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ABSTRACT
With the advancement of motion tracking hardware such
as the Microsoft Kinect, synthesizing human-like charac-
ters with real-time captured movements becomes increas-
ingly important. Traditional kinematics and dynamics ap-
proaches perform sub-optimally when the captured motion
is noisy or even incomplete. In this paper, we proposed a
unified framework to control physically simulated charac-
ters with live captured motion from Kinect. Our frame-
work can synthesize any posture in a physical environment
using external forces and torques computed by a PD con-
troller. The major problem of Kinect is the incompleteness
of the captured posture, with some degree of freedom (DOF)
missing due to occlusions and noises. We propose to search
for a best matched posture from a motion database con-
structed in a dimensionality reduced space, and substitute
the missing DOF to the live captured data. Experimental
results show that our method can synthesize realistic charac-
ter movements from noisy captured motion. The proposed
algorithm is computationally efficient and can be applied to
a wide variety of interactive virtual reality applications such
as motion-based gaming, rehabilitation and sport training.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Virtual reality

Keywords
Real-time motion synthesis, Microsoft Kinect, physical sim-
ulation, virtual reality

1. INTRODUCTION
Synthesizing natural movements for virtual characters has

been an active research area in past decades. In particular,
using captured human motion to control virtual characters
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is getting more popular, thanks to the advancement of mo-
tion acquisition hardware. However, many kinematics-based
control algorithms such as Motion Graph [12] require care-
fully crafted/cleaned motion. When synthesizing charac-
ter movements from a stream of real-time captured motions
such as those from the Microsoft Kinect, the result is usu-
ally sub-optimal due to the noise and incompleteness of the
data. Simply replaying the captured motions would result in
jittery movements and awkward joint orientations. Further-
more, the synthesized characters cannot react to external
forces or interact with physically simulated objects, which
degrades the user experience in virtual reality applications.

On the other hand, dynamics controllers that are origi-
nally proposed for robotic controls provide alternative meth-
ods to synthesis realistic character movements. Locomotion
controllers such as [5] can track a series of postures and
optimize for dynamically stable movements. The synthe-
sized characters are guaranteed to be physically correct and
can response to external perturbations. The major problem
is that users have limited control over the resultant move-
ments, since the simulation is strictly governed by physical
laws. Some movements such as standing with one leg are
very difficult to be dynamically reproduced without accu-
rate information about the body mass and fictional force.
Furthermore, motion captured from real-time systems usu-
ally contains a lot of noise, which can dramatically weaken
the balance of the dynamically simulated character.

In this paper, we propose a unified framework to con-
trol characters with real-time captured motion from the Mi-
crosoft Kinect. We propose to track an input motion with
a physically simulated character. Unlike the robotics sim-
ulation algorithms that use joint torques to drive a robot,
our method controls the character with external forces and
torques computed by a PD controller, which supports the
balance of the character and enables it to perform any pos-
ture. Our method combines the advantage of kinematics
and dynamics simulation. On one hand, it creates smooth
and plausible movements that tightly resemble the user per-
formed motions. On the other hand, it allows the simulated
character reacting to external forces and interacting with
the virtual environment.

The major problem of controlling characters with live cap-
tured motion from Kinect, or any capturing systems in gen-
eral, is the noise and the incompleteness of the motions.
During capture, some joint information may be missing be-
cause of occlusion or the restricted capturing volume. What
is worse is that the number of tracking points in Kinect



is very limited. Losing one point practically means losing
both position and orientation of one joint, making it impos-
sible to control a complete virtual character. To tackle this
problem, we propose an efficient method based on Principal
Component Analysis (PCA) to search for a similar posture
in a motion database and substitute the missing informa-
tion. This ensures the robustness of the system and relieves
the requirement of clean input motion.
Experimental results show that realistic character move-

ments can be synthesized from noisy captured motion. As
the characters are physically synthesized, they react to ex-
ternal forces, and can interact with virtual objects. The pro-
posed algorithm is computationally efficient, and can sim-
ulate multiple characters in real-time. Apart from motion-
based gaming, our system is best to be applied in virtual re-
ality applications such as those involving rehabilitation and
sport training.
The rest of the paper is organized as follow. We first re-

view the related works in motion synthesis based on user
control signals and physical simulations in Section 2. We
then explain the modelling of the physical environment in
Section 4. We further explain the construction and usage of
the motion database in Section 5. The core of the frame-
work explained in Section 6 is a posture solver that involves
both positional controls and rotational controls. Section 7
details how to improve the accuracy of the simulation with
motion retargeting. Section 8 presents the experimental re-
sults. Finally, in Section 9, we conclude the paper, as well
as discuss the limitations and future research directions.

2. RELATED WORK
Controlling the movement of virtual characters has been a

popular research area in last two decades. The existing mo-
tion synthesis techniques can be divided into two categories:
data-driven approaches and physics-based simulations. We
first review the previous work in using live captured body
movements of the user for controlling virtual characters.
Then, we review researches in dynamics simulations using
the proportional-derivative (PD) controller, which is a fast
and effective way to simulate human motions.

2.1 Intuitive Control for Virtual Characters
Controlling the full body motion of the virtual characters

is a challenging problem as the number of Degrees of Free-
dom (DOF) of the character is usually high. While tech-
niques such as Motion Graphs [11, 12] have been widely
used for controlling characters with pre-captured motions,
they control characters with offline captured motions. In
this research, we are more interested in algorithms that can
deal with live captures.
Previous works try to control the full body motion with

low-dimensional signals such as the positions of a few reflec-
tive markers [3], the readings of a small number of inertial
sensors attached to the upper body [14], and the readings
from a few 3D accelerometers attached to the limbs [23,
25]. The motion of the character can be estimated by refer-
encing a motion database according to the low-dimensional
signals. However, the resultant quality depends heavily on
the size and quality of the database, as only a limited DOF
are captured during run-time. With the Microsoft Kinect,
it is now possible to capture motion with more DOF that
can contribute to the synthesis quality. Shiratori et al. [22]
propose to attach Wii controllers on a user’s legs and synthe-

size walking cycle directly by extracting physical parameters
from the input signals. However, the algorithm is specific for
locomotion, making it difficult to be applied in other kinds
of VR applications.

On the other hand, live performance of the user has been
used for controlling the virtual character by full body mo-
tion capture [10, 13, 17, 21]. While we share similar interests
with [13, 17] in controlling virtual characters using the live
performance of the user to interact with the objects in the
virtual world, our method tackles some of the problems that
have not been addressed and explored in the previous works.
In [17], the live performance is captured by an optical motion
capture system. With the large number of markers used, the
positions and orientations of the body segments can be cal-
culated even when some markers are occluded. However, for
affordable devices such as the Microsoft Kinect, the number
of tracked points is extremely limited. Liu and Zordan [13]
try to apply pre-recorded motions in a database with Kinect
to simulate more realistic movements. However, it is unclear
how the motion database is constructed and how it affects
the quality of the resultant motion.

2.2 PD Controller for Physics-based Systems
In physics-based simulations, forward dynamics has been

used extensively for gait simulations [19, 26]. One of the
popular implementations of these systems is the proportional-
derivative (PD) controller. A wide variety of motion can be
synthesized with the controller, such as walk-to-run and run-
to-walk transition [7, 22], as well as walking with different
step length [8]. Usually a finite state machine is used to con-
nect multiple PD controllers and handle the transition be-
tween controllers. Apart from locomotion, athletic motions
such as cycling and handspring vaulting [9], and somersault
motion [18] can be generated. Such systems require a cer-
tain amount of manual design to create different types of
motions. PD control is also suitable to generate responsive
motions such as the falling back motions when one is being
pushed [27].

Since generating realistic full body motions require care-
fully designed dynamics systems, it is proposed to control
characters by simply tracking captured human movements,
such that the movements can react to external forces [1]. To
speed up the simulations, simplified polygons model can be
used to represent the characters with high degrees of free-
dom [16]. In this research, we use PD controller to track a
posture that is computed from the captured motion and the
best matched motion from a motion database.

3. SYSTEM OVERVIEW
The overview of our proposed method is shown in Figure

1. At every time-step, the posture of the user is captured by
Kinect. The streamed postures contain only limited num-
ber of joints and are usually incomplete due to occlusion.
We propose to search for a matching posture in a motion
database to provide a reasonable estimation on the missing
information. The Kinect posture, database posture and op-
tional environment constraints are fed into a physical simu-
lator as positional and rotational constraints. The simulator
then solves for the final posture and simulates the resultant
scene.



Figure 1: The overview of our proposed framework.

3.1 Contributions
We have two major contributions in this paper:

• We propose a unified framework, which combines posi-
tional controls and rotational controls, to model char-
acter movements in a physically simulated environ-
ment based on real-time captured motions. On one
hand, simulated characters can resemble any posture
produced by the users similar to kinematics motion
synthesis. On the other hand, they response to exter-
nal forces and are capable of interacting with virtual
objects as in dynamics simulations.

• Motions captured from real-time system such as the
Microsoft Kinect usually do not provide the necessary
degree of freedom (DOF) required to control a vir-
tual character. This is because of the limited number
of tracking joints and the occluded/noisy joints that
cannot be captured. We propose to substitute missing
DOF from a motion database by searching for the best
matching posture. To enhance the computational effi-
ciency, we implement the database in a reduced space
using Principal Component Analysis (PCA).

4. PHYSICAL WORLD MODELLING
In this section, we describe how we model the characters

and the environment in the simulator.
We use the Open Dynamics Engine [24] to simulate the

physical world. Each character is represented by 19 body
segments and 20 joints according to the Kinect skeleton def-
inition. Since Kinect does not enforce the bone length, we
set the size and the mass of each segment according to [2].
Segments are modelled with capsules for efficient collision
detection, and the joints are modelled with ball joints which
indicating that each segment has 3 degrees of freedom in ro-
tation. Although it is possible to model some specific joints
such as the elbows and the knees with hinge joints to en-
hance the realism of the characters, the system will need to
solve an inverse kinematic problem to calculate the orienta-
tion of their respective parent joints (i.e. the shoulder and
the hips), which increases the computational cost. The trade
off between the enhancement of realism and computational
efficiency shall be adjusted according to the availability of
computational resources.

Environment objects in our systems are modelled with
primitive shapes. We create an infinity large plane in the
ODE world as the floor plane, which provides supporting
force to the characters and the objects. Gravity is imple-
mented such that when no control force is applied, the char-
acters and objects fall onto the ground naturally.

5. REFERENCE MOTION SELECTION
In this section, we present the process of selecting a refer-

ence posture that is the most similar to the posture captured
from Kinect. We will explain the proposed method to con-
struct the motion database, enhance the computational cost
by dimensionality reduction techniques and select the best
matching posture.

5.1 Motion Database Construction
Here, we explain how we compose our motion database.
We create the motion database by motions captured from

a commercial optical motion capture system. We retarget
the captured motions to the character definition explained
in Section 4 using commercial software. We also remove
the global rotation along the vertical axis and the global 3D
translation for normalization. Each posture is represented
by a set of joint positions (Pd), as well as a set of joint rota-
tions along the joint axes (Θd). To enhance the efficiency of
run-time database searches, we calculate the sum of squared
differences of joint positions, and remove similar poses if the
differences is smaller than a predefined threshold.

The motions that should be contained in the database
depend on the target application. The idea is that we com-
pose a database with the motions that the users are expected
to perform. In our implementation, our database includes
boxing motions, sword fighting motions, walking motions, as
well as general exercising motions. The unfiltered database
contains roughly 1500 postures, which is then filtered into
around 300. Our database is relatively compact due to the
scope of the target motion. However, if the application re-
quires the user to perform a large variety of motion, such as
dancing in different style, a larger database will be needed.

5.2 Motion Comparison
Here, we explain how we apply PCA to reduce the com-

putational cost of database searches with the Kinect input.
During run-time, we obtain a set of joint positions (Pk)

from Kinect, and retrieve the best match poses from the
database (Pd). While we can consider the Pk and Pd as
two point clouds and conduct motion comparison [11], this
costs computational power unnecessarily, as there exists an
intrinsic redundancy among the joints in the postures. We
proposed to reduce the dimensionality of the motions by
PCA to improve the performance of database queries. In
other words, we reduce Pd into a reduced representation
Pdr. During run-time, the projection matrix calculated by
PCA is used to reduce the Kinect joint positions Pk into Pkr.
We then conduct a search to find the most similar posture
between Pdr and Pkr, by considering their sum of squared
differences. Although more dedicated algorithms such as k-
d tree can further speed up the searching process, we find
that brute force searches in the reduced space is fast enough
for real-time applications. In our implementation, Pd has 60
dimensions and Pdr has 7. Please refer to Section 8.4 for the
analysis on deciding the optimal dimension of the reduced
space.



In the situation when a joint is missing in the data ob-
tained from Kinect due to occlusions or the restricted cap-
ture volume, we assume the joint position to be the mean
value of that joint from all posture in the database, and
compose Pkr accordingly. Empirically, we find that this as-
sumption works well in database queries even when a few
joints are missing.

6. POSTURE SOLVER
In this section, we explain how we combine the Kinect

posture, database posture and optional environment infor-
mation into a set of constraints. We separately control the
target positions and the target rotations along the joint axes,
and solve for the final posture with the physical simulator.
At the end of this section, we discuss why our hybrid con-
troller is superior to a pure positional/rotational controller.

6.1 Positional Constraints
Here, we explain how we generate positional constraints

by combining the Kinect posture and the database posture.
Then, we present the optional constraints that can be ob-
tained from the environment. Finally, we give details on
how to calculate the control forces to satisfy the positional
constraints.
At each frame, we obtain a set of joint positions Pk from

Kinect. Since Pk may be incomplete due to the run-time
tracking error, we substitute the missing joint positions from
the matched database posture Pd that is found as described
in the previous section, and create the resultant set of po-
sitions Pe. Notice that Pe is an invalid posture in which
segment lengths are not maintained, as it is created by sim-
ply replacing missing joints with those in Pd. Thus, we
cannot directly force the character to perform Pe. Instead,
we consider Pe as a set of positional constraints defined for
every joint, and implement a tracking system to track the
constraints.
We can include optional constraints based on the require-

ment of the application or the environment. For example,
we can change the target location of a hand in a reaching
motion such that the character can touch a virtual object.
In such a case, we replace some DOF in the positional con-
straints defined in Pe with a calculated position. Notice that
we only need to adjust the subset of joints that are explicitly
related. For example, adjusting the positional constraint of
the hand in a reaching motion results in the corresponding
movement of the lower arm and the upper arm. The major
advantage of using positions, instead of rotations, to rep-
resent the constraints here is that they are more trivial to
human understanding and facilitate easier motion editing.
With the positional constraints expressed in Pe, we calcu-

late the control force for each joint, and drive the character
to fit into all constraints. In each time step, the control force
is calculated by a PD controller:

F = Ke(ptarget − pcurrent) +Kd(p
′

target − p
′

current) (1)

where ptarget is the target position of a joint defined by
Pe, pcurrent is the current position of the joint, p′target and
p′current are the respective derivatives, Ke is the elasticity
gain and Kd is the damping gain. A high Ke can improve
the responsiveness of the character, while a high Kd produce
more stable movements. We manually tune the smallest
possible Ke and Kd, as a system with high control forces is

usually not stable, and use the pair to control all joints. Fur-
thermore, the magnitude of the resultant force F is bounded
by a predefined value to avoid unexpected high control force
while the target values are very different from the current
ones.

Notice that positional constraints implemented with con-
trol forces are not guaranteed to be met in the final result.
If we wish to ensure meeting a specific constraint, we have
to further define a virtual ball joint to connect the joint with
a constraint position, which can either be on another object
or in the empty space. This allows the constrained joint
to rotate around the target position, but not moving away
from it, even when forces are applied. Notice that if too
many virtual joints are created, there may be incompatibil-
ity among them, such as fixing the feet on the floor while
requiring the hand to move to an unreachable position. In
such a situation, the posture solver will fail and the segment
lengths will no longer be maintained.

In our implementation, we use virtual joints to fix the
supporting feet on the floor. At the moment when the con-
straint positions of the feet touch the floor, we use virtual
joints to fix it until the constraint positions move away from
the floor. Furthermore, we use virtual joints to emulate
the effect when a character holds an object such as a mace
by fixing the hand with the object. When solving for the
final posture, ODE maintains virtual joints as hard con-
straints, and coordinates other available DOF to achieve the
desired movement. Empirically, we found that applying vir-
tual joints on end effectors produces plausible results.

6.2 Rotational Constraints
Here, we explain the rotational constraints that control

the rotation of joints along the joint axes.
To control a full character, apart from the positional con-

straints explained in the previous section, we also need the
joint orientations. We define the rotation along the joint
axes obtained from Kinect as Θk. Due to the limited num-
ber of tracking points in Kinect, Θk is incomplete whenever
one or more point is not tracked.

Since the matched database posture Pd is similar to the
Kinect one Pk, it is reasonable to assume that the corre-
sponding rotational information, Θd, is similar to Θk as well.
We substitute the missing DOF of Θk with those in Θd, and
create the resultant set of rotation along the joint axes, Θe.

We formulate the control torque in ODE for each joint
with a PD controller:

T = Kε(θtarget − θcurrent) +Kδ(θ
′

target − θ
′

current) (2)

where θtarget is the rotation of a joint along the joint axis
defined in Θe, θcurrent is the current rotation, θ′target and
Θ′

current are the respective derivative, Kε and Kδ are the
hand tuned elasticity gain and damping gain. Similar to the
force calculation, the torque T is bounded by a predefined
value.

6.3 Physical Simulation
Here, we describe how ODE handles the control forces and

torques to simulate the final posture.
For each joint, we apply the control forces calculated in

Equation 1 to control the 3D translation, and the control
torques calculated in Equation 2 to control the rotation
along the joint axis, as shown in Figure 2(a). The phys-
ical simulation engine ODE maintains the segment length



(a) (b) (c)

Figure 2: Different control schemes for a joint, with
the red arrows representing positional control, and
the blue arrows representing rotational control. (a)
The proposed control scheme based on 3D positional
control and rotational control along the joint axis.
(b) Pure rotational control. (c) Pure positional con-
trol by sampling extra control points with fixed off-
sets.

and segment connectivity defined by joints while applying
the control forces and torques. The resultant posture is the
equilibrium state of the character and it represents the pos-
ture that can satisfy most of the constraints.
In case a character is being pushed or hit, extra control

force is applied to simulate the impact. Since the segment
length is fixed, when a force is applied to a joint, the rest of
the joints will be dragged to such a direction. The advantage
of using PD controller for tracking the live performance in
physical simulation is that the virtual character can adapt
to unexpected collisions in the environment while trying to
track the target posture given by the user. As a result,
realistic movements of the virtual character responding to a
dynamic environment can be generated.
Although it is possible to obtain all 3 dimensions of ro-

tation and use Equation 2 to control the overall system
as shown in Figure 2(b), we found that the result is sub-
optimal. This is mainly because the actual segment move-
ment after rotating the joint depends on the length of the
joint, while human is sensitive to positional movements.
Thus, to obtain the best result, Kε and Kδ have to be tuned
individually for each joint, as opposed to using the same
value of gains for all joints in our system. Furthermore,
positional based requirements for specific joints, such as fix-
ing the supporting feet on the floor, will require solving an
inverse kinematic problem, which requires extra computa-
tional effort.
Similarly, it is possible to sample multiple control points

based on fixed offsets from a joint to represent its rotation
along the joint axis as shown in Figure 2(c). Then, we can
use Equation 1 to model all constraints. However, this in-
creases the complexity of the system unnecessarily, and is
likely to result in unstable simulations in the physical en-
gine due to the large number of constraints. In our system,
we construct a unified framework taking into account both
controlling forces and rotational torques along the joint axes,
with the latter being a supporting element. We find that it
works efficiently and the gains in the equations can be tuned
with ease.

7. MOTION RETARGETING
In this section, we explain how we retarget the Kinect pos-

ture into a standard size to further improve the performance
of the system. While previous works [4, 6] can retarget mo-
tion for characters of different sizes, our retargetting algo-
rithm is significantly simpler and efficient. This is because
(1) the characters that we consider have the same joint hier-
archy definition, and (2) our posture solver provide support
for inverse kinematic, thus we do not need to solve it during
the retargetting stage.

Since Kinect does not maintain the bone lengths of the
tracked character, users with different body size have differ-
ent character dimensions. In addition, the bone lengths may
change during a capture session when the joint positions are
not accurately recognized. To improve the stability of the
simulation, we retarget the Kinect posture into the character
dimensions we defined in ODE such that database match-
ing (Section 5) and constraints definition (Section 6) can be
more accurate.

Without loss of generality, for a Kinect joint i with posi-
tion P i

k and its parent joint j with position P
j
k , we calculate

the normalized directional vector:

d
i
k =

P i
k − P

j
k

|P i
k − P

j
k |

(3)

The retargeted position of the joint i is calculated as:

P
i
k′ = P

j

k′ + d
i
k × L(i, j) (4)

where P
j

k′ is retargeted position of the parent joint j, L(i, j)
indicates the bone length between joint i and j designed
for the virtual character. Since the retargeted position of
a joint depends on its retargeted parent joint, this process
have to be started with the joint in the top level of the body
structure hierarchy.

8. EXPERIMENTAL RESULTS
In this section, the results generated using our method are

presented. We first show the motions created by our method
in different scenarios. Next, we evaluate the database match-
ing accuracy. The readers are referred to the attached video
for the results.

All experiments ran in real-time on a computer using a
single thread of an Intel i7-2600K processor. The proposed
method is implemented on Windows with Visual C++, and
Microsoft Kinect SDK [15] version 1.5 is used to obtain the
live captured motion stream.

8.1 Interacting with Boxes
In the first experiment, the character was controlled by

the user to lift and carry a bulky box as shown in Figure
3(a). Notice that as our character was physically simulated,
the hand of the character did not penetrate the boxes upon
contact, even when the raw Kinect posture illustrated by the
yellow skeleton did. Also notice that although the Kinect
posture had significant size difference with the simulated
character, the resultant motion appears natural due to the
motion retargeting process.

In the second experiment, a large number of boxes were
added to the virtual environment at random locations. The
virtual character was controlled by the user to interact with
the boxes by body movements such as punching, kicking and
walking, as shown in Figure 3(b). The masses of the boxes
were set to be small to magnify the effect of impacts.



(a) (b) (c)

(d) (e) (f)

Figure 3: (a) The user controls the virtual character to grab and carry a box. (b) The virtual character
interacts with a large number of boxes in the environment. (c) A simulated mace is attached to the hand of
the character with a virtual joint. (d) The user controls the virtual character to interact will the balls. (e)
Dodging motion is synthesized automatically by positional constraints. (f) Two characters are controlled by
two users simultaneously.

In the third experiment, a physically simulated mace was
connected to the hand of the character with a virtual joint
as described in Section 6.1. The movement of the simulated
mace was computed based on the motion of the character’s
hand, as well as the collision with other objects. The user
controlled the character to interact with the boxes with the
mace as shown in Figure 3(c). Notice that since the mace
had a mass itself, it affected the hand movement of the char-
acter, which was similar to a human swinging a heavy object
in the real world.

8.2 Interacting with Balls
In the first experiment, a large number of balls with ran-

dom sizes shot towards the virtual character. The user tried
to control the movements of the virtual character to interact
with the balls as shown in Figure 3(d). Notice that when the
balls hit the virtual character, the effect of external impacts
applied onto the body segments was synthesized naturally.
We further show an example of automatically controlling a

subset of body segments subject to selected external events.
Specifically, we enabled the character to dodge an incom-
ing object by raising its arms. To simulate such an effect,
we set the target positions of the forearms around the head
as positional constraints when the balls arrive. Figure 4(a)
and (b) show the motions synthesized without and with the
automatic dodging feature respectively using a non-user con-
trolled T-pose, in which the arms of the character were ex-
tended outwards.
We applied the automatic dodging feature for a user con-

trolled character as shown in Figure 3(e). By enabling this
feature, the virtual character can automatically react to the
balls shooting towards its head. This feature is particu-

(a) (b)

Figure 4: Motion synthesized (a) without the auto
dodging feature. (b) with the auto dodging feature.

larly useful when the users do not want to control all the
body segments by himself/herself, as well as synthesizing
the reflective motions of human to increase the realism of
the virtual character.

8.3 Multi-character interactions
In this experiment, two users interacted indirectly with

each other in the virtual world by throwing boxes to each
other (Figure 3(f)). Notice that with a single Kinect, it is
difficult to capture close interaction due to occlusion. More
research is needed to enhance the performance for tracking
multiple interacting users.

8.4 Performance Evaluation
Here, we evaluate the effectiveness of using PCA to reduce

dimensionality of the postures and the impact on the quality



of posture matching. We also discuss the computation cost
of the system.
We record 600 frames of motion performed by a user with

Kinect. Then, we reduce the dimensionality of the database
motions and the Kinect motion to a specific value between 1
and 60, and perform motion matching. Finally, we compute
the different between the retrieved database posture and the
Kinect posture in the full dimensional space. The posture
errors in a frame f is computed by:

e(f) =
60∑

i=1

(P i
k − P

i
d)

2 (5)

where 60 is the total number of joints in the full dimensional
space, i is the joint index, P i

k and P i
d are the 3D locations

of the i-th joint in the Kinect and selected database posture
in the full space respectively. The percentage of error is
calculated by:

∑n

f=1
er(f)−

∑n

f=1
e60(f)∑n

f=1
e60(f)

× 100% (6)

where f is the frame number, n = 600 is the total number
of frames, er is the posture error found using r dimensions
matching with Equation 5, e60 is the posture error with the
full 60 dimensions.
The results are plotted as the red line in Figure 5. It

shows that when the dimensionality is significantly reduced,
there is a high error rate as expected. However, the rate
drops below 3% when the dimensionality is reduced to 7.
Since then it decreases slowly when the dimensionality in-
creases. Based on the results, we decide that reducing the
dimensionality of the motion search space to 7 can balance
the trade-off between efficiency and accuracy. The finding
agrees with the work from Safonova et al. [20].
The average computational time required for searching the

database and synthesizing the motion for a single character
is plotted as the blue line in Figure 5. When using 7 dimen-
sions, the time required is roughly 0.65 ms, in which 0.10 ms
is for database search and 0.55 ms is for motion synthesize.
The time for motion synthesize does not change significantly
for different degree of freedom. When comparing to the full
dimension search, 24% of computational cost is saved if 7
dimensions is used.
Notice that performance mentioned above does not con-

sider the time required to obtain data from Kinect, as well
as to render the outcome. With everything included, the
computational cost is roughly 8.5 ms per frame when using
7 dimensions. This means that the system can run 4 times
faster than real-time, although the frame rate is limited by
Kinect in practice.

9. CONCLUSIONS AND DISCUSSIONS
In this paper, we proposed a unified framework to track

live captured motions from Kinect using physically simu-
lated characters. Our framework can synthesize any posture
efficiently using external forces and torques calculated from
a PD controller. To overcome the problem of missing DOF
of the postures captured from Kinect, we further proposed
to select an appropriate posture from a dimensionality re-
duced motion database to estimate the required information.
We demonstrated that the proposed PCA-based motion se-
lection approach is computationally efficient while keeping
the matching error under a reasonable level. Experimental

Figure 5: The results of posture matching error and
computational cost with respect to the correspond-
ing dimensionality of the postures.

results show that our method robustly synthesized the user
controlled characters that interact with virtual objects in a
physically simulated environment, even when the motions
captured from Kinect were very noisy.

While Kinect is used as the motion capture system in this
paper, our proposed framework is general and can be applied
with different hardware. For example, in traditional optical
motion capture system, it is very common that some track
points are missing due to tracking error. Our system can
substitute the missing DOF from a matched posture and
synthesize stable character movements in real-time. Simi-
larly, the framework can be applied to synthesize full body
movement from the Wiimote controllers, although further
research is required to effectively find a matching posture
from the extremely limited DOF provided from these con-
trollers.

While we show the effectiveness of the proposed method,
there are some limitations. First of all, the database posture
matching process becomes inaccurate when the number of
joints recognized by Kinect is dropped significantly. This
usually happen when capturing the whole body rotation of
the user. As a common limitation of any single camera mo-
tion capture system, when the user is not facing the camera,
the captured motion becomes inaccurate since a large por-
tion of body segments are occluded. One possible solution
is incorporating multiple cameras in a capturing session.

The accuracy of the database searches also depends on
the content of the database. If the user performed motion
is very different from those in the database, the returned
posture may not match the input motion well. However, we
observe that most applications have their own set of target
objectives, which can help to identify the target motion that
should be included in the database. In the future, we are
interested in a more sophisticated motion completion scheme
such as taking into account the temporal coherency of the
joint locations. Another interesting direction is to integrate
non-vision based motion capture devices, such as inertial
sensors, into our proposed method to improve the robustness
of the framework.
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