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Figure 1 The proposed bi-projection-based foreground-aware dense depth prediction method for omnidirec-

tional images．We first transform spherical contents into equirectangular and cubemap projection. For the

equirectangular projection we directly regress depth maps with a distorted CNN kernel. For the cubemap pro-

jection, we simultaneously predict the semantic segmentation and depth maps. After calculating an additional

local loss for foreground objects, we merge the cubemap depth map with the equirectangular one to achieve

consistent global prediction with sharp and detailed local regions.

Abstract

Due to the increasing availability of commercial 360-

degree cameras, accurate depth prediction for omnidirec-

tional images can be beneficial to a wide range of ap-

plications including video editing and augmented reality.

Regarding existing methods, some focus on learning high-

quality global prediction while fail to capture detailed

local features. Others suggest integrating local context

into the learning procedure, they yet propose to train

on non-foreground-aware databases. In this paper, we

explore to simultaneously use equirectangular and cube-

map projection to learn omnidirectional depth prediction

from foreground-aware databases in a multi-task manner.

Experimental results demonstrate improved performance

when compared to the state-of-the-art.

1 Introduction

Commercial omnidirectional cameras have gained in-

creasing research interest in recent years thanks to

their capability to capture surrounding environments ef-

ficiently with high quality. As it provides great potential

applications in the field of medical and education, self-

driving vehicles, virtual reality [1], etc., the need for bet-

ter visual reasoning algorithms in the context of omnidi-

rectional media rises accordingly. One of the most impor-

tant visual reasoning capabilities is to predict depth infor-

mation from a single color image as it provides structural

clues of the surroundings, and thus facilitate applica-

tions such as 3D rendering [2] and robotic navigation [3].

Predicting depth information for omnidirectional images

with existing methods does not show satisfying results.

Depth prediction is an ill-posed problem: ambiguity in

scales, different lighting conditions can be problematic to

obtain an accurate prediction. Existing approaches that

are capable to predict depth information from a single

omnidirectional image do not generalize well to real-world

scenarios. Upon experimenting [4], most existing meth-

ods are designed for indoor-only static samples without

any consideration of foreground objects. The main cause

if that currently methods either use a synthetic database

(i.e. PanoSunCG [5] and SceneNet [6]) or a captured

database (i.e. Stanford 2D-3D [7] and Matterport3D [8]).



Only very few databases include foreground objects into

consideration. However, while [9] focuses on solving the

foreground problem through an image processing method

with an additional loss term that emphasizes the predic-

tion of the foreground objects, it is essentially a trade-off

between consistent global depth prediction and local ones.

A bi-projection-based method [10] has shown promising

improvements, yet they fail to explore consolidating ac-

curate prediction for foreground objects with additional

segmentation information.

In this paper, we propose to obtain accurate and sharp

foreground depth prediction with consistent global pre-

dictions by exploring a bi-projection algorithm that con-

sists of an equirectangular projection that predicts global

depth information and a cubemap projection that si-

multaneously estimates the depth and the semantic seg-

mentation of cube faces. While the equirectangular pro-

jection ensures a consistent and smooth global context,

the cubemap faces provide insights regarding local de-

tails with a smaller FOV. By merging two projections

together, we achieve better depth prediction for omni-

directional images with foreground objects. We choose

humans as the foreground object to study as it is one of

the most interesting subjects with a high appearing fre-

quency in different media. We quantitatively and quali-

tatively evaluate our method against state-of-the-art and

show a better performance. Our major contribution is

the bi-projection-based network architecture that facili-

tates accurate depth prediction for foreground objects.

This research is best applied in fields including 3D recon-

struction of omnidirectional contents and virtual reality.

The rest of the paper is organized as follows: we revisit

learning-based depth prediction in Section 2. In Section

3, we explain the foreground-aware training database we

use in this research. In Section 4, we describe the pro-

posed bi-projection network architecture to leverage the

database. Implementation and experimental results are

presented in Section 5, and Section 6 concludes this work.

2 Related Work

Predicting depth information from a color image is one

of the most important tasks when comes to 3D geometry

understanding [11], as accurate depth maps can facilitate

a wide range of applications such as autonomous driving

[12]. While classic depth prediction methods usually rely

on probabilistic models and hand-crafted features [13],

recent learning-based algorithms have shown greatly im-

proved accuracy and quality. A standard supervised ap-

proach of depth prediction often trains on paired color

and depth maps, trying to build an implicit relation-

ship between the two through convolution networks. A

multi-scale network that refines predictions in a coarse-

to-fine fashion showed improved local details [14], and a

fully convolutional network structure [15] has further im-

proved the accuracy of the prediction. Multitask learn-

ing [16] the semantic segmentation and the depth pre-

diction is also prevalent in understanding scene geometry

due to their complementarity. For unsupervised meth-

ods, this is usually achieved through geometric models,

such as building stereo correspondence from successive

frames without the need to acquire ground truth super-

visory signal [2], which is computationally expensive and

time-consuming. Learning intermediary disparity map

for generating depth maps [17] or reconstruct 3D models

through multiple scenes and produce pseudo depth after-

ward [18] are also viable to learn dense depth prediction.

For depth prediction from a single color image in the

context of omnidirectional format, the literature is scarcer

compared to traditional perspective images. Directly ap-

plying perspective-based approaches on omnidirectional

images with equirectangular projection usually produce

less accurate and coherent results due to heavy distortions

introduced during the process of converting spherical con-

tents onto a flat 2D plane [4]. To cope with this problem,

rotation equivariant CNNs [19] and graph-based learning

[20] try to learn directly from spherical signals. How-

ever, such equivariant architectures provide a lower net-

work capacity, rendering generative tasks such as learn-

ing depth prediction ineffective. Instead, using cubemap

projection is a popular choice for multiple benefits [21].

Since projecting spherical contents onto six faces of a cube

can eliminate distortion for each face to a great extent,

it is made possible to adopt perspective-based methods

with minimal effort. Moreover, as each face has a re-

duced FOV, cubemap projection puts more focus on lo-

cal objects compared to equirectangular projection [10].

However, since each face is processed independently, the

discontinuity along edges is problematic for many appli-

cations. A common approach to alleviate this problem is

through padding edges during the process [22] of merg-

ing predictions back to a single output. In this work,

we try to incorporate both equirectangular and cubemap

projection to complement each other, so that while the

equirectangular prediction can provide a global context,

the proposed network can still yield accurate results for

foreground objects.

3 Foreground-aware Omnidirectional Databases

In this section, we explain the method to prepare the

foreground-aware database through an image processing



technique described in [9]. Previously, high-quality train-

ing samples are generated using a scanning device or ren-

dered through 3D models with virtual cameras. While

it is impossible for the scanning device to including any

dynamic foreground objects due to its lengthy capturing

time, it is also costly to introduce realistic foreground ob-

jects that highly resemble real-world appearance. To this

end, we use a data augmentation pipeline that takes the

advantage of abundant perspective color-depth databases

and correctly composites the object of interest onto ex-

isting omnidirectional databases through Z-buffer. As

shown in Fig. 2, we first employ a Mask R-CNN model

to acquire pixel-perfect binary masks of foreground ob-

jects. We then crop out perspective paired color and

depth batches. We finally composite the batches with

correct occlusions and distortions by conducting cube-

map projection before and after the processes.

To acquire pixel-perfect binary masks of foreground

objects automatically, we propose to take advantage of

abundant obtainable existing 2D perspective databases.

We efficiently obtain high-quality segmentation masks by

adopting a Mask R-CNN network with a backbone of

ResNet-101. By training on the COCO database exten-

sively, we can predict per-pixel label masks in a real-time

manner. With per-instance prediction, we can cope with

scenarios that incorporate multiple foreground objects

when compared to using a simpler U-Net network. As

explained in the introduction section, human is an im-

portant subject with complex deformations and detailed

depth with a high appearing frequency in real-world sce-

narios. Therefore, we demonstrate our method by choos-

ing humans as the foreground object to be generalized to

other objects. In this research, we use the PKU-MMD

database [23], which contains color and depth videos of

a human subject performing a wide range of motions. It

contains multiple view-angles and subject appearance.

For omnidirectional background, we adopt existing

databases in both synthetic and real domains to show-

case the effectiveness of our method. This includes cap-

tured databases, the Stanford 2D-3D database, and the

Matterport3D database, and also synthetic databases,

the SunCG [24] and the SceneNet [6] as well. Since the

batches of foreground objects are acquired from tradi-

tional perspective images, a direct composition will lead

to distortion in the omnidirectional context. Therefore,

we first perform cubemap projection before the com-

position process to obtain different local batches of the

background. With depth information of both foreground

and background batches for local batches, we can easily

solve the occlusions through Z-buffer and preserve correct

Figure 2 The process of generating foreground-aware

omnidirectional database. With foreground object

databases, we use a Mask R-CNN to acquire batches

of binary mask, color and depth images, and then

composite to the cubemap projection of omnidirec-

tional databases through z-buffer. We finally obtain

a foreground-aware database through equirectangular

projection.

depth annotations even after the composition. Afterward,

we reverse the cubemap projection process with equirect-

angular projection to generate omnidirectional samples

with foreground objects. During the experiment, our

training data consists of 25,000 synthetic and 25,000 re-

alistic samples with correct depth annotations. Some ex-

amples are shown in Fig. 3. It is worth mentioning that

more variations can be achieved through a similar pro-

cess described in the previous step through re-purposing

other perspective databases.

4 Bi-projection based Depth Prediction

We explain the proposed foreground-aware bi-projection-

based depth prediction method for omnidirectional im-

ages in this section. We use a multi-branch end-to-end

structure that incorporates two different projections to

achieve more consistent global context and detailed local

foreground object features. The proposed architecture is

shown in Fig. 1. In particular, the first branch learns re-

gressing depth information from a single omnidirectional

image in the format of equirectangular, providing sur-

rounding information through a wider FOV. As directly

using equirectangular images usually causes blurred pre-

diction for local objects with steep gradient changes, the

second branch uses cubemap projection to make it more

effective to learn local features. With a narrower FOV,



Figure 3 Some examples from the generated

foreground-aware database. The first and second rows

are generated examples of paired color images and

dense depth maps from capturing-based omnidirec-

tional databases and the bottom two rows are gen-

erated from synthetic databases.

cube faces provide more insights into shape and bound-

ary for foreground objects. We further utilize the binary

mask for foreground objects prepared in the previous step

and propose a depth/semantic segmentation multi-task

learning scheme for the cubemap branch to strengthen

the loss for foreground objects with a foreground object

loss.

Lforeground = ‖Dcubic depth ⊗Mforeground‖2,

and thus the overall loss function for the network is

Ltotal =
∑
i

(αiLoutput depth + βiLsmooth + γLforeground),

while the α, β and γ are the weight coefficients for each

loss term. Since semantic segmentation and depth predic-

tion are two tasks usually learned together to reveal the

scene layout [25] [26] [27], we can improve the accuracy of

depth prediction through this foreground-aware network.

For the equirectangular branch, it regresses dense

depth information from omnidirectional images with an

encoder-decoder structure by progressively downscales

and upscales to the depth output. Since skip connections

are used to preserve features from higher levels, we adopt

Resnet as the encoder of the network. We take advantage

of a distorted CNN filter [24] that changes filter sizes with

regard to the coordinate on the equirectangular image to

improve the effectiveness when training directly on spher-

ical images. We use a traditional L2 loss to calculate the

depth loss and a smoothness regularization term [4] to

improve the consistency of the output.

We further introduce spherical padding and a convo-

lution module at the end of both branches to ensure a

consistent merged output. While cubemap projection

does not quite suffer from the distortion when project-

ing spherical information onto a 2D plane, it instead in-

troduces discontinuity at the boundaries of each face. To

alleviate this problem, we adopt a spherical padding tech-

nique [10] that increases the FOV when rendering each

face, and connects them afterward to address the consis-

tency issue. After two branches produce respective dense

depth predictions, we unify both branches by concatenat-

ing them together and pass through a convolution module

described in [28].

5 Experimental Results

5.1 Implementation details

For generating the foreground-aware database, we ran-

domly selected 25,000 synthetic and 25,000 realistic om-

nidirectional image pairs from existing databases, and

split them into training and validation sets with a ratio

of 80% and 20%. We then composite foreground objects

(i.e. human) onto the acquired samples with a resolution

of 512 x 256. We implement the aforementioned net-

work structure with PyTorch[29], Adam optimizer [30],

Xavier initialization [31], and a learning rate of 2e-4.

The training process is conducted on an Nvidia RTX

2080Ti graphic card. The parameters used for training

are [α1, α2, β1, β2, γ] = [0.482, 0.245, 0.121, 0.061, 0.090].

We use the same metrics from the previous work [2] to

evaluate our method. At runtime, predicting images with

the same resolution can achieve real-time performance.

5.2 Evaluation

We quantitatively and qualitatively evaluate our pro-

posed method in this section. In Table 1, we present the

result of depth prediction when compared to the state-

of-the-art omnidirectional method, [4]. The upper col-

umn showcases the effectiveness when applied to the syn-

thetic domain, while the bottom column demonstrates

its efficacy in real-world scenarios. We can observe that

our method shows favorable performance with improved

accuracy across the board against the existing method

when benchmarking with accuracy metrics. We believe

that the increased accuracy attributes to the bi-projection

network architecture in addition to the semantic segmen-

tation task in the cubemap projection branch. This is

qualitatively verified through Fig. 4, as we can observe

that our model generalize to unseen data with foreground

objects and yield satisfying depth prediction.

6 Discussion and Conclusion

In this paper, we present a foreground-aware bi-

projection-based depth prediction method for omnidirec-



Figure 4 Qualitative comparison against the state-of-the-art method when tested on realistic images.

Table 1 Quantitative comparison against state-of-

the-art methods.

Metrics Database OmniDepth [4] Ours

Abs Rel ↓ Synthetic 0.3789 0.2279

Sq Rel ↓ Synthetic 0.2893 0.2134

RMSE ↓ Synthetic 0.6878 0.5999

RMSE log ↓ Synthetic 0.5225 0.2257

δ < 1.25 ↑ Synthetic 42.45% 78.41%

δ < 1.252 ↑ Synthetic 79.26% 92.85%

δ < 1.253 ↑ Synthetic 92.57% 97.13%

Abs Rel ↓ Real 0.3190 0.2246

Sq Rel ↓ Real 0.2180 0.1727

RMSE ↓ Real 0.5993 0.6042

RMSE log ↓ Real 0.4788 0.2427

δ < 1.25 ↑ Real 69.88% 75.37%

δ < 1.252 ↑ Real 84.54% 91.73%

δ < 1.253 ↑ Real 91.50% 96.66%

tional images and explore using image processing meth-

ods to generate color/depth databases with dynamic fore-

ground objects. The proposed architecture produces con-

sistent global depth prediction with the equirectangular

projection, while enforcing local detailed features through

the cubemap projection. An additional foreground loss

acquired through a multitask learning approach of se-

mantic segmentation complementarily provides sharper

boundaries of predicted foreground objects. With quan-

titative and qualitative evaluation, we successfully veri-

fied the effectiveness of the proposed method. We believe

the ability to accurately predict depth information for

omnidirectional images can facilitate a wide range of ap-

plications such as 3D reconstruction and virtual reality.

Currently, the database generation still requires syn-

thetic/captured omnidirectional databases to composite

on, which greatly limits the generalizability of this ap-

proach. In the future, we plan to explore self-supervised

methods or multi-view-based generation methods to fur-

ther reduce the need to acquire expensive ground truth

data.
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