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1. Introduction

In this supplementary, we provide more ablation studies on
ScanNet [ 1] and SemanticKITTI [2]. Moreover, we demon-
strate the two-pathway approach facilitates quicker conver-
gence. Additionally, we provide more qualitative results for
different scenes to validate the effectiveness and generaliza-
tion ability of our method on both indoor (S3DIS [3], Scan-
Net [1]) and outdoor(SemanticKITTI [2]) datasets. Fur-
thermore, we provide a demo video for improved visual-
ization (https://www.youtube.com/watch?v=X_
NLmoh50Q0c.). Tables S1 and S2 present the ablation stud-
ies on ScanNet [ 1] and SemanticKITTTI [2] datasets, respec-
tively, demonstrating the efficacy of our method. Both ta-
bles confirm that each component of our approach performs
effectively and that the choice of superpoint number sig-
nificantly influences the final outcomes. Figure S1 illus-
trates that two-pathway training not only enhances perfor-
mance but also expedites convergence. Figures S2 to S4
showcase the qualitative results on the SemanticKITTI [2],
ScanNet [1] and S3DIS [3] datasets. We compare our re-
sults with two classical clustering methods and the current
existing work GrowSP [4].
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Figure S1. Curve of mloU(%) changes over time(hour). The figure
illustrates the expedited convergence achieved by the two-pathway
approach.
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Table S1. Ablation study on ScanNet: Eqv denotes equivari-
ant voxelized feature transformation; Inv denotes invariant colour
transformation. s, denotes the final superpoint number.

Baseline Eqv  vsp mloU mAcc oAcc
6.9 13.2 18.9
8.1 154 212
80 11.4 19.8 29.5
13.5 21.9 32.8
40 14.2 23.1 34.8
20 13.2 22.1 33.6
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Table S2. Ablation study on SemanticKITTI: Eqv denotes equiv-
ariant voxelized feature transformation. However, there is no Inv
due to the lack of color information in this dataset. -y, denotes the
final superpoint number.
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Figure S2. Qualitative example (a) on SemanticKitti [2]. Where each class is assigned to a colour (as per legend, bottom). This illustration
shows superior performance compared to the baseline
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Figure S2. Qualitative example (b) on SemanticKitti [2]. Where each class is assigned to a colour (as per legend, bottom). This illustration

shows superior performance compared to the baseline
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Figure S3. Qualitative results on Scannet [1]. Evaluated with 20 categories exclude the ignored label, and each label is assigned to a colour.
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Figure S4. Qualitative results on S3DIS [3]. Each label at the bottom denotes one class, and this figure shows promising results.
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