High Quality Compatible Triangulations for 2D Shape Morphing

Zhiguang Liu*', Howard Leung', Liuyang Zhou?, and Hubert P. H. Shum?

ICity University of Hong Kong, Hong Kong
2Wisers Information Limited, Hong Kong
3Northumbria University, Newcastle upon Tyne, UK

Abstract

‘We propose a new method to compute compatible triangulations of
two polygons in order to create a smooth geometric transformation
between them. Compared with existing methods, our approach
creates triangulations of better quality, that is, triangulations with
fewer long thin triangles and Steiner points. This results in
visually appealing morphing when transforming the shape from
one to another. Our method consists of three stages. First, we
compatibly decompose the target and source polygons into a set
of sub-polygons, in which each source sub-polygon is triangulated.
Second, we map the triangulation of a source sub-polygon onto
the corresponding sub-polygon of the target polygon using linear
transformation, thereby generating the compatible meshes between
the source and the target. Third, we refine the compatible
meshes, which can create better quality planar shape morphing
with detailed textures. Experimental results show that our method
can create compatible meshes of higher quality compared with
existing methods, which facilitates smoother morphing process.
The proposed algorithm is robust and computationally efficient.
It can be applied to produce convincing transformations such as
interactive 2D animation creation and special effects in movies.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems

Keywords:
interpolation

compatible triangulation, 2D morphing, shape

1 Introduction

Planar shape morphing, also known as shape blending, aims
at smoothly transforming a source polygon into a target poly-
gon [Wolberg 1998; Chiang et al. 1998]. 2D morphing techniques
have been used widely in animation and special effects packages,
such as Adobe After Effects and Adobe Flash. With the work
on digital heritage, not only an ancient painting can be preserved
and appreciated in a virtual reality environment, but also objects
in paintings can be animated by shape morphing techniques to
provide a more vivid viewing experience to the audience. The key
research focus is to create high quality transformations that can
avoid collapsing or overlapping of polygons during the morphing
process.

2D image deformation algorithms such as the rigid shape
deformation in [Igarashi et al. 2005; Schaefer et al. 2006] have

*zhigualiu2-c @my.cityu.edu.hk

been extensively explored in the research community. Users
can manipulate constrained handlers to deform a given image.
However, such kind of image warping techniques offer a limited
range of transformations. Transforming a shape to a significantly
different one is difficult due to the lack of feature correspondence.

Planar shape morphing methods offer solutions to blend two shapes
with different silhouettes. A simple method to solve the shape
morphing problem is to linearly interpolate the coordinates of
each corresponding vertex pair between the source and the target
polygons. However, simple linear interpolation sometimes creates
intermediate polygons that intersect with themselves, resulting
in geometrically incorrect transformations. While image space
techniques such as [Schaefer et al. 2006; Fang and Hart 2007]
achieve pleasant blending results, they suffer from the overlapping
problems.

Previous work [Alexa et al. 2000; Gotsman and Surazhsky
2001; Surazhsky and Gotsman 2004; Baxter et al. 2009] has
shown that computing compatible triangulations can successfully
create smooth transformations for both the boundary and interior
of a shape. However, in many situations compatible meshes
can be generated only if Steiner points are added, which are
points that are not part of the vertices of a polygon. [Aronov
et al. 1993] first started the study of compatible triangulations
by introducing at most O(N?) Steiner points, where N is the
number of vertices of the polygon. Although the algorithm
is conceptually simple, it introduces a large number of Steiner
points and generates many long thin triangles, which can result
in inconsistent rotations for shape interpolation algorithms such
as [Alexa et al. 2000]. [Surazhsky and Gotsman 2004] constructed
compatible meshes based on link paths, which requires a small
number of Steiner points, but a high computational cost that is
prohibitive.

We observed that the majority of existing compatible triangulation
approaches may either create a large number of skinny triangles
or are too complex for real-time shape morphing. In this paper,
we propose an efficient framework for computing compatible
triangulations of two simple polygons, which are defined as planar
shapes with non-intersecting edges that form a closed path. Our
method produce compatible meshes with few long thin triangles
and a small number of Steiner points, which enables smooth
transformations from one shape to another.

The major contributions of this paper are summarized as follows:
First, our method decreases the number of Steiner points while
maintaining the quality of the compatible meshes. Second,
we maximize the minimum angle of the triangles within the
source sub-polygons. The increase in regular triangles benefits
the smooth transition during shape morphing. Third, our
framework of compatible triangulations is simple to implement
and computationally efficient. Lastly, we reduce the inconsistent
rotation problem that appears from shape morphing algorithm such
as rigid shape interpolation.

2 Related Work

Planar shape morphing involves two sub-problems: vertex
correspondence and vertex path computation [Sederberg et al.
1993]. Vertex correspondence determines how the vertex u of
source polygon P matches the vertex v of target polygon). The
vertex path determines the trajectory along which vertex u will
travel to vertex v. In this paper, we concentrate on the vertex
correspondence problem, i.e. computing compatible meshes.

Previous methods for computing compatible triangulations usually
fall into two categories: (1) Transforming source and target
polygons into another common space [Aronov et al. 1993; Alexa
et al. 2000; Kranakis and Urrutia 1999]. (2) Iteratively partitioning
the source and the target polygons until both inputs become a set
of triangles [Suri 1986; Gupta and Wenger 1997; Surazhsky and
Gotsman 2004; Baxter et al. 2009].

[Aronov et al. 1993] constructed the compatible triangulations by
overlaying the triangulations of the source and target polygons
in a convex polygon. The intersections of the two triangulations
built a piecewise-linear homeomorphism, which introduced a large
number of Steiner points. To solve this problem, [Alexa et al.
2000] employed Delaunay triangulations to reduce the Steiner
points. [Kranakis and Urrutia 1999] proposed another method that
the number of Steiner points can be determined by the number of
inflection vertices. While their method can reduce the number of
Steiner points, the algorithm sometimes results in Steiner points
on the edge of polygon. Furthermore, although these methods are
conceptually simple, they require high computational cost and are
not suitable for real-time applications.

[Gupta and Wenger 1997] used the divide-and-conquer method to
iteratively partition the source and target polygons. Their algorithm
introduced a small number of Steiner points by using link paths.
However, their method is not suitable for polygons with a small
number of vertices. [Surazhsky and Gotsman 2004] simplified the
algorithm of [Gupta and Wenger 1997] and they proposed a new
remeshing method to greatly improve the mesh quality by adding
a few Steiner points. Their algorithm requires implementation of
many data structures and algorithms in [Suri 1986] that makes their
method algorithmically complex. [Baxter et al. 2009] proposed
a new way of finding compatible link paths. Based on this
new link path generation algorithm, they used similar scheme as
in [Surazhsky and Gotsman 2004] to compatibly partition two
polygons. Although their algorithm of computing link paths is
faster than that of [Surazhsky and Gotsman 2004], the proportion
of regular-shaped triangles (as opposed to long thin triangles) still
needs to be improved.

Much of work has been proposed for interpolating two
shapes. [Alexa et al. 2000] proposed a method that attempted to
preserve rigidity. They separately interpolated the rotation and
scale/shear components of an affine transformation matrix, which
generated pleasing results with small rotations for most of cases.
Inspired by [Alexa et al. 2000], [Xu et al. 2006] presented a 3D
morphing method based on Poisson equation that generated visual
pleasing morphing sequences. However, their method suffered
from the inherited problem of rigid interpolation methods that
the rotations may be incorrectly interpolated. In order to fix this
problem, [Baxter et al. 2008] proposed a method to consistently
assign rotations. [Sumner and Popovié¢ 2004] proposed a method
that transferred the 3D deformation of a source triangle mesh onto a
different target triangle mesh. However, their algorithm is designed
for the case where there is a clear semantic correspondence
between the source and target. [Li et al. 2013] introduced a new
type of coordinates for Hermite interpolation that can be applied
to shape deformation. Other methods such as [Chen et al. 2013]

trying to preserve certain properties like smoothness and distortion
for 2D shape interpolation.

Interpolating boundary curve is another topic of shape mor-
phing. [Jiang et al. 2002] represented curves by sequences of
symbols. The curve morphing problem is formulated as computing
a weighted mean of two strings. [Srivastava et al. 2011] introduced
a square-root velocity representation for analyzing shapes of
curves, which can generate natural deformation along the geodesic
path. [Yang et al. 2014] proposed a new structure called part figure
to represent the shape. Their method can create smooth transition
between the source and target shapes by interpolating the part
figure. However, these curve interpolation methods only solve the
vertex path problem and cannot deal with detailed texture.

In this paper, we propose a new framework to construct the
compatible meshes of two simple polygons. Our method
draws inspiration from [Floater 1997], which uses barycentric
coordinates to map a spatial surface triangulation to planar
triangulation. However, [Floater 1997] demands that every Steiner
point of the target polygon) must be a strict convex combination
of its neighbors, which cannot always be satisfied in practice. As a
solution, we propose an efficient convex decomposition algorithm
that partitions the target polygon (@ into a set of convex polygons
such that we can solve the compatible mapping from a sparse linear
system. In addition, our framework decreases the number of Steiner
points by calculating the link path of a vertex pair in the source

polygon.

3 Compatible Triangulations

The input data of our system are two simple polygons P and () with
corresponding vertices ordered in counter-clockwise. We denote
P ={U,Ef}and Q = {V, E?} as the source and target polygons
with point set w € U and v € V, together with the edge set E*,
E® respectively. P and @ are assumed to be simple polygons
without holes, in which the edges do not cross each other and form
a closed contour enclosing each polygon. We define Tp and T¢ as
the triangulations of polygon P and Q. T» and 7T¢ are compatible
if they have equivalent topology that is defined as:

1. There is an one-to-one correspondence between the vertices
of Tp and that of Tg.

2. There is an one-to-one correspondence between the edges
of 7p and T, meaning that if there is an edge connecting
two vertices of Tp, then there is an edge connecting the
corresponding vertices of T and vice versa.

3. The boundary vertices of both Tp and 7¢ are traversed in the
same clockwise or counter-clockwise order.

Given two simple polygons P and () with a boundary vertex
correspondence, our algorithm works in three stages. First,
we compatibly decompose the source polygon P and the target
polygon @ into a set of sub-polygons, p = |Jp; and ¢ =
J i, where the target sub-polygon ¢; is convex. Consider each
source sub-polygon p; of P, we triangulate p; using Delaunay
triangulation. Second, we map the triangulation 7, of source sub-
polygon p; onto corresponding target sub-polygon g; using a sparse
linear system. Third, we refine the compatible mesh to improve the
mesh quality, which is important for high quality morphing in 2D
animation and special effects for movies. Figure 1 summarizes our
algorithm for compatible triangulations of two simple polygons.

Stage One

Stage Three

Target Polygon Q

Source Polygon P

)
(b) (d)

)
2 ®
(@)
@
@ @
: E@ ®
@

@ @
(e) @)

Figure 1: Overview of the proposed framework to compatibly triangulate two simple polygons. (a) The target polygon Q. (b) The source
polygon P. (c) We decompose the target polygon Q into a set of convex polygons |) q; using the line segments, e.g. the line segment connecting
vertex vz and vs shown in blue color. (d) We compatibly decompose source polygon P using the line segment found in (c). However, if polygon
P does not contain such a line segment that lies completely inside P, we look for link path to partition polygon P, e.g. the 2-link path between
vertex uz and us shown in blue. (e) We triangulate each sub-polygon p; of source polygon P using Delaunay triangulation. (f) We may need
to add some Steiner points on the edge of sub-polygon q; to keep equivalent topology. (g) We solve a linear system to map the triangulation
of sub-polygon p; onto the corresponding sub-polygon q; of target polygon Q. (h-i) We finally refine the compatible meshes by operations
such as splitting long edges and flipping interior edges so as to improve the interior angles of the mesh.

3.1 Compatible Decomposition of the Target and
Source Polygons

In the first phase, we decompose the target polygon () into a set
of convex sub-polygons. In a simple polygon, a vertex v € V
is convex if the angle o formed by two edges at v is less than
radians; otherwise v is considered to be concave. Our goal is to
break down all the concave vertices of target polygon @ such that
all the vertices of sub-polygons are convex.

Without loss of generality, we assume the target polygon @ to be
a simple polygon with N vertices arranged in counter-clockwise
order. Here, we label the concave vertices of () as vy, ..., vc and
the convex vertices vc+1,vn. The minimum number of convex
decomposition without Steiner points of) can be computed in
O(N + C*min{C? ,N}) [Keil and Snoeyink 2002]. However,
in order to reduce the overall algorithm complexity, we propose an
approximate optimal algorithm to decrease the number of Steiner
points for both the source and target polygons, which yields no
more than four times of the optimal convex sized partitions.

The number of the introduced Steiner points would greatly
influence the algorithm computational cost. Therefore, we aim
at decreasing the number of Steiner points during the compatible
decomposition of source and target polygons. We apply link path
to determine the number of Steiner points. A link path between
the vertex u, and up is a polyline within the polygon that joins the
vertex pair (uq, up) such as vertex pairs (uz2,us) and (ue, us) in
Figure 1(d) that define a 2-link path between vertex us and us. A
minimum link distance for vertex pair (uq, up), linkDist(uq, us),
is the minimum number of line segments in a polyline, for example,
the minimum link distance for vertex pair (uz2, us) in Figure 1(d)
is 2. We follow [Baxter et al. 2009] to compute the link path with
minimum link distance for all vertex pairs in O(H - N7?), where H
is the number of sub-polygons and NN; is the number of vertices for
sub-polygon p;.

As shown in Figure 1(c), we find all the concave vertices v¢, ¢ € C,
such as v, of the target polygon @ in O(N). For each v., we
find any non-adjacent vertices of the target sub-polygon g¢; that
have direct line-of-sight to v., and denote them as v,. With
the same vertex index pair (vc, vy) in the source polygon P, we
check if the minimum link distance linkDist(uc,ur) between
vertex pair (uc,u,) is smaller. Our algorithm works in a greedy
sense and finds a partition with a smaller link distance from the
source polygon in each iteration. In practice, the minimum link
distance may not be unique. We choose the vertex pair (ve, vp)
that can partition the angle .. at concave vertex v. as balanced as
possible, e.g. vertex pair (v2,vs) partitions the concave vertex ve
in a more balanced way comparing with the vertex pair (ve,v4).
The time cost of our convex decomposition algorithm is at most
O(N? + H - N}).

Algorithm 1 summarizes our polygon decomposition algorithm in
an iterative sense. Our algorithm tries to decrease the number of
Steiner points as much as possible using the minimum link distance,
as shown in line 7 of Algorithm 1. However, we may create some
long thin triangles with such a small number of Steiner points.
Thus, there is a tradeoff between the number of Steiner points and
the minimum angle of the mesh. In our work, we aim at generating
fewer number of Steiner points and the resulting long thin triangles
introduced can be further improved during the compatible mesh
refining process described in Section 3.3.

By this stage, we have compatibly decomposed the source polygon
P and target polygon @ into sub-polygons {p, = (U?%, EP%)}
and {¢; = (V% E%)} , where g; is one of convex partitions of
Q, p; is the sub-polygon corresponding to g;. We apply Delaunay
triangulations as the initial triangulation of the source sub-polygon
pi, which can maximize the minimum angle with no extra Steiner
points in O(N;logN;) [Fortune 1987]. We denote 7, as the
triangulation of sub-polygon p; and aim at constructing compatible
triangulation 7, of ¢; based on 7p,.

E TR ST

N wn

10

1
12
13
14

Algorithm 1: Compatible decomposition of the target and the
source polygons

Input: The source and target polygons, P and Q)
V.. concave vertex of)
vy, non-adjacent vertex of v, that is visible to v,
Output: A convex decomposition of @, ¢ = |J ¢;, and compatible
decomposition of P, p = |Jp;
convexDecompostion(P, Q)

for each v. do

Up = arg min v linkDist(uc, un)

Ue,Up €

Decompose () using line segment connecting v. and vy,
that creates two convex sub-polygons:

{¢i. qis1}
Decompose P using link path between u. and u,, that
creates two sub-polygons:

{Pi > Pit1 }
convexDecompostion(p; , ¢;)
convexDecompostion(p;+1, Gi+1)

end

3.2 Compatible Triangulations Mapping

The compatible decomposition process may introduce Steiner
points on the link path of source polygon P such as the vertex u¢ in
Figure 1(d). In addition, in order to improve the mesh quality, the
mesh refinement process detailed in Section 3.3 will create Steiner
points within each sub-polygon. Therefore, we have two types of
Steiner points: (1) Steiner points that lie on the link path of source
sub-polygon p;, and (2) Steiner points that lie within p;. For (1),
we map the Steiner points onto the corresponding edges of target
sub-polygon g; based on the simple line-segment-length proportion
principle. For (2), we solve the mapping by a sparse linear system.
3.2.1 Mapping Steiner Points on the Link Path of Source
Polygon

We denote u as a Steiner point lies on the link path between vertex
uq and up in the source sub-polygon p; such as the vertex ug for
vertex pair (u2,us) in Figure 1(d). We add a Steiner point v for
target sub-polygon g; on the corresponding line segment v, v, based
on the linear ratio with the following equation:

_ polylineLength(ua, us)

polylineLength(us, us)
Vs = " Va,
polylineLength(uq, up)

polylineLength(ug, up) b

ey
where polylineLength(ua, us) is the summation of the length of
all line segments on the link path between u, and uy,.

As shown in Figure 1(d), the length of the polyline
for vertex pair (u2,us) is polylineLength(uz,us) =
polylineLength(usa,us) + polylineLength(ue,us). We
would place the vertex vg on the line segment vovs based on the
Equation (1).

3.2.2 Mapping Steiner Points Within the Source Polygon

In this section, we will explain how to map the Steiner points
inside the source polygon onto the corresponding locations inside
the target polygon. As shown in Figure 2, we have to decide how
to map the Steiner point v, and u2 onto vy and v inside the target
polygon. Here, we calculate the barycentric coordinates of w1 and
uz2. We then compute the proper locations for Steiner point v; and
vg using the barycentric coordinates found in the source polygon.

Uy

(a) (b)

Figure 2: Mapping Steiner points within the source sub-polygon
onto the target sub-polygon. (a) The source sub-polygon with
Steiner points w1 and uz. (b) The corresponding target sub-polygon
with unknown Steiner points vi and va.

Denoting u;,j € {1,...,n;} as a Steiner point that lies within the
source sub-polygon p;, where n; is the number of Steiner points
within p;. We use barycentric coordinates A to map the Steiner
point u; of source sub-polygon p; onto the Steiner point v; of
target sub-polygon g;. Here, we employ Floater’s mean value
coordinates [Floater 2003] to calculate the barycentric coordinates
A. The barycentric coordinates A of vertex u; can be seen as a
weight of its neighboring vertices, which allows us to generate
continues data from these adjacent vertices. We represent the
Steiner point u; as a weighted average of its neighboring vertices:

M M
U; = Z)\j,kuk, Z)\j’k =1 (2)
k=1 k=1

where M is the total number of points including boundary vertices
and Steiner points for source sub-polygon p;, i.e. M = N; + n;.

We now explain how to map the Steiner point u; € UP%, j €
{1, ...,m; } of source sub-polygon p; onto the corresponding Steiner
point v; € V% of target sub-polygon ¢;, where n; is the number of
Steiner points within p;. We define v1, ..., vy, to be the solutions of
linear equations with n; variables.

M M

v = Z)\j,k’vk, ZAj,k =1 3)
k=1 k

=1
where
ik =0, (j,k) & BT
>\j,k >0, (j7 k‘) € E%

Note that the barycentric coordinates Aj;j can be uniquely
determined by Equation (2).

We rewrite Equation (3) by breaking the summation term into two
sub-terms:

n; n;+N;
v; = D AU+ Y. AjkUk,j € {1,...,ni}
k=1 k=n;+1
g n;+N;
Vi — > AjEUE = Y. AjkUk (C))
k=1 k=n;+1

where n; is the number of Steiner points within the target sub-
polygon ¢; and N; is the number of boundary vertices of ¢; .

Denoting v; = (x;,y;) to be a Steiner point within target sub-
polygon g; that we want to solve, Equation (4) is equivalent to the
following form:

Az =by, Ay=1bs 5)

where © = (21, ..., n;) sy = (Y1, -, Yn,)", and matrix A, xn,
is in the form:

aj,5 = 17.] € {1,,”1}
Ay 52 = =Nz (1,72 € {1, .., i}, g1 # Jo).

This linear system in Equation 5 has n; unknown variables and n;
equations. The solution to Equation (5) is unique as the matrix A
is non-singular. We apply LU decomposition to solve Equation (5)
in O(n?) [Murota 1983], where n; is the number of Steiner points
within target sub-polygon g;.

3.3 Compatible Mesh Refining

While the compatible meshes generated by our method introduce a
very small number of Steiner points, there may still be some long
thin triangles such as the second row of Figure 7(a). In practice, we
found that these long thin triangles can cause numerical problems
such as inconsistent rotations for shape morphing as shown in
Figure 3. Therefore, we have to refine the compatible meshes to
avoid numerical problems.

To refine the compatible meshes, we apply a variation of the
remeshing method in [Surazhsky and Gotsman 2004]. We only
smooth those triangles with small interior angles and long edges.
Specifically, we smooth the mesh using area and angle based
remeshing, splitting long edges, and flipping interior edges to
improve the interior angles. The smoothed results could be found
in Figure 7(b).

4 As-Rigid-As-Possible Shape Morphing

Previous work [Alexa et al. 2000; Sumner and Popovi¢ 2004;
Sorkine and Alexa 2007] has shown that rigid shape morphing
methods could maximize the rigidity of a blended shape. In this
section, we first review the rigid shape morphing process. We then
discuss its problem in extracting rotation angle from rotation matrix
and explain our solution.

4.1 Rigid Shape Morphing

We follow [Alexa et al. 2000] to solve the rigid shape morphing by
minimizing a quadratic function. Given the vertices of two triangles
Ti = {u1,u2,us} and T2 = {v1,v2,vs3}, they transform 77 into
72 with an affine transformation A7 1 = 72. The matrix A can be
factorized into a rotation matrix R and a scale-shear component S
using polar decomposition, i.e. A = RS. We then independently
interpolate the matrix S and rotation angle 5 of R to compute
intermediate transformation matrix A(t) = R(¢t8)((1 —¢t)Z+tS),
where ¢ € [0,1] is time. Finally, finding the vertex path of all
triangles can be solved by minimizing a quadratic error between
the desired matrix A and actual matrix 5:

£=3 B0 -4,0) ©)

feTP

where Ay (t) is an affine transformation for the f'" triangle, B is
the actual matrix corresponds to Ay (t), and ||-|| is the Frobenius
norm.

This rigid shape interpolation is capable of integrating texture
for each intermediate shape. For each pixel P/X within an

intermediate triangle 77 (t), we calculate its three barycentric
coordinates. The barycentric coordinates are applied back to the
three vertices of the corresponding source and target triangles, T¢1
and Tyo, to calculate the pixel on the original source and target
images. We denote the color of pixel PIX within f* triangle
for T;1 and T2 as color(PIX1) and color(PIX5). The color of

pixel PIX on the intermediate f'” triangle is assigned by:
color(PIX) = color(PIX1)t + color(PIX2)(1 —t) (7)

4.2 Assigning Consistent Rotation

The rigid shape morphing algorithm may suffer from inconsistent
rotations whenever the rotation is more than 7. As shown in
Figure 3(top), some triangles rotate in opposite direction from their
neighbors. This problem stems from the ambiguity of extracting
the angle from rotation matrix R. The rotation angle extracting
techniques usually returns an angle 3 between —7 and 7, which
is the smallest magnitude rotation for each triangle. However, the
desired rotation should be 8 + 2lm, where [€ Z is an integer.

180°

_1 800 % \\

t=0 =033 =0.67 t=1

NN N

Figure 3: Inconsistent rotations: before fixing inconsistent
rotations (top) and after (bottom). The color represents the rotation
magnitudes of clockwise (red) and counter-clockwise (cyan).

Our input is a set of rotation angles 3 extracted from rotation matrix
R that lie in the closed interval [—m,7]. We want to generate
consistent rotation angles such that the jump between adjacent
angles is less than 7. Previous work [Alexa et al. 2000; Baxter et al.
2008] has shown that we may fail to find a solution for inconsistent
rotation problem due to the numerical problem caused by the long
thin triangles. While current solutions [Choi and Szymczak 2003;
Baxter et al. 2008] usually assume it is possible to assign consistent
rotations, their performance decreases significantly when there is
no solution to assign consistent rotations such as Figure 4(top).

LS 1Y
Tffww

-400° t=0 t=0.6 t=0.8 t=1

Figure 4: Existing methods tend to create excess rotations when
there is no solution for consistent rotations (top). The fixed
results of our method (bottom). The color indicates the rotation
magnitudes of clockwise (green) and counter-clockwise (purple).

Here, we offer an efficient algorithm that gives a unique rotation
assignment with minimum rotation angles, even when consistent

B> @ ®
VN oaheofoite] She]
G

(a) (b) (c)

@ - O—~O—@— The Searching Sequence

d

Figure 5: Making rotation consistent. (a) The triangulation of a polygon. (b) The graph of rotation angles (3 that has equivalent topology to
(a). (c) We start from one boundary rotation such as (31. (d-f) We traverse the graph and fix the inconsistency.

rotations do not exist. First, as illustrated in Figure 5(b), we
treat each original rotation angle 3 as one vertex of a graph G.
Second, we set the vertex connectivity of the graph G the same
as the connectivity of the triangles in triangulation 77 created in
Section 3 such as the triangulation in Figure 5(a). Lastly, we start
from one boundary rotation and examine all its neighbors, fixing
any jump that is larger than 7 by adding 2/7 such as Figure 5(c).
We keep searching the graph and adjusting any adjacent rotation
that is inconsistent with the current rotation until all the vertices
have been traversed such as Figure 5(d-f).

During the searching and fixing process, we keep the rotation of
the long thin triangle unchanged if there is a jump of more than 7.
This is because the inconsistent rotations often stem from these long
thin triangles, which results in numerical problem for extracting
rotation angles. In addition, one triangle lies on the interior of
a source polygon usually need a small rotation, within —7 and
m, to transform to the target one. After this process, our method
would find a solution to fix these discontinuity such as the results
in Figure 4(bottom). All the correct rotations in this paper are
generated by this simple scheme. Although we cannot prove our
method can always find a consistent rotation assignment, it works
well for all the results in this paper and supplemental demo video.

5 Method Complexity

In this section, we will analyze the computational complexity of
our method. The time cost of decomposing target polygon Q)
into a convex set of polygons is O(N?), where N is the number
of vertices of). Finding a corresponding link path for each
sub-polygon p; in source polygon P is O(N?), where N; is
the number of vertices of source sub-polygon p;. The Delaunay
triangulation can be finished in O(N;logN;). Compatible mapping
for sub-polygon p; requires solving a linear equation using LU
decomposition that leads to O(n?) operations, where n; is the
number of Steiner points of sub-polygon p;.

The main computation of our method is dominated by computing
link paths and solving a linear system, i.e. O(H - maz(N?,n3)),
where H is the number of source sub-polygons p;. Table 1
compares the computational complexity between our method and
existing methods, where N is the number of vertices for source
polygon P, N; is the number of vertices for source sub-polygon
pi, n; is the number of Steiner points for p;. Since in general,
N; << N and n; << N, our algorithm is more computationally
efficient than existing methods.

The matrix A in Equation (5) is sparse and non-symmetric, thus,
we further speed it up by using iterative methods such as Bi-
CGSTAB [Van der Vorst 1992]. Here, we apply an open library
Eigen [Guennebaud et al. 2015] to solve the sparse linear system.
The compatible mapping process can be even faster before mesh
refinement operations and it can be completed in O(n). This is
because the Delaunay triangulation can triangulate the sub-polygon

p; with no Steiner points such that we only need to map the Steiner
points on the link path as discussed in Section 3.2.1.

Table 1: Computational complexity: the main computational cost
of our method is computing the link paths and solving the sparse
linear system by LU decomposition, where N is the total number of
boundary vertices of source polygon P, H is the number of source
sub-polygons pi, N; is the number of boundary vertices of p;, and
n; is the number of Steiner points of p;.

Aronov et al., 93 O(N?)

Surazhsky-Gotsman, 04 O(N’logN)

Baxter et al., 09 O(Q2N?)
Convex decomposition O(N?)

Proposed Method | Link paths generation O(HN}), N,<<N

Linear system computation | O(Hn}), n, << N

6 Experimental Results

In this section, we will show the experimental results and present
the comparisons between alternative approaches including [Aronov
et al. 1993], [Surazhsky and Gotsman 2004], and [Baxter et al.
2009]. Qualitative analysis is conducted to evaluate the mesh
quality between the proposed method and other alternatives. The
experiments are conducted on a Intel Core i3-2350M 2.3 GHZ PC
with 4GB RAM.

6.1 Compatible Triangulations

To demonstrate the effectiveness of our method, we implemented
the as-rigid-as-possible shape interpolation method [Alexa et al.
2000] introduced in Section 4.1 as well as our proposed method
for improving the rotation consistency discussed in Section 4.2.
Figure 6, 7 and 9 show some compatible triangulation results and
some challenging polygon pairs that are quite different such as the
shark and sea horse in the third row of Figure 7 and Tai Chi motions
in Figure 9.

Figure 7(a) shows that our initial compatible triangulation contains
few long thin triangles and we may only need to flip some edges of
triangles to enlarge the minimum interior angles. Figure 7(b) shows
that our compatible meshes can be further refined by methods such
as splitting long edges and average the area of adjacent triangles.

Given the compatible triangulations of two input polygons, shape

Aronov et al., 93 Surazhsky-Gotsman, 04 Baxter et al., 09 Ours

N/A

Figure 6: Compatible triangulations comparisons. We compare our the results with those of [Aronov et al. 1993], [Surazhsky and Gotsman
2004], and [Baxter et al. 2009]. While we may add a few more Steiner points than [Aronov et al. 1993; Baxter et al. 2009], our algorithm

creates high quality compatible mesh in terms of the number of long thin triangles. "N/A’ indicates that our implementation of [Baxter et al.
2009] failed due to the numerical robustness when calculating visibility polygons.

(@) (b)

Figure 7: Compatible triangulation results. (a) The initial tessellations of two polygons. (b) mesh refinement and morphing. Note that our
compatible mesh can be used to blend shapes with large rotations, e.g. shapes in the third row.

Polar decomposition
—F— Baxter et al., 08
Ours

Polar decomposition
—— Baxter et al., 08

J;P - X*‘ %WPb

|

P
/
/

The Rotation Angle B (radian)
ONO AR WN=_2O=2NWA,OON®
%
)
The Rotation Angle (radian)
budbhbdbhblioanvwrao~N®

©1234567 8 91011121314151617181920
The Index of Boundary Triangles Ordered In Counter-clockwise

(a)

N L
123456

7 8 910111213141516171819202122232425262728293031323334 3536
The Index of Boundary Triangles Ordered In Counter-clockwise

(d)

Figure 8: Computing consistent rotations. (a) The boundary rotations of the swirl-like shape to stick, (b) human to butterfly.

interpolation can be applied to create animations showing the
transitions from one shape to another. Figure 7(b) and 9 show
some interpolation results using our compatible meshes. For more
transformations, please see our supplemental demo video.

=0 t=0.25

t=0.5 t=0.75 t=1
Figure 9: Morphing of Tai-chi motions: we adopt the compatible
meshes generated by our algorithm to blend Tai-chi motions.

6.2 Regulating the Rotation

As shown in Figure 8(a), the rotations extracted from polar
decompositions are the original rotations without any fix. More
details about polar decomposition can be found in Section 4.1
and [Alexa et al. 2000]. We can see that the rotations extracted
from polar decompositions have big jump at the 5" and 16"
boundary rotations in Figure 8(a). [Baxter et al. 2008] fixes this
inconstant rotation problem through adding 2lm, where [is an
integer. The results of our method are the same as [Baxter et al.
2008]. Figures 8(b) shows another example that there is no
consistent rotations, in which the compatible meshes are created
by the method of [Surazhsky and Gotsman 2004] in the third
row of Figure 6. There is a big jump at the 20" boundarZ
triangle rotation. The problem stems from the rotation of the 19

boundary triangle, which is a long thin triangle. [Baxter et al. 2008]
starts from one boundary rotation and propagates the rotations
inward either clockwise or counter-clockwise. In order to reduce
the jump between adjacent rotation, their method tends to add
additional rotations that lead to a big jump between the starting and

ending rotation. In contrast, our method starts from one boundary
rotation and searches both clockwise and counter-clockwise to fix
inconsistent rotations, which can avoid the poor results by [Baxter
et al. 2008]. Our method ignores these long thin triangles and keeps
these rotations unchanged, which minimizes the jump between all
adjacent rotations. This is because (1) We observed that triangles
lie on the interior of a source polygon usually need a small rotation,
within —7 and 7, to transform to the target one. (2) Long thin
triangles are more likely to cause inconsistent rotations.

6.3 Quantitative Analysis

The quality of the compatible meshes would greatly influence
the intermediate shapes generated by morphing techniques. In
particular, the mesh with those long and skinny triangles would
suffer from the inconsistent rotation problem [Alexa et al. 2000;
Baxter et al. 2008].

We employ the following criteria to measure the mesh quality: (1)
minimum interior angle of a given mesh; and (2) the proportion
of angles that are smaller than a certain constant value, which are
known to be reasonable mesh quality criteria [Sarrate et al. 2003].
We would like to increase the minimum interior angle of a mesh
and decrease the percent of small angles.

Table 2 shows a quantitative comparison between our algorithm and
three other alternative methods. [Aronov et al. 1993] create a larger
number of Steiner points than the others and these Steiner points do
not help too much to improve the proportion of small angles. While
our results are similar to [Surazhsky and Gotsman 2004; Baxter
et al. 2009] in terms of the number of Steiner points, our algorithm
creates a much smaller percent of small angles than [Surazhsky and
Gotsman 2004; Baxter et al. 2009]. Compared with [Surazhsky
and Gotsman 2004], the minimum angle of our method has been
improved greatly while we add nearly the same number of Steiner
points as [Surazhsky and Gotsman 2004].

7 Conclusions

We propose a new method for compatible triangulation of two
simple polygons and apply them to 2D shape morphing. Our
method compatibly decomposes the target and source polygons
and map the triangulations of the source sub-polygons to the
corresponding target sub-polygons with a sparse linear system. We
also propose a solution to solve the inconsistent rotation problem of
rigid shape interpolation method.

Our approach can create compatible triangulations with more
regular-shaped triangles (as opposed to long thin triangles) as

Table 2: Quantitative comparisons between triangulation quality

Method #Steiner Point|Minimum angle| Angles<<10°| Angles < 15°| Angles<<20°

Aronov et al., 93 68 0.0135° 21.15% 27.01% 31.07%
| Surazhsky-Gotsman, 04 3 0.3833° 24.82% 32.27% 38.30%
7 Baxter et al., 09 3 0.3562° 23.74% 29.96% 33.29%
s Ours 0.3122° 12.57% 17.83% 29.82%
I Aronov et al., 93 182 0.1319° 18.84% 23.63% 28.25%
0 @R U Surazhsky-Gotsman, 04 2 0.4528° 21.15% 25.64% 32.69%
AR Baxter et al., 09 3.3052° 10.61% 14.39% 30.30%
i S e ours 3 3.7557° 5.35% 11.90% 22.02%
;?';ﬂf'? Aronov et al., 93 68 0.0311° 26.29% 32.10% 36.10%
i Surazhsky-Gotsman, 04 4 0.3833° 24.82% 32.27% 38.30%

w7 Baxter et al., 09 N/A N/A N/A N/A N/A
‘?\.,«’k % Ours 1 0.4706° 5.69% 10.16% 16.26%
Aronov et al., 93 56 0.0508° 21.55% 27.98% 34.40%
Surazhsky-Gotsman, 04 0 0.1429° 6.54% 7.74% 10.71%
Baxter et al., 09 0 2.2998° 9.44% 13.33% 17.22%
Ours 2 3.5657° 3.125% 3.64% 7.29%

illustrated by the fact that there are fewer triangles whose minimum References

angles are small under our approach compared with other methods
in [Aronov et al. 1993; Surazhsky and Gotsman 2004; Baxter
et al. 2009]. In addition, the proportion of small angles is
significantly smaller than existing methods, which relieves the
inconsistent rotations problem for the shape interpolation methods
such as [Alexa et al. 2000], and thus improves the quality of shape
morphing. Another advantage is the simplicity of the three stages
that all we need is to decompose a polygon, calculate link paths, and
solve a sparse linear system, which enables real-time morphing.

While our method well handles the mapping between shapes,
the morphing results need to be further improved. As we focus
on generating compatible mesh, we simply crossfade between
textures in image space. More sophisticated texture blending or
image warping algorithms such as [Schaefer et al. 2006] could
be incorporated into our method. Currently, the intermediate
images interpolated are uniquely determined by rigid interpolation
method [Alexa et al. 2000], which offers no means of controls. It
would be desirable to modify some parts of the intermediate shapes
if the users are not satisfied with them. We could explore possible
solutions such as the linear constraints proposed in [Baxter et al.
2008] to increase user creativity.

Another drawback of our method is that we cannot deal with the
polygon with holes. One possible solution is that we add a bridge
between the outer polygon and inner polygons (i.e. the holes). We
connect the outer polygon with all the holes such that we can treat
a polygon with holes as a single polygon. We can then apply our
previous method to compatibly decompose the source and target
polygons. While we have shown many examples of compatible
triangulation both in the paper and supplemental video, we also
want to test our algorithm on shapes with complex structure or
completely different topology in the future.

Acknowledgements

This project was partly supported by the Engineering and Physical
Sciences Research Council (EPSRC) (Ref: EP/M002632/1) and a
grant from City University of Hong Kong (project No. 9220077).

ALEXA, M., COHEN-OR, D., AND LEVIN, D. 2000. As-rigid-as-
possible shape interpolation. In Proceedings of the 27th annual
conference on Computer graphics and interactive techniques,
ACM Press/Addison-Wesley Publishing Co., 157-164.

ARONOV, B., SEIDEL, R., AND SOUVAINE, D. 1993. On
compatible triangulations of simple polygons. Computational
Geometry 3, 1, 27-35.

BAXTER, W., BARLA, P., AND ANJYO, K.-I1. 2008. Rigid shape
interpolation using normal equations. In Proceedings of the 6th
international symposium on Non-photorealistic animation and
rendering, ACM, 59-64.

BAXTER, W., BARLA, P., AND ANJYO, K.-1. 2009. Compatible
embedding for 2d shape animation. Visualization and Computer
Graphics, IEEE Transactions on 15, 5, 867-879.

CHEN, R., WEBER, O., KEREN, D., AND BEN-CHEN, M.
2013. Planar shape interpolation with bounded distortion. ACM
Transactions on Graphics (TOG) 32, 4, 108.

CHIANG, C.-C., WAY, D.-L., SHIEH, J.-W., AND SHEN, L.-
S. 1998. A new image morphing technique for smooth vista
transitions in panoramic image-based virtual environment. In
Proceedings of the ACM Symposium on Virtual Reality Software
and Technology, ACM, New York, NY, USA, VRST °98, 81-90.

CHOL, J., AND SZYMCZAK, A. 2003. On coherent rotation angles
for as-rigid-as-possible shape interpolation. In CCCG, 111-114.

FANG, H., AND HART, J. C. 2007. Detail preserving shape
deformation in image editing. In ACM Transactions on Graphics
(TOG), vol. 26, ACM, 12.

FLOATER, M. S. 1997. Parametrization and smooth approximation
of surface triangulations. Computer aided geometric design 14,
3, 231-250.

FLOATER, M. S. 2003. Mean value coordinates. Computer aided
geometric design 20, 1, 19-27.

FORTUNE, S. 1987. A sweepline algorithm for voronoi diagrams.
Algorithmica 2, 1-4, 153-174.

GOTSMAN, C., AND SURAZHSKY, V. 2001. Guaranteed
intersection-free polygon morphing. Computers & Graphics 25,
1, 67-75.

GUENNEBAUD, G., JACOB, B., ET AL., 2015.
http://eigen.tuxfamily.org.

Eigen v3.

GUPTA, H., AND WENGER, R. 1997. Constructing piecewise
linear homeomorphisms of simple polygons. Journal of
Algorithms 22, 1, 142-157.

IGARASHI, T., MoscovicH, T., AND HUGHES, J. F. 2005.
As-rigid-as-possible shape manipulation. ACM transactions on
Graphics (TOG) 24, 3, 1134-1141.

JIANG, X., BUNKE, H., ABEGGLEN, K., AND KANDEL, A.
2002. Curve morphing by weighted mean of strings. In Pattern
Recognition, 2002. Proceedings. 16th International Conference
on, vol. 4, IEEE, 192-195.

KEIL, M., AND SNOEYINK, J. 2002. On the time bound for convex
decomposition of simple polygons. International Journal of
Computational Geometry & Applications 12,03, 181-192.

KRANAKIS, E., AND URRUTIA, . 1999. Isomorphic
triangulations with small number of steiner points. International
Journal of Computational Geometry & Applications 9, 02, 171—
180.

L1, X.-Y,, Ju, T., AND Hu, S.-M. 2013. Cubic mean value
coordinates. ACM Trans. Graph. 32, 4 (July), 126:1-126:10.

MUROTA, K. 1983. Lu-decomposition of a matrix with entries of
different kinds. Linear Algebra and its Applications 49, 275—
283.

SARRATE, J., PALAU, J., AND HUERTA, A. 2003. Numerical
representation of the quality measures of triangles and triangular
meshes. Communications in numerical methods in engineering
19,7,551-561.

SCHAEFER, S., MCPHAIL, T., AND WARREN, J. 2006. Image
deformation using moving least squares. In ACM Transactions
on Graphics (TOG), vol. 25, ACM, 533-540.

SEDERBERG, T. W., GAO, P., WANG, G., AND MU, H. 1993. 2-d
shape blending: an intrinsic solution to the vertex path problem.
In Proceedings of the 20th annual conference on Computer
graphics and interactive techniques, ACM, 15-18.

SORKINE, O., AND ALEXA, M. 2007. As-rigid-as-possible
surface modeling. In Symposium on Geometry processing, vol. 4.

SRIVASTAVA, A., KLASSEN, E., JosHI, S. H., AND JERMYN,
1. H. 2011. Shape analysis of elastic curves in euclidean spaces.

Pattern Analysis and Machine Intelligence, IEEE Transactions
on 33,7, 1415-1428.

SUMNER, R. W., AND PoPOVIC, J. 2004. Deformation transfer
for triangle meshes. ACM Transactions on Graphics (TOG) 23,
3, 399-405.

SURAZHSKY, V., AND GOTSMAN, C. 2004. High quality
compatible triangulations. Engineering with Computers 20, 2,
147-156.

SURI, S. 1986. A linear time algorithm for minimum link paths
inside a simple polygon. Computer Vision, Graphics, and Image
Processing 35, 1, 99-110.

VAN DER VORST, H. A. 1992. Bi-cgstab: A fast and smoothly
converging variant of bi-cg for the solution of nonsymmetric
linear systems. SIAM Journal on scientific and Statistical
Computing 13,2, 631-644.

WOLBERG, G. 1998. Image morphing: a survey. The visual
computer 14, 8, 360-372.

XU, D., ZHANG, H., WANG, Q., AND BAo, H. 2006. Poisson
shape interpolation. Graphical Models 68, 3, 268-281.

YANG, W., WANG, X., AND WANG, G. 2014. Part-to-part
morphing for planar curves. The Visual Computer 30, 6-8, 919—
928.

