Research Publications - Surface Modelling

Select a Topic:​ All Motion Analysis Character Animation Interaction Modelling Video Analysis Action Recognition 3D Reconstruction Healthcare Diagnosis Crowd Modelling Responsible AI Environment Sensing Virtual Reality Artwork Analysis Robotics Surveillance Air and Space

Sort By:​YearTypeCitation


Our Surface Modelling Research

We model complex surfaces of humans and objects to enable better visualisation and analysis.

Interested in our research? Consider joining us.

Surface Modelling Demos

VC 2022 - 3D Car Shape Reconstruction from a Contour Sketch using GAN and Lazy Learning
Video Thumbnail
VRST 2022 - 3D Reconstruction of Sculptures from Single Images via Unsupervised Domain Adaptation on Implicit Models
Video Thumbnail
TMM 2020 - A Unified Deep Metric Representation for Mesh Saliency Detection and Non-Rigid Shape Matching
Video Thumbnail
GRAPP 2020 - Single Sketch Image Based 3D Car Shape Reconstruction with Deep Learning and Lazy Learning
Video Thumbnail
MIG 2019 - DSPP: Deep Shape and Pose Priors of Humans
Video Thumbnail
Show More

Journal Papers

3D Car Shape Reconstruction from a Contour Sketch using GAN and Lazy Learning
3D Car Shape Reconstruction from a Contour Sketch using GAN and Lazy Learning Impact Factor: 2.9Citation: 31#
Visual Computer (VC), 2022
Naoki Nozawa, Hubert P. H. Shum, Qi Feng, Edmond S. L. Ho and Shigeo Morishima
Webpage Cite This Plain Text
Naoki Nozawa, Hubert P. H. Shum, Qi Feng, Edmond S. L. Ho and Shigeo Morishima, "3D Car Shape Reconstruction from a Contour Sketch using GAN and Lazy Learning," Visual Computer, vol. 38, no. 4, pp. 1317-1330, Springer, 2022.
Bibtex
@article{nozawa21car,
 author={Nozawa, Naoki and Shum, Hubert P. H. and Feng, Qi and Ho, Edmond S. L. and Morishima, Shigeo},
 journal={Visual Computer},
 title={3D Car Shape Reconstruction from a Contour Sketch using GAN and Lazy Learning},
 year={2022},
 volume={38},
 number={4},
 pages={1317--1330},
 numpages={14},
 doi={10.1007/s00371-020-02024-y},
 issn={1432-2315},
 publisher={Springer},
}
RIS
TY  - JOUR
AU  - Nozawa, Naoki
AU  - Shum, Hubert P. H.
AU  - Feng, Qi
AU  - Ho, Edmond S. L.
AU  - Morishima, Shigeo
T2  - Visual Computer
TI  - 3D Car Shape Reconstruction from a Contour Sketch using GAN and Lazy Learning
PY  - 2022
VL  - 38
IS  - 4
SP  - 1317
EP  - 1330
DO  - 10.1007/s00371-020-02024-y
SN  - 1432-2315
PB  - Springer
ER  - 
Paper YouTube
A Unified Deep Metric Representation for Mesh Saliency Detection and Non-Rigid Shape Matching
A Unified Deep Metric Representation for Mesh Saliency Detection and Non-Rigid Shape Matching REF 2021 Submitted OutputImpact Factor: 9.7Top 10% Journal in Computer Science, Software Engineering
IEEE Transactions on Multimedia (TMM), 2020
Shanfeng Hu, Hubert P. H. Shum, Nauman Aslam, Frederick W. B. Li and Xiaohui Liang
Webpage Cite This Plain Text
Shanfeng Hu, Hubert P. H. Shum, Nauman Aslam, Frederick W. B. Li and Xiaohui Liang, "A Unified Deep Metric Representation for Mesh Saliency Detection and Non-Rigid Shape Matching," IEEE Transactions on Multimedia, vol. 22, no. 9, pp. 2278-2292, IEEE, 2020.
Bibtex
@article{hu20deep,
 author={Hu, Shanfeng and Shum, Hubert P. H. and Aslam, Nauman and Li, Frederick W. B. and Liang, Xiaohui},
 journal={IEEE Transactions on Multimedia},
 title={A Unified Deep Metric Representation for Mesh Saliency Detection and Non-Rigid Shape Matching},
 year={2020},
 volume={22},
 number={9},
 pages={2278--2292},
 numpages={15},
 doi={10.1109/TMM.2019.2952983},
 issn={1941-0077},
 publisher={IEEE},
}
RIS
TY  - JOUR
AU  - Hu, Shanfeng
AU  - Shum, Hubert P. H.
AU  - Aslam, Nauman
AU  - Li, Frederick W. B.
AU  - Liang, Xiaohui
T2  - IEEE Transactions on Multimedia
TI  - A Unified Deep Metric Representation for Mesh Saliency Detection and Non-Rigid Shape Matching
PY  - 2020
VL  - 22
IS  - 9
SP  - 2278
EP  - 2292
DO  - 10.1109/TMM.2019.2952983
SN  - 1941-0077
PB  - IEEE
ER  - 
Paper YouTube
Sparse Metric-Based Mesh Saliency
Sparse Metric-Based Mesh Saliency Impact Factor: 6.5Top 25% Journal in Computer Science, Artificial IntelligenceCitation: 12#
Neurocomputing, 2020
Shanfeng Hu, Xiaohui Liang, Hubert P. H. Shum, Frederick W. B. Li and Nauman Aslam
Webpage Cite This Plain Text
Shanfeng Hu, Xiaohui Liang, Hubert P. H. Shum, Frederick W. B. Li and Nauman Aslam, "Sparse Metric-Based Mesh Saliency," Neurocomputing, vol. 400, pp. 11-23, Elsevier, 2020.
Bibtex
@article{hu20sparse,
 author={Hu, Shanfeng and Liang, Xiaohui and Shum, Hubert P. H. and Li, Frederick W. B. and Aslam, Nauman},
 journal={Neurocomputing},
 title={Sparse Metric-Based Mesh Saliency},
 year={2020},
 volume={400},
 pages={11--23},
 numpages={13},
 doi={10.1016/j.neucom.2020.02.106},
 issn={0925-2312},
 publisher={Elsevier},
}
RIS
TY  - JOUR
AU  - Hu, Shanfeng
AU  - Liang, Xiaohui
AU  - Shum, Hubert P. H.
AU  - Li, Frederick W. B.
AU  - Aslam, Nauman
T2  - Neurocomputing
TI  - Sparse Metric-Based Mesh Saliency
PY  - 2020
VL  - 400
SP  - 11
EP  - 23
DO  - 10.1016/j.neucom.2020.02.106
SN  - 0925-2312
PB  - Elsevier
ER  - 
Paper Dataset GitHub
A New Method to Evaluate the Dynamic Air Gap Thickness and Garment Sliding of Virtual Clothes During Walking
A New Method to Evaluate the Dynamic Air Gap Thickness and Garment Sliding of Virtual Clothes During Walking Impact Factor: 1.9Citation: 23#
Textile Research Journal (TRJ), 2019
Pengpeng Hu, Edmond S. L. Ho, Nauman Aslam, Taku Komura and Hubert P. H. Shum
Webpage Cite This Plain Text
Pengpeng Hu, Edmond S. L. Ho, Nauman Aslam, Taku Komura and Hubert P. H. Shum, "A New Method to Evaluate the Dynamic Air Gap Thickness and Garment Sliding of Virtual Clothes During Walking," Textile Research Journal, vol. 89, no. 19--20, pp. 4148-4161, SAGE, 2019.
Bibtex
@article{hu19newmethod,
 author={Hu, Pengpeng and Ho, Edmond S. L. and Aslam, Nauman and Komura, Taku and Shum, Hubert P. H.},
 journal={Textile Research Journal},
 title={A New Method to Evaluate the Dynamic Air Gap Thickness and Garment Sliding of Virtual Clothes During Walking},
 year={2019},
 volume={89},
 number={19--20},
 pages={4148--4161},
 numpages={14},
 doi={10.1177/0040517519826930},
 publisher={SAGE},
}
RIS
TY  - JOUR
AU  - Hu, Pengpeng
AU  - Ho, Edmond S. L.
AU  - Aslam, Nauman
AU  - Komura, Taku
AU  - Shum, Hubert P. H.
T2  - Textile Research Journal
TI  - A New Method to Evaluate the Dynamic Air Gap Thickness and Garment Sliding of Virtual Clothes During Walking
PY  - 2019
VL  - 89
IS  - 19--20
SP  - 4148
EP  - 4161
DO  - 10.1177/0040517519826930
PB  - SAGE
ER  - 
Paper
Multi-Layer Lattice Model for Real-Time Dynamic Character Deformation
Multi-Layer Lattice Model for Real-Time Dynamic Character Deformation Impact Factor: 2.9Citation: 24#
Computer Graphics Forum (CGF) - Proceedings of the 2015 Pacific Conference on Computer Graphics and Applications (PG), 2015
Naoya Iwamoto, Hubert P. H. Shum, Longzhi Yang and Shigeo Morishima
Webpage Cite This Plain Text
Naoya Iwamoto, Hubert P. H. Shum, Longzhi Yang and Shigeo Morishima, "Multi-Layer Lattice Model for Real-Time Dynamic Character Deformation," Computer Graphics Forum, vol. 34, no. 7, pp. 99-109, John Wiley and Sons Ltd., Oct 2015.
Bibtex
@article{iwamoto15multilayer,
 author={Iwamoto, Naoya and Shum, Hubert P. H. and Yang, Longzhi and Morishima, Shigeo},
 journal={Computer Graphics Forum},
 title={Multi-Layer Lattice Model for Real-Time Dynamic Character Deformation},
 year={2015},
 month={10},
 volume={34},
 number={7},
 pages={99--109},
 numpages={11},
 doi={10.1111/cgf.12749},
 issn={1467-8659},
 publisher={John Wiley and Sons Ltd.},
 Address={Chichester, UK},
}
RIS
TY  - JOUR
AU  - Iwamoto, Naoya
AU  - Shum, Hubert P. H.
AU  - Yang, Longzhi
AU  - Morishima, Shigeo
T2  - Computer Graphics Forum
TI  - Multi-Layer Lattice Model for Real-Time Dynamic Character Deformation
PY  - 2015
Y1  - 10 2015
VL  - 34
IS  - 7
SP  - 99
EP  - 109
DO  - 10.1111/cgf.12749
SN  - 1467-8659
PB  - John Wiley and Sons Ltd.
ER  - 
Paper YouTube

Conference Papers

Neural-Code PIFu: High-Fidelity Single Image 3D Human Reconstruction via Neural Code Integration
Neural-Code PIFu: High-Fidelity Single Image 3D Human Reconstruction via Neural Code Integration H5-Index: 68#
Proceedings of the 2024 International Conference on Pattern Recognition (ICPR), 2024
Ruizhi Liu, Paolo Remagnino and Hubert P. H. Shum
Webpage Cite This Plain Text
Ruizhi Liu, Paolo Remagnino and Hubert P. H. Shum, "Neural-Code PIFu: High-Fidelity Single Image 3D Human Reconstruction via Neural Code Integration," in ICPR '24: Proceedings of the 2024 International Conference on Pattern Recognition, Kolkata, India, 2024.
Bibtex
@inproceedings{liu24neuralcode,
 author={Liu, Ruizhi and Remagnino, Paolo and Shum, Hubert P. H.},
 booktitle={Proceedings of the 2024 International Conference on Pattern Recognition},
 series={ICPR '24},
 title={Neural-Code PIFu: High-Fidelity Single Image 3D Human Reconstruction via Neural Code Integration},
 year={2024},
 location={Kolkata, India},
}
RIS
TY  - CONF
AU  - Liu, Ruizhi
AU  - Remagnino, Paolo
AU  - Shum, Hubert P. H.
T2  - Proceedings of the 2024 International Conference on Pattern Recognition
TI  - Neural-Code PIFu: High-Fidelity Single Image 3D Human Reconstruction via Neural Code Integration
PY  - 2024
ER  - 
Paper
3D Reconstruction of Sculptures from Single Images via Unsupervised Domain Adaptation on Implicit Models
3D Reconstruction of Sculptures from Single Images via Unsupervised Domain Adaptation on Implicit Models Core A Conference
Proceedings of the 2022 ACM Symposium on Virtual Reality Software and Technology (VRST), 2022
Ziyi Chang, George Alex Koulieris and Hubert P. H. Shum
Webpage Cite This Plain Text
Ziyi Chang, George Alex Koulieris and Hubert P. H. Shum, "3D Reconstruction of Sculptures from Single Images via Unsupervised Domain Adaptation on Implicit Models," in VRST '22: Proceedings of the 2022 ACM Symposium on Virtual Reality Software and Technology, pp. 1-10, Tsukuba, Japan, ACM, Nov 2022.
Bibtex
@inproceedings{chang22reconstruction,
 author={Chang, Ziyi and Koulieris, George Alex and Shum, Hubert P. H.},
 booktitle={Proceedings of the 2022 ACM Symposium on Virtual Reality Software and Technology},
 series={VRST '22},
 title={3D Reconstruction of Sculptures from Single Images via Unsupervised Domain Adaptation on Implicit Models},
 year={2022},
 month={11},
 pages={1--10},
 numpages={10},
 doi={10.1145/3562939.3565632},
 isbn={9.78E+12},
 publisher={ACM},
 Address={New York, NY, USA},
 location={Tsukuba, Japan},
}
RIS
TY  - CONF
AU  - Chang, Ziyi
AU  - Koulieris, George Alex
AU  - Shum, Hubert P. H.
T2  - Proceedings of the 2022 ACM Symposium on Virtual Reality Software and Technology
TI  - 3D Reconstruction of Sculptures from Single Images via Unsupervised Domain Adaptation on Implicit Models
PY  - 2022
Y1  - 11 2022
SP  - 1
EP  - 10
DO  - 10.1145/3562939.3565632
SN  - 9.78E+12
PB  - ACM
ER  - 
Paper GitHub YouTube
Single Sketch Image Based 3D Car Shape Reconstruction with Deep Learning and Lazy Learning
Single Sketch Image Based 3D Car Shape Reconstruction with Deep Learning and Lazy Learning  Best Student Paper AwardCitation: 14#
Proceedings of the 2020 International Conference on Computer Graphics Theory and Applications (GRAPP), 2020
Naoki Nozawa, Hubert P. H. Shum, Edmond S. L. Ho and Shigeo Morishima
Webpage Cite This Plain Text
Naoki Nozawa, Hubert P. H. Shum, Edmond S. L. Ho and Shigeo Morishima, "Single Sketch Image Based 3D Car Shape Reconstruction with Deep Learning and Lazy Learning," in GRAPP '20: Proceedings of the 2020 International Conference on Computer Graphics Theory and Applications, pp. 179-190, Valletta, Malta, SciTePress, Feb 2020.
Bibtex
@inproceedings{nozawa20single,
 author={Nozawa, Naoki and Shum, Hubert P. H. and Ho, Edmond S. L. and Morishima, Shigeo},
 booktitle={Proceedings of the 2020 International Conference on Computer Graphics Theory and Applications},
 series={GRAPP '20},
 title={Single Sketch Image Based 3D Car Shape Reconstruction with Deep Learning and Lazy Learning},
 year={2020},
 month={2},
 pages={179--190},
 numpages={12},
 doi={10.5220/0009157001790190},
 issn={2184-4321},
 isbn={978-989-758-402-2},
 publisher={SciTePress},
 location={Valletta, Malta},
}
RIS
TY  - CONF
AU  - Nozawa, Naoki
AU  - Shum, Hubert P. H.
AU  - Ho, Edmond S. L.
AU  - Morishima, Shigeo
T2  - Proceedings of the 2020 International Conference on Computer Graphics Theory and Applications
TI  - Single Sketch Image Based 3D Car Shape Reconstruction with Deep Learning and Lazy Learning
PY  - 2020
Y1  - 2 2020
SP  - 179
EP  - 190
DO  - 10.5220/0009157001790190
SN  - 2184-4321
PB  - SciTePress
ER  - 
Paper YouTube
DSPP: Deep Shape and Pose Priors of Humans
DSPP: Deep Shape and Pose Priors of Humans
Proceedings of the 2019 ACM SIGGRAPH Conference on Motion, Interaction and Games (MIG), 2019
Shanfeng Hu, Hubert P. H. Shum and Antonio Mucherino
Webpage Cite This Plain Text
Shanfeng Hu, Hubert P. H. Shum and Antonio Mucherino, "DSPP: Deep Shape and Pose Priors of Humans," in MIG '19: Proceedings of the 2019 ACM SIGGRAPH Conference on Motion, Interaction and Games, pp. 1:1-1:6, Newcastle upon Tyne, UK, ACM, Oct 2019.
Bibtex
@inproceedings{hu19dspp,
 author={Hu, Shanfeng and Shum, Hubert P. H. and Mucherino, Antonio},
 booktitle={Proceedings of the 2019 ACM SIGGRAPH Conference on Motion, Interaction and Games},
 series={MIG '19},
 title={DSPP: Deep Shape and Pose Priors of Humans},
 year={2019},
 month={10},
 pages={1:1--1:6},
 numpages={6},
 doi={10.1145/3359566.3360051},
 isbn={978-1-4503-6994-7},
 publisher={ACM},
 Address={New York, NY, USA},
 location={Newcastle upon Tyne, UK},
}
RIS
TY  - CONF
AU  - Hu, Shanfeng
AU  - Shum, Hubert P. H.
AU  - Mucherino, Antonio
T2  - Proceedings of the 2019 ACM SIGGRAPH Conference on Motion, Interaction and Games
TI  - DSPP: Deep Shape and Pose Priors of Humans
PY  - 2019
Y1  - 10 2019
SP  - 1:1
EP  - 1:6
DO  - 10.1145/3359566.3360051
SN  - 978-1-4503-6994-7
PB  - ACM
ER  - 
Paper YouTube
Environment Capturing with Microsoft Kinect
Environment Capturing with Microsoft Kinect
Proceedings of the 2012 International Conference on Software, Knowledge, Information Management and Applications (SKIMA), 2012
Kevin Mackay, Hubert P. H. Shum and Taku Komura
Webpage Cite This Plain Text
Kevin Mackay, Hubert P. H. Shum and Taku Komura, "Environment Capturing with Microsoft Kinect," in SKIMA '12: Proceedings of the 2012 International Conference on Software, Knowledge, Information Management and Applications, Dhaka, Bangladesh, Dec 2012.
Bibtex
@inproceedings{mackay12environment,
 author={Mackay, Kevin and Shum, Hubert P. H. and Komura, Taku},
 booktitle={Proceedings of the 2012 International Conference on Software, Knowledge, Information Management and Applications},
 series={SKIMA '12},
 title={Environment Capturing with Microsoft Kinect},
 year={2012},
 month={12},
 numpages={6},
 location={Dhaka, Bangladesh},
}
RIS
TY  - CONF
AU  - Mackay, Kevin
AU  - Shum, Hubert P. H.
AU  - Komura, Taku
T2  - Proceedings of the 2012 International Conference on Software, Knowledge, Information Management and Applications
TI  - Environment Capturing with Microsoft Kinect
PY  - 2012
Y1  - 12 2012
ER  - 
Paper

Posters

3D Car Shape Reconstruction from a Single Sketch Image
3D Car Shape Reconstruction from a Single Sketch Image  Best Poster Award
Proceedings of the 2019 ACM SIGGRAPH Conference on Motion, Interaction and Games (MIG) Posters, 2019
Naoki Nozawa, Hubert P. H. Shum, Edmond S. L. Ho and Shigeo Morishima
Webpage Cite This Plain Text
Naoki Nozawa, Hubert P. H. Shum, Edmond S. L. Ho and Shigeo Morishima, "3D Car Shape Reconstruction from a Single Sketch Image," in MIG '19: Proceedings of the 2019 ACM SIGGRAPH Conference on Motion, Interaction and Games, pp. 37:1-37:2, Newcastle upon Tyne, UK, ACM, Oct 2019.
Bibtex
@inproceedings{nozawa193dcar,
 author={Nozawa, Naoki and Shum, Hubert P. H. and Ho, Edmond S. L. and Morishima, Shigeo},
 booktitle={Proceedings of the 2019 ACM SIGGRAPH Conference on Motion, Interaction and Games},
 series={MIG '19},
 title={3D Car Shape Reconstruction from a Single Sketch Image},
 year={2019},
 month={10},
 pages={37:1--37:2},
 numpages={2},
 doi={10.1145/3359566.3364693},
 isbn={978-1-4503-6994-7},
 publisher={ACM},
 Address={New York, NY, USA},
 location={Newcastle upon Tyne, UK},
}
RIS
TY  - CONF
AU  - Nozawa, Naoki
AU  - Shum, Hubert P. H.
AU  - Ho, Edmond S. L.
AU  - Morishima, Shigeo
T2  - Proceedings of the 2019 ACM SIGGRAPH Conference on Motion, Interaction and Games
TI  - 3D Car Shape Reconstruction from a Single Sketch Image
PY  - 2019
Y1  - 10 2019
SP  - 37:1
EP  - 37:2
DO  - 10.1145/3359566.3364693
SN  - 978-1-4503-6994-7
PB  - ACM
ER  - 
Paper
Prior-Less 3D Human Shape Reconstruction with an Earth Mover's Distance Informed CNN
Prior-Less 3D Human Shape Reconstruction with an Earth Mover's Distance Informed CNN
Proceedings of the 2019 ACM SIGGRAPH Conference on Motion, Interaction and Games (MIG) Posters, 2019
Jingtian Zhang, Hubert P. H. Shum, Kevin D. McCay and Edmond S. L. Ho
Webpage Cite This Plain Text
Jingtian Zhang, Hubert P. H. Shum, Kevin D. McCay and Edmond S. L. Ho, "Prior-Less 3D Human Shape Reconstruction with an Earth Mover's Distance Informed CNN," in MIG '19: Proceedings of the 2019 ACM SIGGRAPH Conference on Motion, Interaction and Games, pp. 44:1-44:2, Newcastle upon Tyne, UK, ACM, Oct 2019.
Bibtex
@inproceedings{zhang19priorless,
 author={Zhang, Jingtian and Shum, Hubert P. H. and McCay, Kevin D. and Ho, Edmond S. L.},
 booktitle={Proceedings of the 2019 ACM SIGGRAPH Conference on Motion, Interaction and Games},
 series={MIG '19},
 title={Prior-Less 3D Human Shape Reconstruction with an Earth Mover's Distance Informed CNN},
 year={2019},
 month={10},
 pages={44:1--44:2},
 numpages={2},
 doi={10.1145/3359566.3364694},
 isbn={978-1-4503-6994-7},
 publisher={ACM},
 Address={New York, NY, USA},
 location={Newcastle upon Tyne, UK},
}
RIS
TY  - CONF
AU  - Zhang, Jingtian
AU  - Shum, Hubert P. H.
AU  - McCay, Kevin D.
AU  - Ho, Edmond S. L.
T2  - Proceedings of the 2019 ACM SIGGRAPH Conference on Motion, Interaction and Games
TI  - Prior-Less 3D Human Shape Reconstruction with an Earth Mover's Distance Informed CNN
PY  - 2019
Y1  - 10 2019
SP  - 44:1
EP  - 44:2
DO  - 10.1145/3359566.3364694
SN  - 978-1-4503-6994-7
PB  - ACM
ER  - 
Paper

† According to Journal Citation Reports 2024
‡ According to Core Ranking 2023
# According to Google Scholar 2025


HomeGoogle ScholarYouTubeLinkedInTwitter/XGitHubORCIDResearchGateEmail
 
Print