the
tions to the min-max framework to evaluate the optim

ay a human does, as they also use basic action groups such

action. ) ) as attacks and defences, as fundamental entities during.figh
5) Let the characters perform the optimal action. Then,
repeatedly expand the game tree to generate a continuous
animation. '&— K
Walk Dodge Punch
Steps 1 and 2 are precomputed, while steps 3 to 5 are
performed at run-time. J? “f
. o . . Kick
The two major contributions in this paper are: Kick Punch
« We propose a new method to simulate dense interactions Avoid

of multiple characters by applying techniques from game,
theory such as game tree expansion and min-max searccfl]

« We propose a new approach that enables characters
compete, while cooperating to satisfy requirements set
by the animator.

The rest of the paper is composed as follows. Section Np our previous work, we simulated characters intelligentl
describes how the captured motions are preprocessedoSectPmpeting with their opponents [1]. In this method, whemeve

V explains our framework for simulating dense interactiond character needs to select an action, we expand a game tree
using game theory. Section VI gives further details on tH€ compute the possible future outcomes, and apply min-max
objective functions we designed. Section VII describes tf§€arch to select the optimal action. However, min-max $earc
system we use to model the contacts of the virtual charactdfssurprisingly inefficient at encouraging collaboratiateen
Section VIII presents the experimental results, Section Ite competing characters, such as following a predefindd pat

discusses the pros and cons of our method, and Sectior®)8ystem that considers this problem would need to define an
concludes the paper. objective function that awards the characters when thek wal

along the path. Unfortunately, under the min-max framework
the characters consider the benefits of their opponents to be
IV. DATA ACQUISITION AND ANALYSIS their own penalties, and thus prevent each other from fatigw

the, path. As a result, the deeper the tree is expanded, the

Her(_a we explain the steps used to preprocess the Capt.uéﬁ]darter they are at blocking one another, and the worse they
motion data and prepare the data structure for real-tlnA?e at following the path

character control.

. 2. An action level Motion Graph generated from the bgxmotion.

V. MULTI-OBJECTIVE CHARACTER CONTROL

Ilnstead of tweaking the objective functions, we propose a

Firstly, we capture long sequences of motions from a Smg[weew scheme to embed them into the min-max framework. In

subject. We define the term "motion” as the raw-captured,da Ris section, we explain our control method which enables

and the term “action” as a semantic segment of the motion we . )
. T , ‘%(e characters to compete with one another locally, while
captured. In the field of fighting, an action can be an attac

(such as a left straight, jab or a right kick), a defence (sagh stll coopgrating with the others' to satisfy the requireteep
parrying, blocking or ducking), a transition (such as siegp of the animator. We first explain the game tree expansion

to the left, stepping forward or a backwards step) reacti\t/r(l.at we have used for simulating competitive interactions
X PpIng P), N [1] (Section V-A). Next we explain how we enhanced

motions when being hit or pushed away, or their combinatior{%. .
. . is approach to separately evaluate the competitiveneds a
Such tagging can be done for other activities as well. . . . :
cooperativeness of actions and integrate them (Section. V-B
We have developed an automatic motion analyzer that ségrally, we explain how we can prune non-plausible choices
ments and classifies raw motions into actions. This is dooé actions to increase the reality of the scene and reduce the
by first partitioning a long motion sequence into segment®mputational cost (Section V-C).



b; atty, it can expand another node tagtas a; is still going
on. Finally, when they ends at4, the blue character expands
the tree again.

In some situations, a character may be forced to stop midway
/ through the current action and perform another action. For
de B @5 By Tims instance, in fighting, when a character is hit, it will be eith
knocked down immediately, or just lose its balance and walk
Fir?- 3; An eﬁpa”dﬁd game ltfee, showing a fight betr‘]’vee” two Wﬁﬁc a few steps backward to recover. These response motions
Ihe dtance along he veial s epreserts e, TheStmTESeTt U il be decided based on the current state of the body and
and the edges represent the choices of actions. The datesiilidicate the the impulse added to the body. In such cases, we terminate
continuation of the current actions while the opponentcslés own. the corresponding edge, insert a new node that indicates the
current action being forced to stop, and insert another edge
that corresponds to the response motion starting at that.nod
In Figure 5, the blue character seleasand the red character

We adopt methods used for artificial intelligence players ﬁeIECtSbl' It turns out that the red chare}cter will be .h't by
strategy games such as chess to control our virtual chasact e blue character &t. The red character is forced to discard
since such methods can model the decision making proces:% latter part qfol shown by the dotted line, and perform a
areal human. Intelligent players consider the long ternefign alling back actionb.

rather than the immediate one, when making a choice. For

example, in chess, a movement that shows the greatest effect

in one ply, such as taking a valuable piece like a castle oBa Evaluating Competitiveness and Cooperativeness
bishop, is not necessarily the best choice for achievingra wi ] ] . -
By expanding the game tree and evaluating the static positi this section, we explain how we evaluate the competitive-
after a few plies, a choice can be made that benefits the plal§8S and the cooperativeness of the series of actions mpedor

in long run. Here we apply a similar approach to evaluate ti the characters and select an optimal action which corebine
long term benefit of performing each action. both perspectives. The major improvement of our method is

that we define two separate functions to calculate the score
The major difference between character interaction andschey competitiveness and cooperativeness. When calculatiag t
is that the choices made by the characters are performgfg term benefits of launching an action, the competitive
in a continuous time domain. To apply the tree expansigfinction evaluates the nodes in the same way as the ordinary
method, we need to customize our game tree such that disck@ig-max framework, such that the character selects a nade th
planning can be performed with continuous actions of céifér maximizes its own benefit while minimizing the opponent’s
durations. Every node in our game tree represents the stgéefits. On the contrary, the cooperative function evakiat
of interaction between two characters when either of themtjse nodes as in ordinary dynamic programming, such that the

about to select a new action. The edges from the node represgéhefits of both characters are simply accumulated over. time
the possible choices of actions in such a state. Startingeat t

root node, considering the character that is about to sakectFirst we need to compute the scores of competitiveness and
action, we add edges to the node based on the performagp@perativeness of the leaf nodes of the game tree. For every
actions. Then, we evaluate future states of interactiomréah edgee, we define two functions to evaluate the Competitiveness
of the edges, and continue to expand the sub-trees. Notice - “°"(€)) and the cooperativeness{C°¥(e)). The details of

the two characters perform their selected actions conatlyre the objective functions will be explained later in Sectioh V
and whenever any of them finish their actions, a sub-tree \Wjthout loss of generality, suppose character A is competin
expanded. Figure 3 shows an example of an expanded gati@ character B and is expanding the game tree to select an
tree, where the vertical axis represents time. The blueackar action. The node expanded by A is called a max node, as A
starts the game tree expansion with two choices of actmnS,trieS to maximize its score, and that by B is called a min node,
anday, at timet;. Based on the choice of the blue character, the
red character has choices of actions to counterast &lotice

that the action selected by the blue character is still goimg
when the red character starts a new action, as indicatedeby th
blue dotted lines. When acticamy, ends attz, another level of
nodes will be expanded by the blue character according to the
current actions of the red character, as indicate@$io as.

A. Game Tree Expansion

Since the actions in our game tree have different duratibies,
order of expansion does not necessarily alternate. If aacter

selects a Iong action, its opponent may perform severaeti Fig. 4. The expansion of the game tree does not always aleer8atce the

before another. In Figure 4, the blue character selects @ Iaftion selected by the blue character is long, the red ctearagpands two
actiona; att;. When the red character expands a short motidgyels of tree before the blue character further expands.




Equation 3 at the root node. It is to be noted that the com-
petitive and cooperative functions are integrated difidyeat

min and max nodes - by adding°°P(n;) at the max nodes
and subtractingS*©°P(n;) at the min nodes, both characters
will tend to select actions that results in large absolutees

of S°°P(n;). As a result, the animator can effectively control
the characters through the cooperative function while ngaki
the characters seriously compete with each other through th
competitive function.

Fig. 5. The character is forced to stop the current actioretfopm a reactive
action when being hit. Since the reactive motion is determimethe system
rather than selected by the character, there is only oneomggdge.

C. Pruning Non-Plausible Choices
as it tries to minimize A's score. The scores of competitesn
and cooperativeness of a leaf ndda the tree are defined as:In order to reduce the computational cost and avoid non-
plausible interactions, we prune the bad choices of actions

om com _ comp/A.
SomHl) - = % FemHe) % F (€)) when expanding each node in the game tree. Although there
oop|) i aXFcoop RS mi"Fcoop ' (1) are a huge number of choices for actions to launch, many of
(1) = %ﬂ (&) + % (&) them result in illogical, meaningless behaviors (Figure\vg
& <Emax € <Emin evaluate the actions based on the following criteria andeho
wheree, . represents the set of edges from the max nodé¥satisfied are excluded from consideration.

andé,,,, represents those from the min nodes during the path
from the root towards leaf node Figure 6 (Left) gives an
example of the leaf node evaluation. In the figure, for thé lea
nodel, its score of competitiveness and cooperativeness can be
computed bySoMR(|)=FMA gy)+FMAe,) —FMA g ) and
SFOOR(])=FC99P(gg) +F°P°P(e2)+FC°°P(gy ), respectively.

« Body penetration: Penetration is one of the most signif-
icant artifacts in computer animation. Actions that cause
one character to brutally overlap with any others are
considered invalid. If none of the actions can avoid such
penetrations, we try to select those that are penetration-
free at the last frame, so that the next interaction does
not start with penetrations.

e
, e 4 0 e « Facing angles Although the virtual characters have full
HR= By / \ / \ knowledge of their opponents and do not require vision, it
M a X — e, looks strange for them to perform actions without looking
\ at the opponents. Therefore, we require characters to face

their opponents in the last frame of an action.

« Out of range: It is logically meaningless to launch
actions such as punches and dodges if the opponent is
very far away. However, the game tree approach does not
consider logical meaning, and the characters may perform
such actions for other purposes , such as waiting for time
to elapse before more relevant motions can take place.
Since such actions look unnatural, we prohibit characters
from attacking or defending when the opponent is farther
away than 1 or 3 meters, respectively.

Fig. 6. (Left) The scores of the leaf nodes (squares in thed)aare evaluated
from the root node to the leaf nodes with Equation 1. (Righth-khax is
conducted by recursively applying Equation 3 and 2 from lezdes to root
node.

The next step is to propagate the scores of competitivemekss a
cooperativeness from the leaf nodes toward the interna$)od
and finally to the root node to select the action at the roothBo
the competitive and cooperative scores of the internal $iode

are computed based on the min-max rule recursively from the®
leaf nodes towards the root node, as shown in Figure 6 (Right)
We compute the scores of competitiveness / cooperativeness
of an arbitrary internal node, which has a set of children

lllogical combinations of actions When being attacked,

only defensive actions make logical sense, but such
actions may not be selected if they are ineffective due
to timing or position. However, real humans prefer to

defend themselves even if it is in vain. In our system, we
only allow the character to defense when the opponent is
attacking.

nodes represented lny. We select the best chilid,es; among
n;, and simply copy the scores:

Scomp(n) s:omp(nbest)
S)OO p( n) SZOO p( nbest)

wherenpegt is selected among; by

2) The criteria listed above are in descending order of impoea

If none of the actions can satisfy all criteria, the actionatt
satisfy those of higher importance will be selected.

(3) By pruning the actions as explained, we can increase thigyreal
of the interactions and greatly reduce the computationst co
Equations 3 and 2 are applied to evaluate all internal nodefs expanding the game tree. Empirically, we can prune at
recursively from the leaf nodes towards the root node. Theast half of the available choices using these pruningiedi
optimal action to be performed is finally selected by ap@yinThis would reduce the computational cost approximately by

_ Jargmay, (S°Mn;) + S°°P(nj)) nj is max node
Moest= argmin, (S°™A(n;) — S°°P(n;)) nj is min node



prefers to escape from their opponent, high scores are given
to actions that increase the distance between them.

The scoring term encourages the character to interact with
the opponent following the rule of the game. It evaluates how
effective the action is at competing with the opponent. In
general, it is defined as the weighted sum of the damage the

character gives to and receives from the opponent:
Fig. 7. Examples of actions launched by the green characérhive to
be pruned: (Left) Penetrating the opponent. (Middle) Tgnits back to the fscore _ WJDFDJF —wpD™ (5)
opponent while fighting. (Right) Defending while opponentar away.

where D' is the damage that the character gives to the
opponentD~ is the damage received, ang, wy are positive
O(3m"), wherem is the number of available actions ands eight constants for each term. The weight constants depend
the depth of the game tree. The readers are referred to Beclig the competing style of the character. For boxing, if the
VIl for the actual performance during experiments. fighter is an outboxer that is less aggressivg, is set small
andwg is set large. If the fighter is running out of time and
is losing the fight, it has to fight more aggressively regaslle
of the risk of being hit; in that casey is increased and
. . . . L Wy is decreased. In our fighting examples, the damage is
I_n this sect!on, we _explaln the details of the obj_e_c tive funcsé’ proportional to the velogity o% the attgcking part andgth
tions used in Equation 1 to evaluate the competitiveness an o . o
. . . " vulnerability of the part being hit:
cooperativeness of the interactions. The competitive tfanc
evaluates the effectiveness of an action at competing \véh t D— Vattack|
opponent. The cooperative function evaluates how much the 4

character is following the instructions given by the anionat \,,ere Vatack| iS the norm of the velocity of the attacking
By combining the two functions, controllable characters«:osegmem at the moment it lands onto the opponehtis
ducting realistic competitions can be realized. a constant value set to 100 for normalizng the velocity,
Wheing attack IS @ Weight indicating the vulnerability of the body
- ) part that is being attacked. In our SysteMaeing attack IS Set to
A. Competitive Function 1.0 for the torso, D for the head, and.0 for the limbs. In

. . . . . the sword fighting experiments, the sword is considered to be
Here we explain the details of the competitive function, athi tre1e attacking segment.

evaluates how well each character is competing with theroth
characters during close interactions. Through obsemstali The action combination term evaluates the suitability of a
various competitive interactions including fighting, cings performed action when the opponent is conducting a specific
and sports, we find that the objective function of the charact action. The previous two terms explained above are useful
can be well represented by three terms. These arenthee- in evaluating the numerical performances of actions when
ment term that encourages the characters to move towards ttempeting with opponents, but they fall short in representi
opponents and orient itself for interactions, gworing term  the implicit factors that affect the action selection pixe
that evaluates the scoring criteria of the game and encesraghese implicit factors, such as the appropriate style ofited
the characters to compete, and #wion combination term for an attack, are difficult to evaluate numerically and fiegju
that evaluates the suitability of the action with respecth® expert knowledge. We manually set upagtion combination
actions done by the other characters. table that helps to determine the optimal actions to perform
based on the action taken by the opponent. Each record in
?Ille table contains three entities: the character’s actioa,
opponent’s action, and a suitability value that describes h
fgmodl _ wg (6 — gd)Z + W (1 — rd)Z (4) effective the character’s action is with respect to the ot's
action. A positive value encourages the character to parfor
where 8, r are the relative orientation and distance from thg,ch an action when the opponent’s action corresponds to the

opponent respectivel\gy, rq are their preferred values, andone in the record, while a negative value discourages such an
Wg, W, are the weight constants for each teinis computed gction:

by projecting the head-facing direction vector onto theugih {

VI. OBJECTIVE FUNCTIONS

X Whpeing attack (6)

The movement term guides the characters towards the targ
opponent by evaluating the distance and facing angle:

wsS  if the action pair exists in the table

_ ; comb __
In our system, we always séf = 0 so that the character tries f =10 otherwise

to face the opponenty depends on the type of interaction

and the movement style. For example, in boxing, an infightethere ws is a weight,S is the suitability value recorded in
prefers to keep short distance between themselves and tlieér table. In our system, this term is only used to evaluate
opponents. In that casgy is set small such that higher scoreshe defensive power of each action with respect to eachkattac
are given to actions that bring the character closer to #smn by the opponent, which is difficult to evaluate numerically
On the contrary, for an outboxer or a passive fighter, wHoom the motion data. It is known in boxing that sway back

()



motions are effective for avoiding upper cuts and hooks, a®y dynamically updatingA™ andA~, the animator can control
head slips are good for avoiding straight punches. There &he flow of the animation. In our system, we use this term to
various factors such as the direction the punch is approgchcontrol one character to knock down another. By requesting
from, and whether the defender can see the attacker alldhroa character to perform falling down actions, we implicitly
the motion, that support these basic techniques. Howewverraquire that the character to be knocked down by the opppnent
is difficult to numerically evaluate all such factors onlyiin  since falling down actions cannot be performed without gein
the motion data. By using the action combination table, wet.

can take into account the knowledge of experts, such as hew .
inally, the two terms are summed to compose the cooperative

effective every defensive action is with respect to varioufs A
unction:
attacks.
coop __ ¢mow2 req
The competitive function is composed by summing the three F =T + (11)
terms:
[FComp_ gmovl | gscore , comb o) VII. PHYSICAL INTERACTIONSBETWEEN CHARACTERS

The competitive function is general enough to produce wario\We adopt Jakobsen’s [34] technique that uses particles to
competitive interactions such as fighting, chasing, andtspo Simulate the rigid body’s dynamics. Each joint is represent
For examp|e, in Chasing, we can increase the preferrechdstaby a partiCle, and is activated by external force calculated
for the character running away, and shorten it for the chasBy & PD controller [35]. Since the location of segments
For sports like basketball, we can design a scoring functié@" be constrained in this method, we fix the supporting
that considers the probability of throwing the ball into théoot onto the ground to prevent it from sliding. The body
basket, so that the character will try to shoot when thereis egments are modeled with spheres and cylinders to redeice th

opponent to their front. computational cost of collision detections. We add repalsi
forces to the segments when a collision occurs to avoid
penetrations.

B. Cooperative Function The effect of stepping back or falling down are synthesized

The cooperative function evaluates how much the charact@s concatenating the appropriate response motions in the

are cooperating to achieve a common goal. In general, {figi@base according to the condition of the impulse and the
animator specifies such a goal to design a scene. body postures [36], [37]. The initial motion when the impuls

_ _ _ is added is simulated by rigid body dynamics, then the pestur
Typical commands by an animator for controlling characte[s compared with the initial postures of the response metion

may be following a specific path when moving, and launching the database. Once an appropriate motion is discovered, t
a specific style of actions at a specific time. Such obsemwatigyo motions are blended.

leads us to implement a cooperative function composed of the

movement term and theaction requirement term.
) » VIIl. EXPERIMENTAL RESULTS
The movement term guides the characters to the position

specified by the animator. It evaluates how close the chargge simulated scenes of multiple characters fighting and
ters’ global position and orientation are to their desiratligs chasing each other using singly captured motions of shadow
at the end of each action: boxing, swinging a sword and running around. In this segtion
mow 2 2 we first explain the capturing sessions and preprocessepg.st
P =wy(y = ya)"+Wo(P — Pa) ©)  Next, we give details of how the competitive interactions of
where y, p are the global orientation and position of thdighting and chasing simulated between the characterslly;ina
character in the world coordinate systema, pg are their we explain how the scenes involving multiple characters are
desired valuesw, andw, are their weights. Empirically, we controlled by the animator.
found that if we wish a character to simply follow a predefined
trajectory, it is effective to remove the terms of orieraatand ) )
define the trajectory as a series of check points, updatiag th- Motion Capture and Preparation Processes

val fpg whenever heckpoint is reached. . .
alues ofpy whenever a checkpoint is reached An optical motion capture system was used to capture the

The action requirement term encourages the character tanotions of a single actor. The frame rate was set to 60
perform actions specified by the animator. It gives a highliescgpostures per second. We have captured motions of shadow
if such actions are successfully performed: boxing for 7 minutes, sword swinging for 15 minutes, and
running around for 1.5 minutes. They were automatically
segmented by our motion analyzer into 279, 612 and 215
actions respectively. The analyzer can mistakenly spiitvsl
and less energetic actions that involve multiple steps, @s w
where w, is the weight, AT is the set of actions to be first segment the motions by the foot-step pattern and then
performed andA~ is the set of actions not to be performedmerge them according to the body acceleration. We manually

Wy when A" performed
f9=¢ —w, whenA~ performed (10)
0 otherwise



validate and amend the segmentation, which usually takes 20
to 60 minutes depending on the number of the actions.

We implemented an action combination table explained in Sec
tion VI to evaluate the effectiveness of defensive actioith w
respect to different attacks in the boxing database. Todspee
up the table creation process, instead of specifying atinsc
manually, we first annotate the target position and directicig. 8. (Left) Infighters simulated by our system that prefeharter distance
for attacks. Next, the defences are annotated with theipositfrom the opponent and short range attacks. (Middle) Outisoginulated by
and direction they are defending from (Tabe I). The systefif /e 1"l refer 2 enger detance fom e oppenastary ange
then automatically inserts records into the action contlna fighting by expanding the game tree.

table by pairing all the attacks with defences. The suitgbil
value for each pair is defined &= Nmatched Ndefence Where
Nmatched 1S the number of common elements in the attack=s
and the defence columns considering the position and th
direction, andngefenceiS the total number of elements in the
defence column (Table Il). The equation favors defences th
are effective to the attack while specific to the areas being
attacked. Finally, the animator may amend or add records ir
the table. The whole process takes around one hour.

Fig. 9. (Left) The green character chasing and catching the tharacter.

Each character model has 6 degrees of freedom for the traffgnt Two characters chasing one character.

lation and orientation of the root, and 72 degrees of freedom
for the joint 9r|entat|o.n. The parameters .Of the Compﬁltlvsimulated a less intelligent fighter by setting the inteltige
and cooperative functions for each experiment are shown in ! .

. level to two, and a smart fighter by setting the level to four.
Table 11l and Table 1V, respectively. . . ) .

In such a case, the intelligent fighter always wins the match
as its decision is based on greater expansion of the game tree
B. Competitive Interactions Between Two Characters Experiments were also done to examine the interactionsof tw

characters sword fighting (Figure 8 Right). Again, the gitbn
In order to examine the effectiveness of the min-max searohthe fighters could be controlled by changing the depth of
at simulating competitive interactions, various fightingda game tree.

chasing scenes were created by adjusting the parameter?\lof . . .
the objective function and the depth of the game tree. ext, we S|mula_ted one character chasing another l?y using
the running motion (Figure 9 Left). The preferred distance

We first simulated a fighting scene between two characters lytween them is set short for the chaser and long for the
using the shadow boxing actions. We can create differefesstyescaper. Moreover, the scoring function was adjusted $hath t

of fighting by adjusting the objective function - infightintyle  a high score is given to the chaser when it catches the escaper
was simulated by decreasing the preferred distance between
the characters and giving higher scores to successful short

range attacks such as upper-cuts and hooks (Figure 8 Left) We | Wr | O | I Wy Wp | Ws
. ! . ) "&General boxer 10t | 10t [ 0° | 0.8m 10° 10° | 167

An outboxing style was simulated by increasing the preterre |nfignter 100 | 10t | 0° | 05m | 16F/10t T | 10° | 102
distance between the characters and giving higher scores tmtboxer 10t | 10t | 0° | 20m | 10t/10° T | 10° | 17
successful long range attacks such as straight punchasréFig Boxer (Path) 10t | 10" | 0° | 0.8m 10° 10° | 10
Sword fighter 10t | 10t | 0° | 1.5m 10° 10° | 167

8 Middle). The intelligence level of the characters can teSWord fighter (Path) | 10 | 10* | o | L5m 10 10 | 10

controlled by altering the depth of the game tree expan¥\@. | -, acer 0|16t | o0 | 0.1m 10 0 0
Runaway 10t | 10t | 0° | 3.0m 0 1° | 0
i _ - Chaser (Path) 10t | 10t | 0° | 0.1m 10° 0 0
g?gtlr?tn.lab Zzzl(tilorl])pper Torso E:L?ﬁtlon Runaway (Path) 10' | 10" | 0 | 30m 0 10 0
’ T P
Upwards Kick | Upper Torso, Lower Torsq Upwards The parameters used for shc%r; é?_ri??l Iand long range attaghes/ely
Duck Head, Upper Torso Front, Horizontal THE PARAMETER USED IN THE COMPETITIVE FUNCTION TO SIMULATE
Jump Back Upper Torso, Lower Torsg Horizontal, Upwards VARIOUS EFFECTS

TABLE T
EXAMPLE ANNOTATIONS OF ATTACKS AND DEFENCES

Wy, [ Wy | Wa
Character's Action | Opponents Action | Suitability Value, S Boxer (Path) 0 | 10" [ 10°
Duck Right Jab 3/4=0.75 Sword fighter (Path) | 0 | 10! | 10°
Duck Upwards Kick 1/4=0.25 Chaser (Path) 0|10 | 0
Jump Back Right Jab 1/4=0.25 Runaway (Path) 0 |10t | 0O
Jump Back Upwards Kick 3/4=0.75 TABLE TV
TABLE Tl THE PARAMETER USED IN THE COOPERATIVE FUNCTIONUNLISTED

EXAMPLE RECORDS IN THE ACTION COMBINATION TABLE SIMULATIONS DO NOT REQUIRE THE COOPERATIVE FUNCTION



(d)

Fig. 11. (a) A crowd of characters fighting with opponentsleffiollowing the formation specified by the animator, which isualized by the red area. (b)
Characters fighting with weapons in pairs and following tfegectories. (c), (d) Examples following the story line. Td)e strong green enemy first attacks
the blue character but gets hit by a car at the end. The twaacteas cooperatively follow the path while fighting. (d) Tiveo characters sword fighting.
The blue character retreats into an alley where an ally jmirte knock down the green enemy.

and a high penalty is given to the escaper when it is caughgach a check point, they perform any required actions and
As a result, the chaser tries to approach the escaper, wkile wait until the indicated timing is passed. Then, the system
escaper tries to get away. When we increase the intelligerspecifies the next check point. The movement term in the
level of the chaser to four and lower that of the escaper to twapoperative function in Equation 11 awards an action that
the chaser can catch the escaper quickly. Further incigasjuides the characters to the next check point, while the
the intelligence level generates similar results, becaaseaction requirement term encourages the characters to condu
difference of two levels is already large enough for the ehashe specified actions. Since the movements of the characters
to easily catch the escaper. We can also simulate scenes of &are spatio-temporally constrained, we can design a scene
characters collaboratively chasing one character by sagmicontaining a lot of characters with little risk of unexpette
the objective functions of the two chasers (Figure 9 Right).collisions. Using this method, we can simulate a large numbe
of characters following instructions.

C. Animator Controlled Competitions First, using the running around motion database, a scene in
which one character chases another in a circular trajectory
Here we present examples of the animator controlling the created (Figure 10 Left). A number of check points are
scenes through the cooperative term. We show examplesp@épared on the floor so that each of the characters passes the
the characters fighting or chasing one another while follwi with the correct timing. We can create a scene where many
paths given by the animator. Each of the paths is modelggirs perform such chasing while avoiding colliding witheon
as a series of check points to be reached by the charactgffother by defining multiple trajectories (Figure 10 Right)
Each check point is defined by a 2D position on the floor,
an optional timing value, and optional requirements on théext, we show a scene with a large number of characters
actions to be conducted when passing by. When the characfegkting in pairs along spiral trajectories, creating a agieg-
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out formation as indicated by the red area in Figure 1ll(a)ee is expanded for three levels for each character. Haweve
The characters wearing red gloves are designed to kndbk computational cost increases exponentially with tha-nu
down their opponents when the pairs reach the final chelokr of levels which are expanded. For example, creating the
point, as shown in the right-most image of Figure 11(a¥ame video with five level game trees will take hours to finish.
This is done by setting up the action requirement term Mevertheless, from our experience, long horizon planning
the cooperative function. Another example using the swottsually does not create interesting animations. One reason
fighting motion was also created as shown in Figure 11(h$. that they become too “smart” and careful, and therefore
Although the trajectories overlap spatially, they do notrdap avoid performing anything that leads to disadvantages. As
in the temporal domain, and hence the pairs of charactersalaesult, the characters become less active, which is not
not run into one another. what the animator wants to see. We have examined from
. our experimental results that a depth level of up to four is
Finally, we show examples where scenes are created alor]z% X . . X .
] . ) T effective to produce intelligent and interesting moverseutt
story lines given by the animator. In action films, often ther, s .
: L e characters. In addition to that, the tree expansionessoc
are scenes where the main character faces a situation that . . i
L . . an easily be broken down into multiple parallel processes.
he/she is in danger but finally survives at the end due K? ificall imol lti-thread
some unexpected events. Using the boxing data, we created o opectically, We can imp ement a multl-thread system
. ) . . " IN which each thread expands a sub-tree of the whole game
a scene in which the main character fights with a stro

. . : e. As multi-core processors become cheap and popuéar, th
enemy and survives because the enemy is crashed into by a Cat rmance of our method can be greatly enhanced

. S r
(Figure 11(c)). By adjusting the depth of the tree expandepde,
we control the strength of the characters such that the mdine pruning rules mentioned in Section V-C were shown
character keeps on getting hit. Both characters collalvetat to be effective in our experiments. We simulated around 10
walk along a given path that is composed of a sequengfinutes of interactions with each of our motion databases
of check points. We locate the last check point at a stregding three level game trees. The number of actions before
with a lot of passing cars, and use simple bounding boxesdad after pruning are recorded and the average is calculated
detect collisions between the characters and the cars.dBaggable V). Pruning is less effective on the sword swinging
on the storyline, the character colliding with the cars argatabase, mostly because the preferred distance for sword
forced to perform a falling down action. A similar exampldighting characters is long, and hence the body penetration
where the main character is fighting with a strong enengpnstraint becomes less effective.
was created using the sword fighting data. The main character
retreats into an alley where a hero suddenly jumps in to knock
down the enemy (Figure 11(d)). We design the trajectories fo IX. DISCUSSIONS
each character to follow, and use the action requirement ter
to request the enemy be knocked down by the hero at the. . .
; . . Sing our method, animators can simulate the close compet-
last check point. The advantage of this approach is that the . . o
. A . . itive interactions of multiple characters based on indhailtly
animator only needs to specify high level instructions sash . . . . .
. captured motions and specify details such as the trajestori
the path the characters pass through and the overall timi

the events. The system will then plan the individual actions the characters during the animation.

launched by the characters to complete such requirementsThe action combination table mentioned in Section VI pro-
vides animators with an interface to embed manually designe
plausible interactions into the scene. Stylized and artist

D. Computational Costs combinations of specific attacks and defences may rarely

h ) ime d q he si  th ) appear if the interactions are only evaluated by the oljecti
The computation time depends on the size of the action sg, tjon Using the action combination table, the animator

the conne_ctmty of .the Motion Graph, .and the complexny OFnake such interactions appear with minimal adjustment of
the objective function. In general, using a computer with Re objective function. The action combination terfifo(™)

Pe_zntium 4 Dual core (3GHz) and 2GB of RAM, it takes $ currently defined as an element of the competitive functio
minutes to create a video of length 30 seconds when the ga(ﬁeomp). This is because the term is used to model the attack-

defence relationship, and we wish the smarter character to
perform better defensive motions. However, if the animator
wants the two characters to cooperatively perform stylized

# of Actions # of Actions Percentage
Before Pruning | After Pruning | Pruned
Boxing 1200 355 70.4%
Sword Swinging | 94.3 68.2 27.7%
. . . . Running-Around | 95.8 40.3 57.9%
Fig. 10. (Left) One character chasing another charactecircalar trajectory. 9 TABLE V >
(Right) A large scale scene in which many ch_aracters co_mtl;mlmllar AVERAGE NUMBER OF ACTIONS BEFORE AND AFTER PRUNING WHEN
movements can be synthesized. The check points are adjustdtatsthe EXPANDING ONE NODE

characters do not collide into one another.
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interactions, the term has to be moved to the cooperative fun
tion (F°°°P), otherwise the two characters will prevent their
opponents from acting as indicated in the action combinatio
table.

Our framework can be expanded to simulate interactions fc
multiple characters such as a basketball game. The simple
approach is to expand a game tree for all characters in tt
scene, and evaluate the combined benefits from all allies ar
opponents. However, since expanding such a huge game tree

is computational costly, it would be better to apply a multiFig. 12. The characters controlled by the proposed methodatimv the

_ i ; th accurately (top) while those controlled by Interatti®atches cannot
level control strategy deSIQnmg a representation based %Iow the path well due to the lack of samples (bottom). We udedsame

the formation of thQ whole team, and expanding the gamng of actions in these animations and the bottom animatioroused from
tree at that level. Min-max search can be used to select #78 Interaction Patches.

best formation taking into account the counter formation by

the opponent team. Individual actions by the characterdean

simulated by simple path planning using the motion graph.reinforcement learning [2] and state machine-based dynami
programming [5]. One general issue with such methods is that

In our model, we assume each character has perfect knowlegirggy usually suffer from the high dimensional state spand, a
about its opponent in terms of the opponent's strategy a@d h 4ve solution results in rough quantization [2] or reduced
action evaluation functions. Due to such knowledge, the-mif, mber of action samples [5], which can cause lower pratisio

max search always gives the optimal result. However, if thg f,ryre predictions and less controllability of the cluaeas.
knowledge of the opponent is incomplete and inaccurate, Rinetheless, it has a great potential if it can be solved, for

opponent-model search that takes into account the miSIaE%mple, by representing the value function by a sum of basis

made by the opponents may perform better [38]. To implg;nctions [3], as we will be able to produce multi-objective

ment opponent-models in our system, one simple approaglyacter animation in real-time.
is to observe the actual moves made by the opponent. During

the tree expansion process, we determine the probabilityeof The method can also be combined with Interaction Patches
opponent launching each action, based on the observedyhistf4], which precomputes the close interactions between two
and evaluate the opponent nodes using the expectationsvaleiaracters based on the user specified pattern and their spa-
This would be an interesting direction for future research. tiotemporal concatenation. Interaction Patches are taféec

Our svstem is a simplification of NON-zero-sum qames 1|‘or synthesizing stylized interactions with minimal numbe
y P 9 + G sample motions. However, the disadvantages is that it is

\(’)thtlﬁz ;heo%z:t CE];;} ?/llaeygirmml?f); t?]zt r;?:]:gs; aglssbuemtize tlr?ﬁat very suitable for long persistent interactions betwien
PP ' P 9 y 9 %Fuaracters, as similar combinations of actions are likely t

the non-zero-sum part of the system only occurs within the . - ; .
. . o r ver time, and th nnectivity of the in i
cooperative function, and handle it differently such thze t%e epeated over time, and the connectivity of the intesact

. , . atches is low if the two characters continuously inter@ut.
function benefits both characters. As a future work, it woul . . .
X . . . L . e other hand, the proposed method is effective at makiag th
be interesting to investigate the possibility of applyingr o

method to more complex non-zero-sum aames. in which tﬁharacters follow control signals from an animator. Aniongt
P 9 ' &n effectively combine both for synthesizing an animation

o other abjectie faciors suoh as he skl of the player, 10T @ diven Story line. For example, the animator may
" precompute the final scene where the enemies are finished off
When a system reaches an equilibrium, all players in ti interaction patches, and guide the fighting characteneth
game are unable to obtain better rewards by changing they the proposed multi-objective approach. Figure 12 shows
control strategies [39]. In our research, we try to avoid th& comparison between the proposed method and Interaction
equilibrium because when such a condition is reached, tRatches for producing persistent long interactions betwee
system is very likely to stay in the same state for a long/o characters. The latter performs sub-optimally because
duration, which leads to monotonic animation. One examphly a limited choice of patches are available for tempgrall
of the equilibrium in a fight scene is that both characterskstuconcatenating, which results in poor quality following bet
defending [25], which is not pleasant from the animatorspo instructions given by the animator.
of view. Fortunately, since each action has particularesfior
its attacking / defending position and duration, the stpsce
is highly irregular. This reduces the chance that the chearsic
stay at an equilibrium point. Furthermore, we give a penalty
actions that have been recently used, such that the eguiibr
point shifts in the state space at every time step.

We observed that in movies, the environment and the stogy lin
of a specific scene are usually designed and used only once
throughout the whole movie. It would be ineffective to run a
precomputation system for such a purpose. Instead, anisnato
usually wish to interactively adjust parameters and see the
results immediately. Our method does not require any tgini
Our idea of multi-objective control is general enough tor precomputation stage, and any changes in the system are
be used with other precomputation-based methods suchreffected immediately. The Interaction Graph [5] and other
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reinforcement learning systems require a long trainingesta [6] M. Gleicher, “Retargetting motion to new characte@dmputer Graph-

that could take hours. Once the parameters and the objective

functions are changed, or if the story line is updated, thig]
precomputation needs to be repeated from the beginning.

There are some drawbacks to our system. Firstly, the (Eriter'[8

for pruning the sub-tree when expanding the game tree must
be determined by an expert who knows the nature of the
interactions well. Such criteria can change according ® th

interaction - however, the criteria listed in Section V-G dze

(9]

applied well to various competitive interactions. Secgndle
cannot currently handle persistent, continuous contabistw [10]
appear in martial arts when squeezing the joints or lockieg t

torso or limbs. One way to handle such interactions is to cor[q—1
bine the proposed approach with the topology coordina@s [3
Such a combination would be useful for 3D computer games
that involve motions of continuous contact, such as wiregtli

]

games.

(23]

X. CONCLUSIONS
[14]

In this paper, we have presented a method to simulate
competitive scenes in which multiple characters are cjosel

interacting with one another. We first expanded the game tridal
and applied min-max search to determine the actions of each

character. Then, we have shown that various styles of fightiﬂ6
and chasing can be simulated by changing parameters, suc

as the depth of the game tree and the evaluation function.
We also embedded the cooperative functions into the migaz)
max framework so that the characters cooperatively follow
instructions from the animator while competing with eacfig
other. As a result, we can create intelligent characters tha
compete well while being easily controlled.
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