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Simulating Multiple Character Interactions with
Collaborative and Adversarial Goals

Hubert P. H. Shum, Taku Komura and Shuntaro Yamazaki

Abstract—This paper proposes a new methodology for synthesiz-
ing animations of multiple characters, allowing them to intelli-
gently compete with one another in dense environments, while
still satisfying requirements set by an animator. To achieve these
two conflicting objectives simultaneously, our method separately
evaluates the competition and collaboration of the interactions,
integrating the scores to select an action that maximizes both
criteria. We extend the idea of min-max search, normally used
for strategic games such as chess. Using our method, animators
can efficiently produce scenes of dense character interactions
such as those in collective sports or martial arts. The method
is especially effective for producing animations along story lines,
where the characters must follow multiple objectives, while still
accommodating geometric and kinematic constraints from the
environment.

I. I NTRODUCTION

Methods which synthesize animations of multiple characters
competitively interacting are in high demand in the com-
puter animation and game industries. Due to the difficulties
associated with capturing dense interactions through motion
capture, methods based on optimization have been applied to
combine singly captured motions into competitive interactions.
In our preliminary research [1], we reported that the min-
max based optimization is effective for simulating competitive
interactions of multiple characters

One major difficulty is that from the animator’s point of
view, such scenes have counteracting requirements - they wish
to show serious fighting between the characters at the local
level, while maintaining precise control over the scene by
specifying the location and movements of the crowd at the
global level. This means that the characters need to compete
for their own interests while collaborating with one another
to achieve the requirements of the animator. Our previous
approach [1] and other optimization-based approaches for
multi-character control [2], [3] fall short at managing the
cooperativeness and the competitiveness simultaneously.In
these methods, an objective function is defined based on the
interests of individual characters and they select actionsthat
benefit them the most in the future. If we add a cooperative
objective function that rewards the characters for following the
instruction of the animators, the competing characters will try
to penalize each other in achieving these goals. As a result,
they do not cooperate well to follow the animator’s plan.

In this research we propose a new method to achieve compet-
itiveness and cooperativeness, as an extension to our previous
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min-max based approach [1]. As opposed to a combined objec-
tive function in [1], the competitiveness and cooperativeness
of the actions are evaluated separately by different objective
functions (Section VI). Our proposed method integrates the
functions during the evaluation process (Section V).

One of the advantages of our system is that it is an interactive
system that can reflect updates of the motion data set, action’s
scores, and the parameters of the constraints/objective function
immediately. This feature is highly demanded by animators.
Previous methods based on precomputation [4] or learning
[2], [3], [5] require a huge amount of recomputation to reflect
any updates of the parameters or data set. In order to achieve
this, we choose to use a short horizon optimization using a
rich set of actions. This increases the controllability of the
characters and avoids wobbling or the repetition of similar
series of actions due to quantization error, which tend to
happen when using precomputation-based approaches [2], [4],
[5] for persistent, long interactions.

To demonstrate the effectiveness of our method, we simulate
various competitive interactions between multiple characters,
including boxing matches, sword fighting, chasing one another
and a mass-game scene where the characters locally fight
seriously with each other while moving based on a predefined
rule to create a large scale texture. We also show that the
method is effective for creating animations along story lines,
in which high level instructions are given.

II. RELATED WORK

Motion editing and synthesis has become a huge research
area with many applications in computer graphics, robotics
and biomechanics. Recently, a lot of data-driven techniques to
edit, retarget [6]–[8] or synthesize new sequences of character
motion using pre-captured motion data [9]–[14] are being
proposed. The Motion Graph approach [9]–[11] is a method
to interactively reproduce continuous motions of characters,
based on a graph that is automatically generated from captured
motion data. Since the Motion Graph produces a lot of
edges and nodes without any context, it becomes difficult to
control the character as the user wishes. Recently, therefore,
works to resolve such problems by introducing hierarchical
structures [15], [16] and interpolating the motions in the same
category [14], [17], [18] are proposed. Most of these methods
handle characters in the scene individually, and extensions are
needed to apply them to control multiple characters closely
interacting with one another.

Recently, techniques for handling close interactions of multiple
characters are attracting research. Scenes of this type are
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Fig. 1. The overview of the proposed method to simulate competitive interactions

difficult to handle because of the large degrees of freedom,
the close contacts that can cause penetrations of the bodies,
and the complexity of selecting an optimal action that results
in realistic animation. Here we review different methods for
creating scenes of multiple characters closely interacting with
one another.

a) Capturing multi-character animation:Some research has
been done in capturing the motions of two characters closely
interacting, and synthesizing new motions using probabilistic
methods [19], [20]. Since the motions of several people haveto
be captured simultaneously, there are limitations on the types
of actions which can be successfully recorded. Therefore,
approaches to individually capture the motions and combine
them to simulate close interactions have been developed.

b) Combining Singly Captured Motions:When simulating
the interactions of multiple characters based on individually
captured motions, the main problem is determining when to
pick a particular action. One solution is to define a reward
function that evaluates how much each action benefits the
character in each state - many methods have been proposed
in this direction. Lee et al. [2] simulates a scene of two
boxers fighting with each other using singly captured shadow
boxing. They propose functions to guide the characters to
approach and hit their opponent. Liu et al. [21] alternately
computes the motions of individual characters in close contact
by using spacetime optimization. Treuille et al. [3] propose a
method to control pedestrian characters to avoid one another
using walking motion. Shum et al. [1] propose to use game
tree expansion to intelligently control characters. This paper
extends the work of Shum et al. [1] to generate characters with
counteracting objectives.

c) Reinforcement Learning:Among the research synthesizing
multi-character animations by optimization, [2] and [3]
are based on reinforcement learning. In reinforcement learn-
ing [22], rewards are defined for each character and the
characters select their actions so that their accumulated reward
in the future is maximized. The rewards and transitions to
different states are examined, and the policy that determines
the action at every state is precomputed. As a result, the
characters can select the best action in real-time. It has also
been used to control pedestrians to avoid obstacles in the
streets [23], [24], training a computer-controlled fighters [25],
[26], and to simulate cooperative and competitive interactions
between characters [5]. There are several problems with using
reinforcement learning to simulate the close interactionsof

characters: First, it requires a huge amount of precomputa-
tion to find the optimal actions at every state - basically
the state space increases exponentially proportional to the
dimensionality. As a result, abstraction of the state basedon
sampling [2], [5], [24] or basis functions [3] must be used.
If the abstraction is too rough, the actions are not optimal
and the resulting animation can appear awkward. Second, if
there are changes in system parameters such as the objective
functions, body size and available actions, the precomputed
results are no longer valid - the time consuming process
of evaluating all the state transitions and rewards must be
repeated from the beginning. Therefore, in this study, instead
of applying quantization and precomputation, we examine the
precise status of each character by expanding the search tree
based on the available set of actions during runtime. Although
the simulation has to be paused from time to time for the tree
expansion process, the system can adapt to the updates in the
system parameters and return the optimal series of actions.

d) Controlling Scenes of Multiple Characters:The advantage
of our approach for controlling characters, is that we can sim-
ulate realistic competition while enabling cooperation among
characters to satisfy the directions given by the animator.Al-
though many methods enable animators to edit the trajectories
of a crowd [27], arrange the formation of characters [28],
[29] or design / edit the interactions of characters [4], [30],
[31], there has been no approach which can construct a scene
where the characters competing locally while cooperating to
achieve the demands from animators.

A recent research by Kim et al. [32] also introduces a user-
friendly interface for animators to plan and adjust interactions
among multiple characters. However, since the characters have
no intelligence, every interaction has to be specified manually
by the animator. Our research focuses on controlling the
characters intelligently so that they automatically interact and
follow high level commands.

III. SYSTEM OVERVIEW

In our system, every character has its own action level Motion
Graph [1], in which the edges represent semantic actions. The
interactions of each character are simulated by expanding the
game tree and evaluating the states in the future. For the
evaluation of the future states, we prepare two functions -
the competitive function and the cooperative function. The
former simulates intelligence for competitive behaviors,while
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the latter allows the characters to achieve common goals
such as instructions given by an animator. The functions are
integrated in the min-max framework to decide the action of
the character.

The outline of our system is shown in Figure 1. It consists of
five steps:

1) Capture the motion of a single actor.
2) Segment the motion into semantic actions, and organize

the actions in an action level Motion Graph.
3) Expand the game tree to predict future states of interac-

tion.
4) Apply the competitive and cooperative objective func-

tions to the min-max framework to evaluate the optimal
action.

5) Let the characters perform the optimal action. Then,
repeatedly expand the game tree to generate a continuous
animation.

Steps 1 and 2 are precomputed, while steps 3 to 5 are
performed at run-time.

The two major contributions in this paper are:

• We propose a new method to simulate dense interactions
of multiple characters by applying techniques from game
theory such as game tree expansion and min-max search.

• We propose a new approach that enables characters
compete, while cooperating to satisfy requirements set
by the animator.

The rest of the paper is composed as follows. Section IV
describes how the captured motions are preprocessed. Section
V explains our framework for simulating dense interactions
using game theory. Section VI gives further details on the
objective functions we designed. Section VII describes the
system we use to model the contacts of the virtual characters.
Section VIII presents the experimental results, Section IX
discusses the pros and cons of our method, and Section X
concludes the paper.

IV. DATA ACQUISITION AND ANALYSIS

Here we explain the steps used to preprocess the captured
motion data and prepare the data structure for real-time
character control.

Firstly, we capture long sequences of motions from a single
subject. We define the term “motion” as the raw-captured data,
and the term “action” as a semantic segment of the motion we
captured. In the field of fighting, an action can be an attack
(such as a left straight, jab or a right kick), a defence (suchas
parrying, blocking or ducking), a transition (such as stepping
to the left, stepping forward or a backwards step), reactive
motions when being hit or pushed away, or their combinations.
Such tagging can be done for other activities as well.

We have developed an automatic motion analyzer that seg-
ments and classifies raw motions into actions. This is done
by first partitioning a long motion sequence into segments

divided by double support phases. If the sum of squares of
the acceleration of the joints between two segments is above
a predefined threshold at the moment of segmentation, the
segments are merged, since the body can be conducting attacks
and defences. Finally, we classify the actions according tothe
trajectories of the joints with large accelerations.

We build a Motion Graph [9]–[11] at the action level rather
than at the frame level, as in [15], [16], [33]. This is done
by extracting the starting poses and the ending poses of the
actions and grouping similar poses together. Let us call this
data structure the action level Motion Graph (Figure 2), in
which the edges represent actions and the nodes represent
postures. Planning based on such a graph is similar to the
way a human does, as they also use basic action groups such
as attacks and defences, as fundamental entities during fights.

Fig. 2. An action level Motion Graph generated from the boxing motion.

V. M ULTI -OBJECTIVECHARACTER CONTROL

In our previous work, we simulated characters intelligently
competing with their opponents [1]. In this method, whenever
a character needs to select an action, we expand a game tree
to compute the possible future outcomes, and apply min-max
search to select the optimal action. However, min-max search
is surprisingly inefficient at encouraging collaboration between
the competing characters, such as following a predefined path.
A system that considers this problem would need to define an
objective function that awards the characters when they walk
along the path. Unfortunately, under the min-max framework,
the characters consider the benefits of their opponents to be
their own penalties, and thus prevent each other from following
the path. As a result, the deeper the tree is expanded, the
smarter they are at blocking one another, and the worse they
are at following the path.

Instead of tweaking the objective functions, we propose a
new scheme to embed them into the min-max framework. In
this section, we explain our control method which enables
the characters to compete with one another locally, while
still cooperating with the others to satisfy the requirements
of the animator. We first explain the game tree expansion
that we have used for simulating competitive interactions
in [1] (Section V-A). Next we explain how we enhanced
this approach to separately evaluate the competitiveness and
cooperativeness of actions and integrate them (Section V-B).
Finally, we explain how we can prune non-plausible choices
of actions to increase the reality of the scene and reduce the
computational cost (Section V-C).
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Fig. 3. An expanded game tree showing a fight between two characters.
The distance along the vertical axis represents time. The nodes represent the
states of the fight after either of the characters has selected a new action,
and the edges represent the choices of actions. The dotted lines indicate the
continuation of the current actions while the opponent selects its own.

A. Game Tree Expansion

We adopt methods used for artificial intelligence players in
strategy games such as chess to control our virtual characters,
since such methods can model the decision making process of
a real human. Intelligent players consider the long term benefit,
rather than the immediate one, when making a choice. For
example, in chess, a movement that shows the greatest effect
in one ply, such as taking a valuable piece like a castle or a
bishop, is not necessarily the best choice for achieving a win.
By expanding the game tree and evaluating the static position
after a few plies, a choice can be made that benefits the player
in long run. Here we apply a similar approach to evaluate the
long term benefit of performing each action.

The major difference between character interaction and chess
is that the choices made by the characters are performed
in a continuous time domain. To apply the tree expansion
method, we need to customize our game tree such that discrete
planning can be performed with continuous actions of different
durations. Every node in our game tree represents the state
of interaction between two characters when either of them is
about to select a new action. The edges from the node represent
the possible choices of actions in such a state. Starting at the
root node, considering the character that is about to selectan
action, we add edges to the node based on the performable
actions. Then, we evaluate future states of interaction foreach
of the edges, and continue to expand the sub-trees. Notice that
the two characters perform their selected actions concurrently,
and whenever any of them finish their actions, a sub-tree is
expanded. Figure 3 shows an example of an expanded game
tree, where the vertical axis represents time. The blue character
starts the game tree expansion with two choices of actions,a1

anda2, at timet1. Based on the choice of the blue character, the
red character has choices of actions to counteract att2. Notice
that the action selected by the blue character is still goingon
when the red character starts a new action, as indicated by the
blue dotted lines. When actiona1 ends att3, another level of
nodes will be expanded by the blue character according to the
current actions of the red character, as indicated bya3 to a6.

Since the actions in our game tree have different durations,the
order of expansion does not necessarily alternate. If a character
selects a long action, its opponent may perform several actions
before another. In Figure 4, the blue character selects a long
actiona1 at t1. When the red character expands a short motion

b1 at t2, it can expand another node att3 as a1 is still going
on. Finally, when thea1 ends att4, the blue character expands
the tree again.

In some situations, a character may be forced to stop midway
through the current action and perform another action. For
instance, in fighting, when a character is hit, it will be either
knocked down immediately, or just lose its balance and walk
a few steps backward to recover. These response motions
will be decided based on the current state of the body and
the impulse added to the body. In such cases, we terminate
the corresponding edge, insert a new node that indicates the
current action being forced to stop, and insert another edge
that corresponds to the response motion starting at that node.
In Figure 5, the blue character selectsa1 and the red character
selectsb1. It turns out that the red character will be hit by
the blue character att1. The red character is forced to discard
the latter part ofb1 shown by the dotted line, and perform a
falling back actionb2.

B. Evaluating Competitiveness and Cooperativeness

In this section, we explain how we evaluate the competitive-
ness and the cooperativeness of the series of actions performed
by the characters and select an optimal action which combines
both perspectives. The major improvement of our method is
that we define two separate functions to calculate the score
of competitiveness and cooperativeness. When calculating the
long term benefits of launching an action, the competitive
function evaluates the nodes in the same way as the ordinary
min-max framework, such that the character selects a node that
maximizes its own benefit while minimizing the opponent’s
benefits. On the contrary, the cooperative function evaluates
the nodes as in ordinary dynamic programming, such that the
benefits of both characters are simply accumulated over time.

First we need to compute the scores of competitiveness and
cooperativeness of the leaf nodes of the game tree. For every
edgee, we define two functions to evaluate the competitiveness
(Fcomp(e)) and the cooperativeness (Fcoop(e)). The details of
the objective functions will be explained later in Section VI.
Without loss of generality, suppose character A is competing
with character B and is expanding the game tree to select an
action. The node expanded by A is called a max node, as A
tries to maximize its score, and that by B is called a min node,

Fig. 4. The expansion of the game tree does not always alternate. Since the
action selected by the blue character is long, the red character expands two
levels of tree before the blue character further expands.
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Fig. 5. The character is forced to stop the current action to perform a reactive
action when being hit. Since the reactive motion is determinedby the system
rather than selected by the character, there is only one outgoing edge.

as it tries to minimize A’s score. The scores of competitiveness
and cooperativeness of a leaf nodel in the tree are defined as:

Scomp(l) = ∑
ei∈el

max

Fcomp(ei)− ∑
ej∈el

min

Fcomp(ej)

Scoop(l) = ∑
ei∈el

max

Fcoop(ei)+ ∑
ej∈el

min

Fcoop(ej)
(1)

whereel
min represents the set of edges from the max nodes,

andel
max represents those from the min nodes during the path

from the root towards leaf nodel . Figure 6 (Left) gives an
example of the leaf node evaluation. In the figure, for the leaf
nodel , its score of competitiveness and cooperativeness can be
computed byScomp(l)=Fcomp(e0)+Fcomp(e2)−Fcomp(e1) and
Scoop(l)=Fcoop(e0)+Fcoop(e2)+Fcoop(e1), respectively.

Fig. 6. (Left) The scores of the leaf nodes (squares in the figure) are evaluated
from the root node to the leaf nodes with Equation 1. (Right) Min-max is
conducted by recursively applying Equation 3 and 2 from leafnodes to root
node.

The next step is to propagate the scores of competitiveness and
cooperativeness from the leaf nodes toward the internal nodes,
and finally to the root node to select the action at the root. Both
the competitive and cooperative scores of the internal nodes
are computed based on the min-max rule recursively from the
leaf nodes towards the root node, as shown in Figure 6 (Right).
We compute the scores of competitiveness / cooperativeness
of an arbitrary internal noden, which has a set of children
nodes represented byni . We select the best childnbest among
ni , and simply copy the scores:

Scomp(n) = Scomp(nbest)
Scoop(n) = Scoop(nbest)

(2)

wherenbest is selected amongni by

nbest=

{

argmaxni
(Scomp(ni)+Scoop(ni)) ni is max node

argminni
(Scomp(ni)−Scoop(ni)) ni is min node

(3)

Equations 3 and 2 are applied to evaluate all internal nodes
recursively from the leaf nodes towards the root node. The
optimal action to be performed is finally selected by applying

Equation 3 at the root node. It is to be noted that the com-
petitive and cooperative functions are integrated differently at
min and max nodes - by addingScoop(ni) at the max nodes
and subtractingScoop(ni) at the min nodes, both characters
will tend to select actions that results in large absolute values
of Scoop(ni). As a result, the animator can effectively control
the characters through the cooperative function while making
the characters seriously compete with each other through the
competitive function.

C. Pruning Non-Plausible Choices

In order to reduce the computational cost and avoid non-
plausible interactions, we prune the bad choices of actions
when expanding each node in the game tree. Although there
are a huge number of choices for actions to launch, many of
them result in illogical, meaningless behaviors (Figure 7). We
evaluate the actions based on the following criteria and those
unsatisfied are excluded from consideration.

• Body penetration: Penetration is one of the most signif-
icant artifacts in computer animation. Actions that cause
one character to brutally overlap with any others are
considered invalid. If none of the actions can avoid such
penetrations, we try to select those that are penetration-
free at the last frame, so that the next interaction does
not start with penetrations.

• Facing angles: Although the virtual characters have full
knowledge of their opponents and do not require vision, it
looks strange for them to perform actions without looking
at the opponents. Therefore, we require characters to face
their opponents in the last frame of an action.

• Out of range: It is logically meaningless to launch
actions such as punches and dodges if the opponent is
very far away. However, the game tree approach does not
consider logical meaning, and the characters may perform
such actions for other purposes , such as waiting for time
to elapse before more relevant motions can take place.
Since such actions look unnatural, we prohibit characters
from attacking or defending when the opponent is farther
away than 1 or 3 meters, respectively.

• Illogical combinations of actions: When being attacked,
only defensive actions make logical sense, but such
actions may not be selected if they are ineffective due
to timing or position. However, real humans prefer to
defend themselves even if it is in vain. In our system, we
only allow the character to defense when the opponent is
attacking.

The criteria listed above are in descending order of importance.
If none of the actions can satisfy all criteria, the actions that
satisfy those of higher importance will be selected.

By pruning the actions as explained, we can increase the reality
of the interactions and greatly reduce the computational cost
of expanding the game tree. Empirically, we can prune at
least half of the available choices using these pruning policies.
This would reduce the computational cost approximately by
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Fig. 7. Examples of actions launched by the green character that have to
be pruned: (Left) Penetrating the opponent. (Middle) Turning its back to the
opponent while fighting. (Right) Defending while opponent is far away.

O(1
2mn), wherem is the number of available actions andn is

the depth of the game tree. The readers are referred to Section
VIII for the actual performance during experiments.

VI. OBJECTIVE FUNCTIONS

In this section, we explain the details of the objective func-
tions used in Equation 1 to evaluate the competitiveness and
cooperativeness of the interactions. The competitive function
evaluates the effectiveness of an action at competing with the
opponent. The cooperative function evaluates how much the
character is following the instructions given by the animator.
By combining the two functions, controllable characters con-
ducting realistic competitions can be realized.

A. Competitive Function

Here we explain the details of the competitive function, which
evaluates how well each character is competing with the other
characters during close interactions. Through observations of
various competitive interactions including fighting, chasing
and sports, we find that the objective function of the characters
can be well represented by three terms. These are themove-
ment term that encourages the characters to move towards the
opponents and orient itself for interactions, thescoring term
that evaluates the scoring criteria of the game and encourages
the characters to compete, and theaction combination term
that evaluates the suitability of the action with respect tothe
actions done by the other characters.

The movement term guides the characters towards the target
opponent by evaluating the distance and facing angle:

f mov1 = wθ (θ −θd)
2+wr(r − rd)

2 (4)

whereθ , r are the relative orientation and distance from the
opponent respectively,θd, rd are their preferred values, and
wθ , wr are the weight constants for each term.θ is computed
by projecting the head-facing direction vector onto the ground.
In our system, we always setθd = 0 so that the character tries
to face the opponent.rd depends on the type of interaction
and the movement style. For example, in boxing, an infighter
prefers to keep short distance between themselves and their
opponents. In that case,rd is set small such that higher scores
are given to actions that bring the character closer to its enemy.
On the contrary, for an outboxer or a passive fighter, who

prefers to escape from their opponent, high scores are given
to actions that increase the distance between them.

The scoring term encourages the character to interact with
the opponent following the rule of the game. It evaluates how
effective the action is at competing with the opponent. In
general, it is defined as the weighted sum of the damage the
character gives to and receives from the opponent:

f score= w+
DD+−w−

DD− (5)

where D+ is the damage that the character gives to the
opponent,D− is the damage received, andw+

D , w−
D are positive

weight constants for each term. The weight constants depend
on the competing style of the character. For boxing, if the
fighter is an outboxer that is less aggressive,w+

D is set small
and w−

D is set large. If the fighter is running out of time and
is losing the fight, it has to fight more aggressively regardless
of the risk of being hit; in that case,w+

D is increased and
w−

D is decreased. In our fighting examples, the damage is
set proportional to the velocity of the attacking part and the
vulnerability of the part being hit:

D =
|vattack|

v′
×wbeing attack (6)

where |vattack| is the norm of the velocity of the attacking
segment at the moment it lands onto the opponent,v′ is
a constant value set to 100 for normalizng the velocity,
wbeing attack is a weight indicating the vulnerability of the body
part that is being attacked. In our system,wbeing attack is set to
1.0 for the torso, 2.0 for the head, and 0.0 for the limbs. In
the sword fighting experiments, the sword is considered to be
the attacking segment.

The action combination term evaluates the suitability of a
performed action when the opponent is conducting a specific
action. The previous two terms explained above are useful
in evaluating the numerical performances of actions when
competing with opponents, but they fall short in representing
the implicit factors that affect the action selection process.
These implicit factors, such as the appropriate style of defense
for an attack, are difficult to evaluate numerically and require
expert knowledge. We manually set up anaction combination
table that helps to determine the optimal actions to perform
based on the action taken by the opponent. Each record in
the table contains three entities: the character’s action,the
opponent’s action, and a suitability value that describes how
effective the character’s action is with respect to the opponent’s
action. A positive value encourages the character to perform
such an action when the opponent’s action corresponds to the
one in the record, while a negative value discourages such an
action:

f comb=

{

wSS if the action pair exists in the table
0 otherwise

(7)

where wS is a weight,S is the suitability value recorded in
the table. In our system, this term is only used to evaluate
the defensive power of each action with respect to each attack
by the opponent, which is difficult to evaluate numerically
from the motion data. It is known in boxing that sway back
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motions are effective for avoiding upper cuts and hooks, and
head slips are good for avoiding straight punches. There are
various factors such as the direction the punch is approaching
from, and whether the defender can see the attacker all through
the motion, that support these basic techniques. However, it
is difficult to numerically evaluate all such factors only from
the motion data. By using the action combination table, we
can take into account the knowledge of experts, such as how
effective every defensive action is with respect to various
attacks.

The competitive function is composed by summing the three
terms:

Fcomp= f mov1+ f score+ f comb (8)

The competitive function is general enough to produce various
competitive interactions such as fighting, chasing, and sports.
For example, in chasing, we can increase the preferred distance
for the character running away, and shorten it for the chaser.
For sports like basketball, we can design a scoring function
that considers the probability of throwing the ball into the
basket, so that the character will try to shoot when there is no
opponent to their front.

B. Cooperative Function

The cooperative function evaluates how much the characters
are cooperating to achieve a common goal. In general, the
animator specifies such a goal to design a scene.

Typical commands by an animator for controlling characters
may be following a specific path when moving, and launching
a specific style of actions at a specific time. Such observation
leads us to implement a cooperative function composed of the
movement term and theaction requirement term.

The movement term guides the characters to the position
specified by the animator. It evaluates how close the charac-
ters’ global position and orientation are to their desired values
at the end of each action:

f mov2 = wγ(γ − γd)
2+wp(p− pd)

2 (9)

where γ, p are the global orientation and position of the
character in the world coordinate system,γd, pd are their
desired values,wγ and wp are their weights. Empirically, we
found that if we wish a character to simply follow a predefined
trajectory, it is effective to remove the terms of orientation and
define the trajectory as a series of check points, updating the
values ofpd whenever a checkpoint is reached.

The action requirement term encourages the character to
perform actions specified by the animator. It gives a high score
if such actions are successfully performed:

f req =







wa whenA+ performed
−wa whenA− performed
0 otherwise

(10)

where wa is the weight, A+ is the set of actions to be
performed andA− is the set of actions not to be performed.

By dynamically updatingA+ andA−, the animator can control
the flow of the animation. In our system, we use this term to
control one character to knock down another. By requesting
a character to perform falling down actions, we implicitly
require that the character to be knocked down by the opponent,
since falling down actions cannot be performed without being
hit.

Finally, the two terms are summed to compose the cooperative
function:

Fcoop= f mov2+ f req (11)

VII. PHYSICAL INTERACTIONSBETWEEN CHARACTERS

We adopt Jakobsen’s [34] technique that uses particles to
simulate the rigid body’s dynamics. Each joint is represented
by a particle, and is activated by external force calculated
by a PD controller [35]. Since the location of segments
can be constrained in this method, we fix the supporting
foot onto the ground to prevent it from sliding. The body
segments are modeled with spheres and cylinders to reduce the
computational cost of collision detections. We add repulsive
forces to the segments when a collision occurs to avoid
penetrations.

The effect of stepping back or falling down are synthesized
by concatenating the appropriate response motions in the
database according to the condition of the impulse and the
body postures [36], [37]. The initial motion when the impulse
is added is simulated by rigid body dynamics, then the posture
is compared with the initial postures of the response motions
in the database. Once an appropriate motion is discovered, the
two motions are blended.

VIII. E XPERIMENTAL RESULTS

We simulated scenes of multiple characters fighting and
chasing each other using singly captured motions of shadow
boxing, swinging a sword and running around. In this section,
we first explain the capturing sessions and preprocessing steps.
Next, we give details of how the competitive interactions of
fighting and chasing simulated between the characters. Finally,
we explain how the scenes involving multiple characters are
controlled by the animator.

A. Motion Capture and Preparation Processes

An optical motion capture system was used to capture the
motions of a single actor. The frame rate was set to 60
postures per second. We have captured motions of shadow
boxing for 7 minutes, sword swinging for 15 minutes, and
running around for 1.5 minutes. They were automatically
segmented by our motion analyzer into 279, 612 and 215
actions respectively. The analyzer can mistakenly split slow
and less energetic actions that involve multiple steps, as we
first segment the motions by the foot-step pattern and then
merge them according to the body acceleration. We manually
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validate and amend the segmentation, which usually takes 20
to 60 minutes depending on the number of the actions.

We implemented an action combination table explained in Sec-
tion VI to evaluate the effectiveness of defensive actions with
respect to different attacks in the boxing database. To speed
up the table creation process, instead of specifying all records
manually, we first annotate the target position and direction
for attacks. Next, the defences are annotated with the position
and direction they are defending from (Table I). The system
then automatically inserts records into the action combination
table by pairing all the attacks with defences. The suitability
value for each pair is defined asS= nmatched/nde f ence, where
nmatched is the number of common elements in the attack
and the defence columns considering the position and the
direction, andnde f enceis the total number of elements in the
defence column (Table II). The equation favors defences that
are effective to the attack while specific to the areas being
attacked. Finally, the animator may amend or add records in
the table. The whole process takes around one hour.

Each character model has 6 degrees of freedom for the trans-
lation and orientation of the root, and 72 degrees of freedom
for the joint orientation. The parameters of the competitive
and cooperative functions for each experiment are shown in
Table III and Table IV, respectively.

B. Competitive Interactions Between Two Characters

In order to examine the effectiveness of the min-max search
at simulating competitive interactions, various fighting and
chasing scenes were created by adjusting the parameters of
the objective function and the depth of the game tree.

We first simulated a fighting scene between two characters by
using the shadow boxing actions. We can create different styles
of fighting by adjusting the objective function - infighting style
was simulated by decreasing the preferred distance between
the characters and giving higher scores to successful short
range attacks such as upper-cuts and hooks (Figure 8 Left).
An outboxing style was simulated by increasing the preferred
distance between the characters and giving higher scores to
successful long range attacks such as straight punches (Figure
8 Middle). The intelligence level of the characters can be
controlled by altering the depth of the game tree expansion.We

Action Position Direction
Right Jab Head, Upper Torso Front
Upwards Kick Upper Torso, Lower Torso Upwards
Duck Head, Upper Torso Front, Horizontal
Jump Back Upper Torso, Lower Torso Horizontal, Upwards

TABLE I
EXAMPLE ANNOTATIONS OF ATTACKS AND DEFENCES

Character’s Action Opponent’s Action Suitability Value, S
Duck Right Jab 3/4= 0.75
Duck Upwards Kick 1/4= 0.25
Jump Back Right Jab 1/4= 0.25
Jump Back Upwards Kick 3/4= 0.75

TABLE II
EXAMPLE RECORDS IN THE ACTION COMBINATION TABLE

Fig. 8. (Left) Infighters simulated by our system that prefer ashorter distance
from the opponent and short range attacks. (Middle) Outboxers simulated by
our system that prefer a longer distance from the opponent and long range
attacks such as kicks and straight punches. (Right) Two characters sword
fighting by expanding the game tree.

Fig. 9. (Left) The green character chasing and catching the blue character.
(Right) Two characters chasing one character.

simulated a less intelligent fighter by setting the intelligence
level to two, and a smart fighter by setting the level to four.
In such a case, the intelligent fighter always wins the match
as its decision is based on greater expansion of the game tree.
Experiments were also done to examine the interactions of two
characters sword fighting (Figure 8 Right). Again, the strength
of the fighters could be controlled by changing the depth of
game tree.

Next, we simulated one character chasing another by using
the running motion (Figure 9 Left). The preferred distance
between them is set short for the chaser and long for the
escaper. Moreover, the scoring function was adjusted such that
a high score is given to the chaser when it catches the escaper,

wθ wr θd rd w+
D w−

D wS

General boxer 101 101 0◦ 0.8m 105 105 102

Infighter 101 101 0◦ 0.5m 105/101 † 105 102

Outboxer 101 101 0◦ 2.0m 101/105 † 105 102

Boxer (Path) 101 101 0◦ 0.8m 105 105 102

Sword fighter 101 101 0◦ 1.5m 105 105 102

Sword fighter (Path) 101 101 0◦ 1.5m 105 105 102

Chaser 101 101 0◦ 0.1m 105 0 0
Runaway 101 101 0◦ 3.0m 0 105 0
Chaser (Path) 101 101 0◦ 0.1m 105 0 0
Runaway (Path) 101 101 0◦ 3.0m 0 105 0

† The parameters used for short range and long range attack respectively
TABLE III

THE PARAMETER USED IN THE COMPETITIVE FUNCTION TO SIMULATE

VARIOUS EFFECTS

wγ wp wa

Boxer (Path) 0 101 106

Sword fighter (Path) 0 101 106

Chaser (Path) 0 101 0
Runaway (Path) 0 101 0

TABLE IV
THE PARAMETER USED IN THE COOPERATIVE FUNCTION(UNLISTED

SIMULATIONS DO NOT REQUIRE THE COOPERATIVE FUNCTION)
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(a)

(b)

(c)

(d)

Fig. 11. (a) A crowd of characters fighting with opponents while following the formation specified by the animator, which is visualized by the red area. (b)
Characters fighting with weapons in pairs and following the trajectories. (c), (d) Examples following the story line. (c)The strong green enemy first attacks
the blue character but gets hit by a car at the end. The two characters cooperatively follow the path while fighting. (d) Thetwo characters sword fighting.
The blue character retreats into an alley where an ally joinsin to knock down the green enemy.

and a high penalty is given to the escaper when it is caught.
As a result, the chaser tries to approach the escaper, while the
escaper tries to get away. When we increase the intelligence
level of the chaser to four and lower that of the escaper to two,
the chaser can catch the escaper quickly. Further increasing
the intelligence level generates similar results, becausea
difference of two levels is already large enough for the chaser
to easily catch the escaper. We can also simulate scenes of two
characters collaboratively chasing one character by summing
the objective functions of the two chasers (Figure 9 Right).

C. Animator Controlled Competitions

Here we present examples of the animator controlling the
scenes through the cooperative term. We show examples of
the characters fighting or chasing one another while following
paths given by the animator. Each of the paths is modeled
as a series of check points to be reached by the characters.
Each check point is defined by a 2D position on the floor,
an optional timing value, and optional requirements on the
actions to be conducted when passing by. When the characters

reach a check point, they perform any required actions and
wait until the indicated timing is passed. Then, the system
specifies the next check point. The movement term in the
cooperative function in Equation 11 awards an action that
guides the characters to the next check point, while the
action requirement term encourages the characters to conduct
the specified actions. Since the movements of the characters
are spatio-temporally constrained, we can design a scene
containing a lot of characters with little risk of unexpected
collisions. Using this method, we can simulate a large number
of characters following instructions.

First, using the running around motion database, a scene in
which one character chases another in a circular trajectory
is created (Figure 10 Left). A number of check points are
prepared on the floor so that each of the characters passes them
with the correct timing. We can create a scene where many
pairs perform such chasing while avoiding colliding with one
another by defining multiple trajectories (Figure 10 Right).

Next, we show a scene with a large number of characters
fighting in pairs along spiral trajectories, creating a spreading-
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out formation as indicated by the red area in Figure 11(a).
The characters wearing red gloves are designed to knock
down their opponents when the pairs reach the final check
point, as shown in the right-most image of Figure 11(a).
This is done by setting up the action requirement term in
the cooperative function. Another example using the sword
fighting motion was also created as shown in Figure 11(b).
Although the trajectories overlap spatially, they do not overlap
in the temporal domain, and hence the pairs of characters do
not run into one another.

Finally, we show examples where scenes are created along
story lines given by the animator. In action films, often there
are scenes where the main character faces a situation that
he/she is in danger but finally survives at the end due to
some unexpected events. Using the boxing data, we created
a scene in which the main character fights with a strong
enemy and survives because the enemy is crashed into by a car
(Figure 11(c)). By adjusting the depth of the tree expanded,
we control the strength of the characters such that the main
character keeps on getting hit. Both characters collaboratively
walk along a given path that is composed of a sequence
of check points. We locate the last check point at a street
with a lot of passing cars, and use simple bounding boxes to
detect collisions between the characters and the cars. Based
on the storyline, the character colliding with the cars are
forced to perform a falling down action. A similar example
where the main character is fighting with a strong enemy
was created using the sword fighting data. The main character
retreats into an alley where a hero suddenly jumps in to knock
down the enemy (Figure 11(d)). We design the trajectories for
each character to follow, and use the action requirement term
to request the enemy be knocked down by the hero at the
last check point. The advantage of this approach is that the
animator only needs to specify high level instructions suchas
the path the characters pass through and the overall timing
the events. The system will then plan the individual actions
launched by the characters to complete such requirements.

D. Computational Costs

The computation time depends on the size of the action set,
the connectivity of the Motion Graph, and the complexity of
the objective function. In general, using a computer with a
Pentium 4 Dual core (3GHz) and 2GB of RAM, it takes 5
minutes to create a video of length 30 seconds when the game

Fig. 10. (Left) One character chasing another character in acircular trajectory.
(Right) A large scale scene in which many characters conducting similar
movements can be synthesized. The check points are adjusted sothat the
characters do not collide into one another.

tree is expanded for three levels for each character. However,
the computational cost increases exponentially with the num-
ber of levels which are expanded. For example, creating the
same video with five level game trees will take hours to finish.
Nevertheless, from our experience, long horizon planning
usually does not create interesting animations. One reason
is that they become too “smart” and careful, and therefore
avoid performing anything that leads to disadvantages. As
a result, the characters become less active, which is not
what the animator wants to see. We have examined from
our experimental results that a depth level of up to four is
effective to produce intelligent and interesting movements of
the characters. In addition to that, the tree expansion process
can easily be broken down into multiple parallel processes.
More specifically, we can implement a multi-thread system
in which each thread expands a sub-tree of the whole game
tree. As multi-core processors become cheap and popular, the
performance of our method can be greatly enhanced.

The pruning rules mentioned in Section V-C were shown
to be effective in our experiments. We simulated around 10
minutes of interactions with each of our motion databases
using three level game trees. The number of actions before
and after pruning are recorded and the average is calculated
(Table V). Pruning is less effective on the sword swinging
database, mostly because the preferred distance for sword
fighting characters is long, and hence the body penetration
constraint becomes less effective.

IX. D ISCUSSIONS

Using our method, animators can simulate the close compet-
itive interactions of multiple characters based on individually
captured motions and specify details such as the trajectories
of the characters during the animation.

The action combination table mentioned in Section VI pro-
vides animators with an interface to embed manually designed,
plausible interactions into the scene. Stylized and artistic
combinations of specific attacks and defences may rarely
appear if the interactions are only evaluated by the objective
function. Using the action combination table, the animatorcan
make such interactions appear with minimal adjustment of
the objective function. The action combination term (f comb)
is currently defined as an element of the competitive function
(Fcomp). This is because the term is used to model the attack-
defence relationship, and we wish the smarter character to
perform better defensive motions. However, if the animator
wants the two characters to cooperatively perform stylized

# of Actions # of Actions Percentage
Before Pruning After Pruning Pruned

Boxing 120.0 35.5 70.4%
Sword Swinging 94.3 68.2 27.7%
Running-Around 95.8 40.3 57.9%

TABLE V
AVERAGE NUMBER OF ACTIONS BEFORE AND AFTER PRUNING WHEN

EXPANDING ONE NODE
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interactions, the term has to be moved to the cooperative func-
tion (Fcoop), otherwise the two characters will prevent their
opponents from acting as indicated in the action combination
table.

Our framework can be expanded to simulate interactions for
multiple characters such as a basketball game. The simplest
approach is to expand a game tree for all characters in the
scene, and evaluate the combined benefits from all allies and
opponents. However, since expanding such a huge game tree
is computational costly, it would be better to apply a multi-
level control strategy - designing a representation based on
the formation of the whole team, and expanding the game
tree at that level. Min-max search can be used to select the
best formation taking into account the counter formation by
the opponent team. Individual actions by the characters canbe
simulated by simple path planning using the motion graph.

In our model, we assume each character has perfect knowledge
about its opponent in terms of the opponent’s strategy and the
action evaluation functions. Due to such knowledge, the min-
max search always gives the optimal result. However, if the
knowledge of the opponent is incomplete and inaccurate, an
opponent-model search that takes into account the mistakes
made by the opponents may perform better [38]. To imple-
ment opponent-models in our system, one simple approach
is to observe the actual moves made by the opponent. During
the tree expansion process, we determine the probability ofthe
opponent launching each action, based on the observed history,
and evaluate the opponent nodes using the expectation values.
This would be an interesting direction for future research.

Our system is a simplification of non-zero-sum games, in
which the gain of a player may not necessary be the loss
of the opponent [39]. We simplify the game by assuming that
the non-zero-sum part of the system only occurs within the
cooperative function, and handle it differently such that the
function benefits both characters. As a future work, it would
be interesting to investigate the possibility of applying our
method to more complex non-zero-sum games, in which the
gain depends not only on the loss of the opponent, but also
on other objective factors such as the skills of the player.

When a system reaches an equilibrium, all players in the
game are unable to obtain better rewards by changing their
control strategies [39]. In our research, we try to avoid the
equilibrium because when such a condition is reached, the
system is very likely to stay in the same state for a long
duration, which leads to monotonic animation. One example
of the equilibrium in a fight scene is that both characters stuck
defending [25], which is not pleasant from the animator’s point
of view. Fortunately, since each action has particular values for
its attacking / defending position and duration, the state space
is highly irregular. This reduces the chance that the characters
stay at an equilibrium point. Furthermore, we give a penaltyto
actions that have been recently used, such that the equilibrium
point shifts in the state space at every time step.

Our idea of multi-objective control is general enough to
be used with other precomputation-based methods such as

Fig. 12. The characters controlled by the proposed method canfollow the
path accurately (top) while those controlled by Interaction Patches cannot
follow the path well due to the lack of samples (bottom). We usedthe same
set of actions in these animations and the bottom animation is produced from
279 Interaction Patches.

reinforcement learning [2] and state machine-based dynamic
programming [5]. One general issue with such methods is that
they usually suffer from the high dimensional state space, and
a näıve solution results in rough quantization [2] or reduced
number of action samples [5], which can cause lower precision
at future predictions and less controllability of the characters.
Nonetheless, it has a great potential if it can be solved, for
example, by representing the value function by a sum of basis
functions [3], as we will be able to produce multi-objective
character animation in real-time.

The method can also be combined with Interaction Patches
[4], which precomputes the close interactions between two
characters based on the user specified pattern and their spa-
tiotemporal concatenation. Interaction Patches are effective
for synthesizing stylized interactions with minimal number
of sample motions. However, the disadvantages is that it is
not very suitable for long persistent interactions betweentwo
characters, as similar combinations of actions are likely to
be repeated over time, and the connectivity of the interaction
patches is low if the two characters continuously interact.On
the other hand, the proposed method is effective at making the
characters follow control signals from an animator. Animators
can effectively combine both for synthesizing an animation
along a given story line. For example, the animator may
precompute the final scene where the enemies are finished off
by interaction patches, and guide the fighting characters there
by the proposed multi-objective approach. Figure 12 shows
a comparison between the proposed method and Interaction
Patches for producing persistent long interactions between
two characters. The latter performs sub-optimally because
only a limited choice of patches are available for temporally
concatenating, which results in poor quality following of the
instructions given by the animator.

We observed that in movies, the environment and the story line
of a specific scene are usually designed and used only once
throughout the whole movie. It would be ineffective to run a
precomputation system for such a purpose. Instead, animators
usually wish to interactively adjust parameters and see the
results immediately. Our method does not require any training
or precomputation stage, and any changes in the system are
reflected immediately. The Interaction Graph [5] and other
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reinforcement learning systems require a long training stage
that could take hours. Once the parameters and the objective
functions are changed, or if the story line is updated, this
precomputation needs to be repeated from the beginning.

There are some drawbacks to our system. Firstly, the criteria
for pruning the sub-tree when expanding the game tree must
be determined by an expert who knows the nature of the
interactions well. Such criteria can change according to the
interaction - however, the criteria listed in Section V-C can be
applied well to various competitive interactions. Secondly, we
cannot currently handle persistent, continuous contacts which
appear in martial arts when squeezing the joints or locking the
torso or limbs. One way to handle such interactions is to com-
bine the proposed approach with the topology coordinates [30].
Such a combination would be useful for 3D computer games
that involve motions of continuous contact, such as wrestling
games.

X. CONCLUSIONS

In this paper, we have presented a method to simulate
competitive scenes in which multiple characters are closely
interacting with one another. We first expanded the game tree
and applied min-max search to determine the actions of each
character. Then, we have shown that various styles of fighting
and chasing can be simulated by changing parameters, such
as the depth of the game tree and the evaluation function.
We also embedded the cooperative functions into the min-
max framework so that the characters cooperatively follow
instructions from the animator while competing with each
other. As a result, we can create intelligent characters that
compete well while being easily controlled.
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